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Abstract: A simple and general protocol is described for the
enantioselective addition of methallyltributyltin to aldehydes
catalyzed by chiral (Phebox)RhCl2(H2O) complexes 1 [Phebox =
2,6-bis(oxazolinyl)phenyl]. The reaction can be performed even
under aerobic conditions to afford the corresponding optically
active homoallylic alcohols in good yields with high enantio-
selectivities (90–99% ee).
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Ever since Shaw reported the transition metal complexes
bearing P–C–P type pincer ligands in 1976,2a a variety of
pincer-based complexes have been extensively studied in
terms of not only structural characterization and bonding
properties but also active catalysts in organic synthesis.2 It
is well known that the characteristic features of these
pincer complexes are high degrees of both air- and
thermal stability.

Previously, we have reported chiral rhodium(III) aqua
complexes 13 bearing Phebox as an N-C-N pincer ligand
[Phebox = bis(oxazolinyl)phenyl]. We also found that
these aqua complexes 1 acted as novel transition-metal
Lewis acid catalysts for the enantioselective addition of
allyltributyltin to aldehydes3b,c in the presence of dry 4 Å
molecular sieves (MS 4A) under standard conditions such
as in anhyd CH2Cl2 under an argon atmosphere.4

Although the enantioselectivities of the obtained allylated
products were moderate (43–80% ee), these catalysts 1
proved to be air-stable, water-tolerant, and recoverable
chiral transition-metal complexes. Since we expect that
this catalytic system will see wide application for the
above characteristic features, we have been conducting
studies to facilitate the operation employed in such
reactions as much as possible. Most of the asymmetric
reactions using Lewis acid catalysts are performed under
strictly anhyd conditions to prevent the decomposition of
the moisture-sensitive catalysts.5 However, we found that
the present Phebox-Rh(III) complexes 1 catalyze the
reaction, even in CH2Cl2 without distillation and under
aerobic conditions, to afford the methallyl addition
products with excellent enantioselectivities. Here we re-
port the simple procedure for the Rh-catalyzed enantio-

selective methallyl addition to aldehydes, without the
need for anhyd conditions (Scheme 1).

Scheme 1

The non-dehydrated procedure for the reaction of benz-
aldehyde and allyltributyltin 2 was examined using 5
mol% of i-Pr-Phebox-derived complex i-Pr-1 in non-dis-
tilled CH2Cl2 in the presence of commercial, non-dried
MS 4A under aerobic conditions at 25 °C. The first, and
obvious, point to notice is that the reaction by this
procedure gives the allylated product 4 without loss of
both the chemical yield and enantioselectivity (Table 1,
entries 1 vs 2). This method is not necessitated by special
techniques and apparatus, therefore, anyone can perform
the reaction easily. We next examined the methallylation
reaction under the same conditions. Although the
reactivity of the methallyltributyltin 3 was relatively low-
er than that of the parent allyltributyltin 2, extension of the
reaction time from 7 hours to 12 hours led to satisfactory
yield. Compared with the allylation reaction catalyzed by
1, enantioselectivity of the methallylated product 5a in-
creased remarkably to 93% ee (entry 3). The best
substituent on the Phebox ligand in terms of the enantio-
selectivity in the methallyl addition reaction proved to be
the i-Pr group (entries 3–5).

Table 2 summarizes the results obtained for the
methallylation reaction of a variety of aldehydes with 5
mol% of i-Pr-1 in CH2Cl2 solution at 25 °C under aerobic
conditions.6 All reactions resulted in high yields (90–
97%) with both aromatic and aliphatic aldehydes for 12 h,
except in the case of p-chlorobenzaldehyde. Reactivity of
the p-chlorobenzaldehyde was lower than those of the
other aldehydes, however, the chemical yield of 5b
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reached to 82% by prolongation of the reaction time to 24
h (entry 2). The enantioselectivities in all reactions were
achieved over 90% ee for such standard aldehydes.
Especially, the ee of the (E)-cinnamaldehyde-derived
product 5f recorded a value of 99% (entry 6). In all of the
cases, methallyltributyltin 3 attacks the si face of the
aldehyde’s C=O planes,7 it is the same p-face selectivity
as in the case of allyltributyltin 2.3b,c

