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Alkenesulfonyl chlorides reacted with vinylarenes in the presence of a catalytic amount of dichlorotris(tri-
phenylphosphine)ruthenium(II) to give substituted 1 : 1 adducts, which were dehydrochlorinated and desulfonyl-
ated successively to form substituted (E,E)-1,3-dienes in good yield.

We have previously reported that the reaction of
alkane- and arenesulfonyl chlorides with olefins cata-
lyzed by dichlorotris(triphenylphosphine)ruthenium-
(II) (1) under mild conditions affords 1:1 adducts in
high yield.! We recently found that alkenesulfonyl
chlorides reacted with olefins in the presence of the
ruthenium(II) catalyst 1 to form 1:1 adducts, which
were dehydrochlorinated and desulfonylated succes-
sively by raising the reaction temperature from 80 to
150°C to give (E,E)-1,4-diaryl-1,3-butadienes in high
yield.23¥However, these reactions were limited to
the formation of 1,3-butadienes substituted with aryl
groups at the 1- and 4-positions. Here, we report on
the formation of substituted 1,3-dienes by the reaction
of alkenesulfonyl chlorides with styrenes catalyzed by
the ruthenium(II) complex 1.

The reaction of (E)-2-phenyl-1-propene-1-sulfonyl
chloride (2b) with styrene was carried out in benzene,
in the presence of a catalytic amount of dichlorotris-
(triphenylphosphine)ruthenium(II) (1), by heating the
reaction mixture at 80 °C under a nitrogen atmosphere
to give 1:1 adduct 3d in 89% yield. Similarly, (E)-2-
phenylethene-, (E)-2-phenyl-1-propene-1-, and (E)-1-
phenyl-1-propene-2-sulfonyl chloride (2a—c) were
added to substituted vinylarenes using 1 as a catalyst at
80—100°C to afford 1:1 adducts 3 in high yield. The
results are summarized in Table 1. Thus, the ruthe-
nium(II)-phosphine catalyzed addition reaction of sty-
renesulfonyl chlorides possessing methyl group at a-
and B-position (2b and 2c) to a- and B-methylstyrenes
was found to give 1 :1 adducts in good yield.
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The reaction of (E)-2-phenyl-1-propene-1-sulfonyl-
chloride with styrene catalyzed by 1 was also carried
out in benzene upon raising the reaction temperature

from 80 to 150 °C, to give unsymmetrical 1,4-diphenyl-
1,3-pentadiene (4b) in 51% yield. Similarly, several
alkenesulfonyl chlorides 2a—c were reacted with sub-
stituted vinylarenes in order to study the scope and
limitation of the formation of substituted 1,3-dienes.
The results are summarized in Table 2.
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We have previously reported that the reaction of (E)-
2-phenylethenesulfonyl chloride with p-methylstyrene
catalyzed by 1 proceeds successively via an addition,
dehydrochlorination, and desulfonylation to give (E)-
2-chloro(p-tolyl)ethyl styryl sulfone, (E,E)-p-methyl-
styryl sulfone, and (E,E)-1-phenyl-4-(p-tolyl)-1,3-
butadiene, respectively, by studying the time course.
Moreover, it was also found that a ruthenium(II) cata-
lyst was effected in each of the three steps.® Therefore,
the formation of substituted 1,3-diene 4 could be
accounted for by the following path-way, as shown in
Scheme 1. Alkenesulfonyl chlorides 2 react with the
olefins catalyzed by the ruthenium(II) complex 1 to
give 1:1 adducts 3 during the initial step. Dehydro-
chlorination and desulfonylation from adducts 3 take
place, successively, in the presence of the ruthenium
complex 1 to afford substituted 1,3-dienes 4.
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Scheme 1.

