
Pergamon Tetrahedron Letters 39 (1998) 8869-8872 

TETRAHEDRON 
LETTERS 

Cycloaddition/Ring Opening of 3-Unsubstituted Cyclic Nitronates, Isoxazoline 
and 5,6-Dihydro-4H-1,2-oxazine N-Oxides, 

as Synthetic Equivalents of Functionalized Nitrile Oxides 

Shuji Kanemasa,* Takanori Yoshimiya,t and Eiji Wada 
Institute of Advanced Material Study, Kyushu University, Kasugakoen, Kasuga 816, Japan 
t Department of Molecular Science and Technology, Interdisciplinary Graduate School of 

Engineering Sciences, Kyushu University, Kasugakoen, Kasuga 816-8580, Japan 

Received 13 August 1998; revised 9 September 1998; accepted 11 September 1998 

Abstract: o)-Halo-~-nitropropane and -butane are cyclized with a base to form cyclic nitronates 
as labile 1,3-dipoles. They can be trapped by a variety of monosubstituted ethenes to give 3-(2- 
hydroxyethyl)isoxazolines or perhydroisoxazolo[2,3-b]o-oxazines depending upon the ring size of 
nitronates. The latter ring-fused heterocycles are transformed by treatment with an acid into 3-(3- 
hydroxypropyl)isoxazolines in good yields. Therefore, these cyclic nitronates are useful synthetic 
equivalents of functionalized nitrile oxides. Isolation of 5,6-dihydro-4H-1,2-oxazine N-oxide and 
their regio- and stereoselective cycloadditions are also discussed. © 1998 Elsevier Science Ltd. All rights 
reserved. 

1,3-Dipolar cycloadditions of C-monosubstituted nitronates to alkenes produce isoxazolidine derivatives 
which then undergo I]-elimination to give isoxazolines under acidic conditions. 1 Accordingly, through this 
cycloaddition/~-elimination sequence, nitronates can be a useful synthetic equivalent of nitrile oxides. 2 
Importance of nitrile oxide cycloaddition is based on the high synthetic potential of isoxazolines in which a 
variety of important functionalities are masked such as [3-hydroxy ketones, T-amino alcohols, 1,3-diols, c~,[3- 
unsaturated ketones, and others. 3 Nitrile oxides having an additional functionality are required in synthetic 
point of view, but such examples are quite limited.2, 4 

Since nitronates should have a reactivity similar to nitrones, it is expected that their cycloadditions can 
be catalyzed by a Lewis acid catalyst. 5 However, no successful examples are known so far for the Lewis 
acid catalyzed nitronate cycloadditions; lc in the presence of a strong Lewis acid such as boron trifluoride 
etherate, nitronates are converted to nitrile oxides through [3-elimination. 2 In the preceding paper, 6 we have 
reported the facile cycloadditions of electron-deficient nitronates to the magnesium alkoxides of allylic 
alcohols, while the nitrile oxide generation is a fast reaction when catalyzed by boron trifluoride etherate. 
Therefore, reactive nitronates with a higher stability under Lewis acid catalyzed conditions are required to 
achieve the Lewis acid catalyzed nitronate cycloadditions. 

From these standpoints, we planed to utilize 3-unsubstituted cyclic nitronates; they would be a useful 
synthetic equivalent of nitrile oxides functionalized by a hydroxyalkyl group. High synthetic utility of cyclic 
nitronates has been well established by a series of pioneering works by Denmark. 7 His reaction includes the 
initial step of [4+2] hetero Diels-Alder type cycloaddition of nitroalkenes with electron rich alkenes to form 
cyclic nitronates which are utilized for the subsequent 1,3-dipolar cycloadditions. 3-Substituted cyclic 
nitronates are readily accessible by dehydrohalogenation of o)-halo-ct-nitroalkanes with a base, but either 
synthesis or reaction of 3-unsubstituted cyclic nitronates is rare. 8 

In the present communication, we would like to report the preparation of cyclic nitronates from 3-iodo- 
1-nitropropane and 4-iodo-l-nitrobutane by action with a base. These 1,3-dipoles can be trapped with a 
variety of monosubstituted ethenes to give 3-(2-hydroxyethyl)isoxazolines or perhydroisoxazolo[2,3-b]o- 
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oxazines depending upon the ring size of nitronates. The latter ring-fused isoxazolidines are transformed by 
treatment with an acid into 3-(3-hydroxypropyl)isoxazolines in quantitative yields. Therefore, these cyclic 
nitronates are useful synthetic equivalents of functionalized nitrile oxides. 

