CONVERSION OF ISOXAZOLE DERIVATIVES INTO  $\beta$ -AMINOENONES BY PENTACARBONYLIRON, WATER AND PHOTOIRRADIATION

Makoto Nitta\* and Tomoshige Kobayashi Department of Chemistry, School of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 160, Japan

Abstract. 3,5-Disubstituted isoxazole derivatives, when irradiated in the presence of pentacarbonyliron and water undergo reductive cleavage of the N-O bond to give  $\beta$ -aminoenones in good yields.

It has been well established that 2,5-diarylisoxazoles photoisomerize to the azirines, which recyclize to the starting isoxazoles or oxazoles, depending on the wavelength of further irradiation.<sup>1</sup> The thermal reaction of isoxazoles have also been noted to undergo N-O bond cleavage to afford azirines.<sup>2</sup> Recently much attention has been focussed on azirines, which undergo a variety of interesting and useful ring cleavage reactions in the presence of transition metal carbonyls such as  $Fe_2(CO)_9$ ,  $^3 Co_2(CO)_8$ ,  $^4$  and  $M(CO)_6$  (M=Mo, $^{5,6}$  Cr, $^6$  W<sup>6</sup>). Among these ring cleavage reactions, Mo(CO)<sub>6</sub>-induced efficient intramolecular cycloaddition of 2-formyl-3-phenyl-2H-azirine to 3-phenylisoxazole stands in contrast to the photochemical and thermal behaviors of isoxazoles.<sup>5</sup> However, the reaction of isoxazole with transition metal carbonyls has not been reported so far.

In connection with the above investigations, we would like to present here the Fe(CO)<sub>5</sub>-induced reductive cleavage of 3,5-disubstituted isoxazole derivatives  $\underline{1}$  which result in the formation of  $\beta$ -aminoenones  $\underline{2}$  under photoirradiation<sup>7</sup> as shown in Scheme 1.

The general procedure of photoirradiation was as follows. A solution of isoxazole (1 mmol) and an adequate amount of  $Fe(CO)_5$  in 20 cm<sup>3</sup> of anhydrous or moist solvent containing an equivalent amount of water was irradiated with sunlight<sup>8</sup> or RPR-350 nm lamps<sup>9</sup> under a nitrogen atmosphere for a period indicated in Table 1.



Scheme 1

3925

3926

The yields of the products summarized in Table 1 were determined through pyrification by TLC or column chromatography.

Photoirradiations of la, lb and lc (entries A-F) with Fe(CO), in moist acetonitrile afforded  $\beta$ -aminoenones 2a, 2b and 2c in good yields, respectively. In the reactions of <u>la</u>, <u>lb</u> and <u>lc</u> with  $Fe(CO)_5$  in anhydrous acetonitrile or benzene (entries G-J), however, 2a, 2b and 2c were obtained in low yields, along with the other products (ca 10-17% yield) in each case. The latter products <sup>10</sup> are not separated and thus the structures have not been determined at the present stage. Water seems to be a hydrogen source in the present transformations. Even in the reaction in anhydrius solvents, the possibility of stray water can not be ruled The reaction of <u>la</u> or <u>lc</u> with  $Fe(CO)_5$  in moist acetonitrile in the dark at out. ambient temperature resulted in the quantitative recovery of <u>la</u> or <u>lc</u>. Furthermore, photoirradiation of lc in moist acetonitrile with RPR-350 nm lamps in the absence of Fe(CO)<sub>5</sub> for 6 h gave no product and <u>lc</u> was recovered quantitatively. Therefore, it is clear that light and Fe(CO) 5 as well as water are indispensable for the present transformations.

Photoirradiation of Fe(CO)<sub>5</sub> has been shown to originate Fe(CO)<sub>4</sub> species in low-temperature matrices.<sup>11</sup> In solution and in the absence of nucleophile Fe(CO)<sub>4</sub> collapses to Fe<sub>2</sub>(CO)<sub>9</sub> with good efficiency,<sup>12</sup> while in the presence of nucleophile such as pyridine, Fe(CO)<sub>4</sub>(pyridine) complex is formed.<sup>13</sup> Therefore the photochemically generated Fe(CO)<sub>4</sub> species seems to cause the present reactions. With this in mind, the thermal reactions of <u>la</u> with Fe<sub>2</sub>(CO)<sub>9</sub> was investigated. Heating a sample of <u>la</u> and Fe<sub>2</sub>(CO)<sub>9</sub> at 50 °C for 5 h in moist acetonitrile or anhydrous benzene gave the similar results (entries K and L). Therefore it is also shown that the reductive cleavage of isoxazoles to β-aminoenones is effectively performed by thermal condition using Fe<sub>2</sub>(CO)<sub>9</sub>.