There are a number of methods for the preparation
of 1,3-dienes;*~® however, some of them can prepare
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Table 1. Reaction of Alkenesulfonyl Chloride with Olefin Catalyzed by RuCly(PPhjs); (1)
Sulfonyl chloride Olefin Temp/°C Time/h Product Yield/%

@\/\ 50,1 ~AO) 80 70 3a 88
2a
ﬁ/@ 100 36 3b 462
~AO) 100 24 3¢ 23
@\(\ s0,Cl \/@ 80 24 3d 89
2b
\/@Me 80 21 3e 81
\/@m 80 13 3 95
V@ 80 24 3g 70
NO
2
ﬁ/@ 100 36 3h 802)
~AO) 100 24 3i 61
@\)\ 50,C1 ~AO) 80 24 3i 84
2c
sAOpve 80 37 3k 74
\/@Cl 80 37 31 76
\/@
no, 80 72 3m 70
\’/@ 100 36 3n 802"
~AO) 100 24 30 53

only symmetrical 1,3-dienes’~!? and others require
sophisticated organometallic reagents.’*=17  On the
other hand, the present method can be used to prepare
symmetrical and unsymmetrical 1,3-dienes in good
yield by the reaction of easily available sulfonyl chlo-
rides with olefin. The reaction of 2c with 2-phenyl-1-
propene afforded 2-methyl-1,4-diphenyl-1,3-pentadiene
(4e) and (E)-2-chloro-2-phenylpropyl 1-methyl-2-phen-
ylethenyl sulfone (3n) in 15% and 63% yields, respec-
tively (Run 8 in Table 2). This indicates that the
adduct 3n was not readily dehydrochlorinated and

desulfonylated to 1,3-diene 4e when ethenesulfonyl
chloride has a substituent at the B-position, probably
by the steric effect of the methyl group.

A reaction of (E)-1-propene-1-sulfonyl chloride with
styrene was carried out at 150 °C using the ruthenium-
(II) complex 1 while expecting the formation of 1-
phenyl-1,3-pentadiene. Unfortunately, the expected
1,3-diene was not obtained, though various transition
metal complexes, such as NiCly(PPhs),, Pd(PPhj),,
PdCl,y(PPh;),, Pt(PPhj),, RhCl(PPh3);, and RuCl,-
(PPhj3);, were used as catalysts. The results show that
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Table 2. Formation of (E,E)-1,3-Dienes by the Reaction
of (E)-Alkenesulfonyl Chlorides with Olefin Catalyzed
by the Ruthenium(II) Complex 1

Run Sulfopyl Olefin Product Yield/%
chloride
1 ph\/\sozcl XsPh Pha A~ F~Ph 91

2a 4a

2 Q\T/Ph Ph\%79\<§i\Ph 56
4b

3 X Ph Ph\/\K\Ph 38
4c

4 Ph\(\SOZCl X Ph Ph\l/\/\Ph 51
2b 4b

5 ﬁ,ph Ph\’/\)\l’h 80
4d

Ph%Y\Ph 9234)
4e
Ph\/l\sozm xuPh Ph\)\/\l’h 21

2c 4c

8 ﬁ/Ph Ph\)\)\ ph 15”
4e

ph\)\(\Ph 109

4f

~3

a) Isomer of 4e was isolated in 17% yield. b) Adduct 3n
was formed in 63% yield. c) Isomer of 4f and adduct 30
were isolated in 6% and 16% yield respectively.

the reaction of alkenesulfonyl chlorides without an
aryl group with vinylarenes did not afford 1,3-dienes,
although the reason has not yet been clarified.