When 3-iodo-l-nitropropane (1, X = 1) 9 was treated with triethylamine (2 equiv) in dichloromethane in 
the presence of styrene (1.2 equiv) at rt for 24 h, 3-(2-hydroxyethyl)-5-phenylisoxazoline (5a) was obtained 
regioselectively in 61% yield (Scheme 1). 4-Methoxystyrene as dipolarophile provided the best yield, but 
the maximum yield for cycloadduct 5b was only 63%. Although single regioisomers were produced in all 
cases, trapping with less reactive alkenes such as 3-phenylpropene (43%), allyl acetate (25%), and allyl ethyl 
ether (28%) was rather ineffective (1.2 equiv in all cases). Two mechanisms are possible for the formation of 
5: By action with triethylamine, 1 cyclizes to form isoxazoline N-oxide (2) which then undergoes either 
cycloaddition giving nitronate cycloadducts 3 or generation of nitrile oxide 4 through ring opening by [3- 
elimination. We believe that the isoxazoline cycloadducts 5 have been produced via a nitrile oxide route on 
the basis of the following informations: (1) no trace of nitronate cycloadducts 3 was detected, (2) 13- 
elimination of 3 should not be easy under the reaction conditions, (3) isoxazolidine ring is quite stable under 
basic conditions as observed for compounds 12, (4) the dimer of nitrile oxide 4 was produced as acetylated 
derivative 6 (30% yield) in the presence of acetic anhydride without dipolarophile. 

~ X  N Et3N (2 equiv) 
02 Dipolarophile 

(1.2 equiv), t~ 
1 24 h in CH2CI 2 

E@.-ol . 
2 

4 5 
Dimerization// 

Ac20/Et3N (2 equiv each) / 
II, 24 h in CH2CI 2 / 

A c O / ~ ~ O A c  

N,,,O.I N~ O 
6 

1 (x = cl) 

Dipolarophile Product Yield/% 
Styrene 5a 61 
4-Methoxystyrene 5b 63 
3-Phenylpropene 5c 43 
Allyl acetate 5d 25 
Allyl ethyl ether 5e 28 
All results are for the reactions of I (X = I). 

DBU (1 equiv) + CH2=CHCOOMe (3 equiv) 
rt, 1 h in CH2Cl 2 

95% 

N ~ O ~ O  COOMe 

7 

C F ~ . ~  N~ 0 C I t y . N O  = COOMe 

8 9 

S c h e m e  I 

Electron deficient alkenes could not be used successfully to trap nitronate 2 (or nitrile oxide 4). 10 For 
example, when nitronate generation was carried out from 3-chloro-l-nitropropane (1, X = C1) and DBU in 
the presence of methyl acrylate, the 3-alkylated nitronate 7 was produced quantitatively as highly stable 
compound. DBU and 1 (X = CI) would generate a high concentration of nitronate anion $ which can be 
smoothly trapped by the acrylate to give Michael adduct 9; the subsequent base-mediated cyclization gives 7. 
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High stability of 7 indicates that the unsubstitution at 3-position of 2 is the major reason for its instability 
under basic conditions. Actually, isolation of the 3-unsubstituted nitronate 2 was rather difficult. Since 13- 
elimination of 2 leading to nitrile oxide 4 should be accelerated by a base, use of excess base should be 
avoided to isolate the base-labile nitronate 2. Thus, 1 (X = I) was reacted with an amount slightly less than 1 
equiv of DBU at rt f3i 10 rain to give 2 (20% yield based on 1H NMR) together with the unreacted 1. 
However, separation and isolation of pure 2 through column chromatography failed. 11 This ready 13- 
elimination may be favored because of its Z-geometry of the cyclic nitronate moiety of 2 in which the imine 
hydrogen at 3-position is antiperiplanar to the leaving oxygen group. 12 