The mechanism by which the isoxazole system undergoes reductive N-O bond cleavage is of considerable interest. It seems to be possible that the reaction proceeds via nitrene complex, which has been postulated in the reaction of azirines with Fe<sub>2</sub>(CO)<sub>0</sub>.<sup>3</sup> Evidence concerning the mechanistic aspect of the present transformation was obtained by studying the reaction of 2-benzoy1-3-pheny1-2H-azirine 3 (Table 1, entries M-O). Photoirradiation<sup>8</sup> of 3 (0.5 mmol) and  $Fe(CO)_5$  (0.6 mmol) in 10  $\text{cm}^3$  of acetonitrile containing an equivalent amount of water for 4 h resulted in the formation of 2a and isoxazole 1a in 43% and 39% yields, respectively (entry M). However, photoirradiation<sup>8</sup> of  $\frac{3}{2}$  in the absence of Fe(CO)<sub>5</sub> under similar condition, afforded la in 27% yield leaving the starting azirine 3 in a 69% yield (entry N). These facts seem to suggest that  $Fe(CO)_5$  induces 3 to undergo the reductive cleavage to give 2a as well as the rearrangement to give la, under photoirradiaiton. Furthermore, heating 3 with Fe<sub>2</sub>(CO)<sub>9</sub> in moist acetonitrile at 50 °C afforded 2a and la in 57% and 31% yields, respectively (entry 0). The formation of <u>la</u> from <u>3</u> is noticeable and similar to the case of Mo(CO)<sub>6</sub>-induced reaction of 2-formyl-3-phenyl-2H-azirine to give 3-phenylisoxazole. The reaction sequences

| Entry        | Compound | Solvent                             | Molar Ratio<br>of Fe(CO) <sub>5</sub> | Lıght            | Irradiation<br>Time (h) | Product<br>Yield (%) |
|--------------|----------|-------------------------------------|---------------------------------------|------------------|-------------------------|----------------------|
| A            | la       | CH <sub>3</sub> CN-H <sub>2</sub> O | 1.2                                   | Sun <sup>b</sup> | 24                      | 2a (74)              |
| В            | lb       | CH <sub>3</sub> CN-H <sub>2</sub> O | 1.2                                   | Sun              | 24                      | 2b (79)              |
| С            | lc       | CH <sub>3</sub> CN-H <sub>2</sub> O | 1.2                                   | Sun              | 24                      | 2c (65)              |
| D            | la       | CH <sub>3</sub> CN-H <sub>2</sub> O | 1.2                                   | 350 <sup>C</sup> | 24                      | 2a (68)              |
| Е            | lb       | CH <sub>3</sub> CH-H <sub>2</sub> O | 1.2                                   | 350              | 24                      | 2b (76)              |
| F            | lc       | CH <sub>3</sub> CN-H <sub>2</sub> O | 1 2                                   | 350              | 6                       | 2c (72)              |
| G            | la       | PhH                                 | 2.0                                   | 350              | 24                      | 2a (56) <sup>d</sup> |
| Н            | lb       | PhH                                 | 2.0                                   | 350              | 24                      | 2b (12) <sup>d</sup> |
| I            | lc       | PhH                                 | 2.0                                   | 350              | 6                       | 2c (59) <sup>d</sup> |
| J            | lc       | CH 3 CN                             | 1.2                                   | 350              | 6                       | 2c (10) <sup>d</sup> |
| K            | la       | CH <sub>3</sub> CN-H <sub>2</sub> O | (1 0) <sup>e</sup>                    | None             | 5                       | 2a (66)              |
| $\mathbf{L}$ | la       | PhH                                 | (1 0) <sup>e</sup>                    | None             | 5                       | 2a (41) <sup>d</sup> |
| М            | 3        | CH <sub>3</sub> CN-H <sub>2</sub> O | 1 2                                   | Sun              | 4                       | 2a (43) + la (39)    |
| N            | 3        | CH <sub>3</sub> CN-H <sub>2</sub> O | None                                  | Sun              | 4                       | la (23) + 3 (69)     |
| 0            | 3        | CH <sub>3</sub> CN-H <sub>2</sub> O | (1.0) <sup>e</sup>                    | None             | 0.7                     | 2a (57) + la (31)    |