In conclusion, symmetrically and unsymmetrically
substituted 1,4-diaryl-1,3-dienes were formed by the
reaction of alkenesulfonyl chlorides with olefins cata-
lyzed by the ruthenium(II) complex. The present
method involves a very excellent one-pot synthesis of
symmetrical and unsymmetrical (E,E)-1,4-diaryl-1,3-
dienes, since substituted ethenesulfonyl chloride can
be prepared very easily by treating vinylarenes with
sulfuryl chloride in N,N-dimethylformamide.'® The
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present reaction can be regarded as an oxidative cou-
pling reaction of each terminal carbon atom of two
kinds of vinylarenes by using sulfuryl chloride and
ruthenium(II) catalyst. Since a direct oxidative cou-
pling of vinylarenes is impossible, the present reaction
offers a novel and convenient synthetic method of
symmetrical and unsymmetrical (E,E)-1,4-diaryl-1,3-
dienes.
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Experimental

Measurement. Melting points and boiling points were
uncorrected. The infrared absorption spectra were deter-
mined on a Hitachi Model 260-10 spectrophotometer with
samples as either neat liquids or KBr disks. The proton
magnetic resonance spectra were recorded at 60 MHz by
using a JMX-PMX 60 SI spectrometer with Me,Si as an
internal standard in CDCIl;. Mass spectra were determined
with a JEOL JMX-DX 300 mass spectrometer with JEOL
5000 Mass Data System at an ionizing voltage of 20—70 eV.
The gel-permeation chromatography was accomplished on
a JAI LC-08 liquid chromatograph with a JAIGEL-1H
column (20X600 mmX2) using chloroform as an eluent.

Materials. Dichlorotris(triphenylphosphine)ruthenium-
(II) (1) was prepared according to a procedure described in
the literature.!? (E)-2-Phenylethenesulfonyl chloride (2a)
was prepared from styrene by treatment with sulfuryl chlo-
ride in N,N-dimethylformamide by the method described in
the literature:'® yield 50%; mp 87—88 °C (from ethanol-hex-
ane; lit, mp 89—90°C). (E)-2-Phenyl-1-propene-1-sulfonyl
chloride (2b) or (E)-1-phenyl-1-propene-2-sulfonyl chloride
(2c) were prepared from 2-phenyl-1-propene or 1-phenyl-1-
propene by treating with sulfuryl chloride in N,N-di-
methylformamide-dichloromethane and then with trieth-
ylamine in ether: (2b) yield 29%; bp 96—98 °C/0.2 mmHg (1
mmHg=133.322 Pa); IR (neat) 1370 and 1170 cm~}; 'H NMR
(CDCl3) 6=2.65 (3H, s), 6.90 (1H, s), and 7.40 (10H, s); MS
m/z 216 (M*): (2c) yield 68%; bp 95—96°C/0.2 mmHg; IR
(neat) 1370, 1355, and 1170 cm™!; 'H NMR (CDCl;) 6=2.45
(3H, s), 7.35 (5H, s), and 7.65 (1H, 5); MS m/z 216 (M?). (E)-
1-Propene-1-sulfonyl chloride was prepared from propylene
oxide by treatment with sodium hydrogensulfite, phospho-
rus pentachloride, and then triethylamine in ether according
to the literature:?? yield 68%; bp 88—89°C/21 mmHg. Sty-
rene, p-methylstyrene, p-chlorostyrene (Tokyo Kasei Chem-
icals), m-nitrostyrene (Aldrich Chemicals), 2-phenyl-1-pro-
pene, and 1-phenyl-1-propene (Wako Chemicals) were puri-
fied by distillation prior to use.
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Formation of 1:1 Adducts by the Reaction of Alkenesul-
fonyl Chlorides with Olefins. To a solution of 1.0 mmol of
alkenesulfonyl chloride and 1.5 mmol of olefin in 2.0 cm? of
benzene or toluene was added 0.01 mmol of dichlorotris(tri-
phenylphosphine)ruthenium(II) (1) and heated at 80—
100 °C under a nitrogen atmosphere. The reaction mixture
was chromatographed on florisil by using benzene as an elu-
ent to separate polar substances. Nonpolar substances were
purified by gel-permeation chromatography using chloro-
form as an eluent to isolate 1:1 adducts 3a—o.