The reason why the methallylated products 5 show much
higher enantioselectivities than the allylated ones is
explained by the antiperiplanar transition states

(Scheme 2, A and B), which have been proposed
previously.3b,c When the allyltins 2 and 3 approach the
carbonyl re-face through the antiperiplanar B, which
gives the opposite enantiomer, the steric repulsion occurs
between one i-Pr group on the oxazoline rings and the
substituent at the b-position of allyltins (H for 2, and Me
for 3). The steric bulkiness of Me group is expected to be
more important than that of H, therefore,
enantioselectivities of the methallylated products might
increase remarkably.

Scheme 2

The main features of the present catalytic system are as
follows: 1) there is no need to use anhyd solvent and dry
MS 4 Å, and inert atmospheres; 2) the procedure is
straightforward because the reaction can be performed by
simply mixing substrates and the catalyst i-Pr-1 at room
temperature (low reaction temperatures are not required);
3) chiral Lewis acid i-Pr-1 can be easily recovered9 in high
yield by column chromatography; 4) various optically
active homoallylic alcohols can be provided with high
enantioselectivity (up to 99% ee), and the absolute stereo-
chemistry of the methallylated products can also be
predicted. Hence, this simple procedure should be broadly
applicable in asymmetric organic synthesis.10
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Table 1 Enantioselective Addition of Allyl- and Methallyltribu-
tyltins (2,3) to Benzaldehyde Catalyzed by (Phebox)RhCl2(H2O) 
Complexes 1a

Entry Complex Allyltin/
product

Time Yield 
(%)

ee 
(%)b

1c i-Pr-1 2/4 7 h 88 51

2 i-Pr-1 2/4 7 h 85 50

3 i-Pr-1 3/5a 12 h 95 93

4 s-Bu-1 3/5a 12 h 94 92

5 Bn-1 3/5a 12 h 99 91

a All reactions were carried out using 0.25 mmol of benzaldehyde, 
0.375 mmol (1.5 equiv) of allyltins (2 or 3), and 0.0125 mmol (5 
mol%) of 1 in the presence of MS 4 Å (125 mg) in CH2Cl2 (1 mL) at 
25 °C.
b Determined by chiral HPLC analysis (Daicel CHIRALCEL OD-H).
c Previous result under dehydrated conditions.

Table 2 Enantioselective Addition of Methallyltributyltin 3 to Var-
ious Aldehydes Catalyzed by (i-Pr-Phebox)RhCl2(H2O) Complex i-
Pr-1a

Entry Aldehyde Prod-
uct

Yield 
(%)

ee 
(%)b

Config.c

1 PhCHO 5a 95 93 (–)-S

2d 4-ClC6H4CHO 5b 82 90 (–)-S

3 4-MeOC6H4CHO 5c 97 94 (–)-S

4 2-furyl-CHO 5d 95 92 (–)-S

5 PhCH2CH2CHO 5e 92 91 (+)-R

6 (E)-PhCH=CHCHO 5f 90 99 (–)-S

7 (E)-n-PrCH=CHCHO 5g 95 94e (–)-S

a All reactions were carried out using 0.25 mmol of aldehyde, 0.325 
mmol (1.5 equiv) of methallyltributyltin 3 and 0.0125 mmol (5 
mol%) of chiral catalyst i-Pr-1 in 1 mL of CH2Cl2 in the presence of 
4 Å molecular sieves (125 mg) at 25 °C for 12 h.
b Determined by chiral HPLC analysis.
c Assignment by comparison of the sign of optically rotation with re-
ported value.
d 24 h.
e Determined after converting to the benzoate.
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