Table 1. Reductive Cleavage of Isoxazoles and an Azirine<sup>a</sup>

a. All products are known compounds and were identified by comparison of spectral data with those of authentic materials.
b. Ref. 8.
c. Ref. 9
d. In this case, minor amount of products (ca 10-17%) was obtained Ref 10
e. Heated at 50 °C in the presence of an equivalent amount of Fe<sub>2</sub>(CO)<sub>9</sub>.

of <u>3</u> are summarized in Scheme 2. The initial step in this reaction should be Ndonor complexation to give <u>4</u> followed by carbon-nitrogen bond cleavage to give nitrene complex <u>5</u>.<sup>3</sup> This intermediate <u>5</u> is trapped by water to give  $\beta$ -aminoenone <u>2a</u>. Another pathway for <u>5</u> should be the cyclization to give 6, of which decomplex-



ation gives <u>la</u>. The isoxazole <u>la</u> could also afford <u>2a</u>, therefore the present reaction of <u>la</u>,<u>b</u>,<u>c</u> with  $Fe(CO)_5$  under photoirradiation (entries A-J) or the thermal reaction with  $Fe_2(CO)_9$  (entries K and L) should proceed via a common nitrene complex such as <u>5</u>

It is reported that azirines undergo coupling and insertion reactions in the presence of Fe<sub>2</sub>(CO)<sub>9</sub> in anhydrous benzene to give pyrroles, ureadiiron hexacarbonyl complexes, diimide complexes, and minor amount of ketones <sup>3</sup> The formation of ketones via a nitrene complex is consistent with the formation of  $\beta$ -aminoenones in the present reactions.

The reductive cleavage of isoxazoles by catalytic hydrogenation is widely applicable to the synthetic transformations of various compounds.<sup>14</sup> The present reaction might serve as another convenient method for the conversion of isoxazoles to  $\beta$ -aminoenones. Further studies including scope and limitation as well as the detailed mechanistic aspect are now underway.

## References and Notes

- 1. E. F Ullman and B Singh, J Am. Chem. Soc., 88, 1844 (1966); E. F. Ullmann and B. Singh, J. Am. Chem. Soc., 89, 6911 (1967).
- 2 T Nishiwaki, T. Kitamura, and A. Nakano, <u>Tetrahedron</u>, <u>26</u>, 453 (1970), We have also reported the thermal reaction of 9-aryl-7-oxa-8-azabicyclo[4 3.1.0]deca-2,4,8-triene, of which isoxazoline ring undergoes N-O bond cleavage to give azirine: M. Nitta, S. Sogo, and T. Nakayama, <u>Chemistry Letters</u>, <u>1979</u>, 1431.
- H. Alper and J. E. Prickett, <u>Inorg. Chem.</u>, <u>16</u>, 67 (1977), Y. Nakamura,
   B. Bachmann, H. Heimgartner, and H. Schmid, <u>Helv. Chim. Acta</u>, <u>61</u>, 589 (1978);
   F. Bellamy, J. C. S., Chem. Comm., <u>1978</u>, 998
- 4. H. Alper and J. E. Prickett, Tetrahedron Letters, 1976, 2589.
- 5. F. Bellamy, <u>Tetrahedron Letters</u>, <u>1978</u>, 4577, A. Inada, H. Heimgartner, and H. Schmid, Tetrahedron Letters, 1979, 2983.
- 6. H. Alper, J. E. Prickett, and S. Wollowitz, <u>J. Am. Chem. Soc.</u>, <u>99</u>, 4330 (1977).
- 7. Fe(CO)<sub>5</sub>-induced rearrangement of phenyl-substituted epoxides under photoirradiation has appeared T. Kobayashi and M. Nitta, <u>Chemistry Letters</u>, <u>1982</u>, 325
- 8. The irradiation was conducted under sunlight in January through Pyrex filter.
- 9. Rayonet Photoreactor, RPR-350 nm lamps, Pyrex filter.
- 10 In these compounds, carbonyliron molety is not incorporated.
- 11. M. Poliakoff and J Turner, J Chem. Soc., Dalton Tras., 1974, 2276;
- M. Poliakoff and J. Turner, J. Chem. Soc., Dalton Tras., 1974, 210.
- 12 J. Dewar and H. O. Jones, Proc. R. Soc. London, ser A, 77 66 (1906).
- 13. E. H. Schubert and R. K. Sheline, Inorg. Chem., 5, 1071 (1966)
- 14. B. J. Wakefield and D. J Wright, in "<u>Advances in Heterocyclic Chemistry</u>" eds. A R. Katritzky and A J. Boulton, vol. 25, p 147, Academic Press, New York, London, Tront, Sydney, and San Francisco (1979).

(Received in Japan 30 April 1982)