The physical and spectral data of compounds 3a—o are as
follows:

(E)-2-Chloro-2-phenylethyl Styryl Sulfone (3a): Mp 97—
98°C; IR (KBr) 1310 and 1130 cm™}; 'HNMR (CDCl;)
6=3.78 (1H, d, J=7.8 Hz), 3.82 (1H, d, J=7.8 Hz), 5.33 (1H, t,
J=1.8 Hz), 6.33 (1H, d, J=15 Hz), 7.10—7.40 (10H, m), and
7.35 (1H, d, J=15 Hz); MS m/z 306 (M™).

(E)-2-Chloro-2-phenylpropyl Styryl Sulfone (3b): IR
(neat) 1310 and 1130 cm™!; 'H NMR (CDCl3) 6=4.20 (2H, s),
5.42 (1H, s), 5.60 (1H, s), 6.43 (1H, d, J=16 Hz), 7.00—7.30
(10H, m), and 7.32 (1H, d, J=16 Hz);?V MS m/z 321 (M*
+1);22 HRMS, Found m/z 320.0743, Calcd for C;;H,,0,SCl:
M, 320.0637.

(E)-2-Chloro-1-methyl-2-phenylethyl Styryl Sulfone (3c):
Mp 95—96°C; IR (KBr) 1310 and 1130 cm™}; 'THNMR
(CDCly) 6=1.53 (3H, d, J=8.0 Hz), 3.22—3.63 (1H, m), 5.59
(1H, d, J=4.0 Hz), 6.38 (1H, d, J=15 Hz), 7.27 (10H, s), and
7.38 (1H, d, J=15 Hz); MS m/z 320 (M*); HRMS, Found:
m/z 319.0577, Calcd for C;7H;40,SCI1: M, 319.0559.

(E)-2-Chloro-2-phenylethyl 2-Phenyl-1-propenyl Sulfone
(3d): Mp 95—96°C; IR (KBr) 1305 and 1120 cm™!; 'TH NMR
(CDCls) 6=2.40 (3H, s), 3.70—3.85 (2H, m), 5.36 (1H, t, J=6.0
Hz), 6.07 (1H, s), and 7.00—7.80 (10H, m); MS m/z 320 (M™);
HRMS, Found: m/z 320.0644, Calcd for C;;H;;0,SCl: M,
320.0637.

(E)-2-Chloro-2-(p-tolyl)ethyl 2-Phenyl-1-propenyl Sulfone
(3e): IR (neat) 1310 and 1130 cm™!; THNMR (CDCI;) 6=
2.17 (3H, s), 2.37 (3H, s), 3.79 (2H, d, J=6.0 Hz), 5.33 (1H, t,
J=6.0 Hz), 5.93 (1H, s), and 6.70—7.70 (9H, m); MS m/z 298
(M* —HCIl); HRMS, Found: m/z 298.0993, Calcd for
Ci1gH170,S: M, 298.1027.

(E)-2-Chloro-2-(p-chlorophenyl)ethyl 2-Phenyl-1-propenyl
Sulfone (3f): Mp 58—60°C; IR (neat) 1310 and 1130 cm™%;
!H NMR (CDCl;) 6=2.43 (3H, s), 3.76—3.85 (2H, m), 5.36
(1H, t, J=6.0 Hz), 6.06 (1H, s), and 7.00—7.50 (9H, m); MS
m/z 354 (M*); HRMS, Found m/z 354.0222, Calcd for
Ci7H60,SCl,: M, 354.0248.