R 
H 

C N  DBU (0.95 equiv) . ~ o / N  RCH=CHR' : ~  
02 rt for 10 rain ,~ rt in CH2CI 2 R' 

in CH2CI 2 0 

10 11 12 
o 

H t-I.. / ~ NMe H COOMe H COOMe 

COOMe ..... ~ COOMe 
0 

12c 12d 12e 

Dipolarophile Time/h 

Styrene 18 
Methyl acrylate 3 
N-Methylmaleimide 10 min 
Dimethyl maleate 24 
Dimethyl fumarate 3 

and/or 13a 

Product R, R' in Dipolarophile Yield/% Isomer ratio 
12a R=H, R'=Ph 52 3,3a-tran$only 
12b R = H, R' = COOMe 75 3,3a-trans/cis = 91:9 
12c RR' = CON(Me)CO 90 4a,4b-trans/cis = 78:22 
12d R = R' = COOMe (Z) 42 3,3a-trans only 
12e R = R' = COOMe (E) 81 53:47 a 

All results are for the reactions of 10 (X = I). a Stereochemistry unidetified. 

12a 
CF3COOH (cat) 

rt in CDCI 3, 10 min 

N--O 

H 0 ~ ~ , ~  Ph 

100% 13a 

Scheme 2 

Six-mernbered nitronate, 5,6-dihydro-4H-1,2-oxazine N-oxide (11), was similarly generated and trapped 
with styrene: Reaction of 4-iodo-l-nitrobutane (1O, X = I) with triethylamine (2 equiv) at rt for 72 h in the 
presence of styrene (1,2 equiv) gave a mixture of ring-fused isoxazolidine 12a and isoxazoline 13a in 52 and 
7% yields respectively (Scheme 2). The nitronate cycloadduct 12a could be easily transformed into 3-(3- 
hydroxypropyl)-5-phenylisoxazoline (13a) in a quantitative yield by treatment with a catalytic amount of 
trifluoroacetic acid at rt for a short time. 2 When 10 (X = I) was treated with an amount slightly less than 1 
equiv of DBU at rt for 10 min, nitronate 1113 was isolated in 80% yield. This nitronate 11, a colorless liquid 
with a fairly high stability, was applied to the reactions with a variety of dipolarophiles. Monosubstituted 
alkenes such as styrene and methyl acrylate showed a moderate reactivity; 2,3a-trans-isomers of ring-fused 
isoxazolidines 12a,b having a substituent at 2-position were produced as a single or major diastereomer. N- 
Methylmaleimide was highly reactive to give a stereoisomeric mixture of 12c in a high yield, the major 
isomer of which was assigned as 4a,4b-trans-structure (exo-isomer) on the basis of the NOE spectrum 
between H-4a/H-4b of the minor diastereomer. 14 Reactions with dimethyl maleate and fumarate were both 
absolutely stereospecific; although the maleate adduct 12d was a single 3,3a-trans-stereoisomer, a low 
isomer ratio 3f stereoisomeric mixture of 12e was produced from the fumarate. 
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As mentioned above, the 3-alkylated nitronate 7 was quantitatively obtained in the reaction of 1 (X = C1) 
with methyl acrylate. Although this nitronate 7 was not highly reactive, it underwent cycloaddition with an 
excess amount of ethyl acrylate under reflux in toluene to give a stereoisomeric mixture (2,3a-cis:trans = 
27:73) of 2,3a-disubstituted nitronate cycloadduct 14. 

7 

f "  COOMe 
CH2=CHCOOEt (2 equiv) 

Reflux in toluene, 3 h " -- " \ O 1 ~  ~ "-"-'__/--- COOEt 

69% 1 4 (cis:trans = 27:73) 

Lewis acid catalyzed cycloadditions of cyclic nitronates with electron deficient alkenes are under 
progress. Results will be reported elsewhere in due time. 
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