(E)-2-Chloro-2-(m-nitrophenyl)ethyl 2-Phenyl-1-propenyl
Sulfone (3g): Mp 101—102°C; IR (KBr) 1540, 1350, 1310,
and 1120 cm™!; 'TH NMR (CDCl;) §=2.48 (3H, s), 3.75—3.90
(2H, m), 5.47 (1H, t, J=6.0 Hz), 6.13 (1H, s), and 7.18—8.21
(9H, m); MS m/z 365 (M*); HRMS, Found: m/z 365.0523,
Calcd for C17H1604NSC11 M, 3650488

(E)-2-Chloro-2-phenylpropyl 2-Phenyl-1-propenyl Sulfone
(3h): IR (neat) 1305 and 1130 cm™!; 'H NMR (CDCl;) 6=2.33
(3H, s), 4.13 (2H, s), 5.39 (1H, s), 5.57 (1H, s), 6.30 (1H, m),
and 6.70—7.40 (10H, m);!® MS m/z 335 (M* +1);'” HRMS,
Found: m/z 299.1125, Calcd for C;gH190,S: M, 299.1105.

(E)-2-Chloro-1-methyl-2-phenylethyl 2-Phenyl-1-propenyl
Sulfone (3i): IR (neat) 1300 and 1130 cm™!; 'HNMR
(CDCl;) 6=1.36 (1H, d, J=7.0 Hz), 1.54 (2H, d, J=7.0 Hz),
2.48 (3H, s), 3.10—3.65 (1H, m), 5.40—5.64 (1H, m), 6.00—
6.10 (1H, m), and 6.90—7.30 (10H, s); MS m/z 335 (M* +1);1"
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HRMS, Found: m/z 299.1105, Calcd for C;gH;90,S: M,
299.1105.

(E)-2-Chloro-2-phenylethyl 1-Methyl-2-phenylethenyl Sul-
fone (3j): Mp 93—95°C; IR (neat) 1300 and 1140 cm™; 'H
NMR (CDCl;) 6=2.20 (3H, d, J=1.2 Hz), 3.76 (2H, d, J=6.0
Hz), 5.26 (1H, t, J=6.0 Hz), and 7.00—7.40 (11H, m); MS m/z
320 (M*); HRMS, Found: m/z 284.0831, Calcd for C;;Hye-
0,S: M, 284.0871. »

(E)-2-Chloro-2-(p-tolyl)ethyl 1-Methyl-2-phenylethenyl
Sulfone (3k): Mp 91—92°C; IR (neat) 1305 and 1140 cm™;
!HNMR (CDCl;) 6=2.09—2.15 (6H, m), 3.77 (2H, d, J=6.0
Hz), 5.26 (1H, t, J=6.0 Hz), and 7.00—7.30 (10H, m); MS m/z
334 (M*); HRMS, Found: m/z 298.1036, Calcd for CigH;-
0,S: M, 298.1027.

(E)-2-Chloro-2-(p-chlorophenyl)ethyl 1-Methyl-2-phenyl-
ethenyl Sulfone (31): Mp 91—92°C; IR (KBr) 1310 and 1140
cm~l. THNMR (CDCl;) 6=2.14 (3H, s), 3.75 (2H, d, J=6.0
Hz), 5.28 (1H, t, J=6.0 Hz), and 7.10—7.40 (10H, m); MS m/z
354 (M*); HRMS, Found: m/z 354.0267, Calcd for Ci;H,6-
0,SCl,: M, 354.0248.

(E)-2-Chloro-2-(m-nitrophenyl)ethyl 1-Methyl-2-phenyl-
ethenyl Sulfone (3m): IR (neat) 1540, 1360, 1310, and 1140
cm~l; ITHNMR (CDCl3) 6=2.21 (3H, s), 3.73—3.88 (2H, m),
5.41 (1H, t, J=6.0 Hz), and 7.00—8.20 (10H, m); MS m/z 365
(M*); HRMS, Found: m/z 365.0452, Calcd for C);H;604-
NSCI: M, 365.0488.

(E)-2-Chloro-2-phenylpropyl 1-Methyl-2-phenylethenyl
Sulfone (3n): IR (neat) 1300 and 1140 cm™; 'H NMR
(CDCl;) 6=2.40 (3H, s), 4.13 (2H, s), 5.04 (1H, s), 5.20 (1H, s),
and 6.90—7.30 (11H, m);1® MS m/z 335 (M* +1);!” HRMS,
Found: m/z 299.1167, Calcd for C;3sH;30,S: M, 299.1105.

(E)-2-Chloro-1-methyl-2-phenylethyl 1-Methyl-2-phenyl-
ethenyl Sulfone (30): Mp 112—113 °C; IR (KBr) 1300 and
1140 cm™1. THNMR (CDCl;) 6=1.25 (1H, d, J=7.0 Hz), 1.55
(2H, d, J=7.0 Hz), 2.10—2.30 (3H, m), 3.28—3.86 (1H, m),
5.14—5.53 (1H, m), and 7.00—7.60 (10H, m); MS m/z 335
(Mt +1);!” HRMS, Found: m/z 334.0762, Calcd for C,gHj,-
0,SCIL: M, 334.0794.

The Formation of 1,3-Dienes by the Reaction of Alkenesul-
fonyl Chlorides with Olefins. A solution containing of 1.0
mmol of alkenesulfonyl chloride, 1.5 mmol of olefin, and
0.01 mmol of the ruthenium(II) complex 1 in 2.0 cm?® of
benzene was degassed and heated in a sealed tube at 150°C
for 48 h. Gel-permeation chromatography using chloroform
as an eluent was performed to isolate 1,3-dienes.

The physical and spectral data of the compounds 4a—f are
as follows:

(E, E)-1,4-Diphenyl-1,3-butadiene (4a): Mp 148—149°C
(1it,23 mp 149.7 °C); IR (KBr) 3010, 1490, 1440, 990, 740, and
690 cm~!; 'THNMR (CDCl;) 6=6.10—6.80 (4H, m) and
6.90—7.40 (10H, m); MS m/z 206 (M™).

(E, E)-1,4-Diphenyl-1,3-pentadiene (4b): Mp 95—96°C
(1it,24 mp 95.5—97 °C); IR (KBr) 3030, 1595, 1490, 1440, 970,
750, and 690 cm~!; ITH NMR (CDCl3) 6=2.21 (3H, s), 6.36—
6.89 (2H, m), and 7.00—7.50 (11H, m); MS m/z 220 (M*).

(E, E)-2-Methyl-1,4-diphenyl-1,3-butadiene (4c): Mp 76—
77°C (lit,”» mp 78—80°C); IR (KBr) 3020, 1490, 1440, 960,
740, and 695 cm™}; 'THNMR (CDCl;) 6=2.08 (3H, s) and
6.17—7.40 (13H, m); MS m/z 220 (M*).

(E, E)-2,5-Diphenyl-2,4-hexadiene (4d): Mp 130—132°C
(1it,¥ mp 136—137.5°C); IR (KBr) 3030, 2960, 1495, 1445,
760, and 700 cm™!; 'HNMR (CDCly) 6=2.20 (6H, s), 6.70
(2H, s), and 7.03—7.50 (10H, m); MS m/z 234 (M*).
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(E, E)-2-Methyl-1,4-diphenyl-1,3-pentadiene (4e): IR (neat)
3030, 2850, 1600, 1490, 1440, 1380, 1025, 880, 750, and 690
cm™!; 'THNMR (CDCl;) 6=2.27 (6H, s), 6.81 (2H, m), and
7.15—7.60 (10H, m); MS m/z 234 (M*); HRMS, Found: m/z
234.1408, Calcd for CigHjg: M, 234.1408.

(E,E)-2,3-Dimethyl-1,4-diphenyl-1,3-butadiene!® (4f): IR
(neat) 2900, 1490, 1450, 750, and 700 cm~!; 'TH NMR (CDCl;)
6=1.79 (6H, s) and 6.80—7.40 (12H, m); MS m/z 234 (M™);
HRMS, Found: m/z234.1404, Calcd for C;gH,;7: M, 234.1408.
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