Synthesis and Some Transformations of 2-Acetamido-5-amino-3,4,6-tri-*O*-benzyl-2,5-dideoxy-D-glucono-1,5-lactam

by Thierry Granier and Andrea Vasella*

Laboratorium für Organische Chemie, ETH-Zentrum, Universitätstrasse 16, CH-8092 Zürich

The lactam 21 was obtained in an overall yield of 72% from the hydroxy amide 16 by oxidation with the *Dess-Martin* periodinane, acid-catalysed isomerization of the oxidation products in toluene, whereupon 18/19 precipitated, and reductive dehydroxylation of 18/19 (Et₃SiH/BF₃ · OEt₂; *Scheme 1*). The amide 16 was obtained by ammonolysis of the *N*-acetylglucosamine-derived lactone 15. Depending on the oxidation method, 16 yielded the keto amide 17, the hydroxy lactams 18/19, and the pyrrolidinecarboxamide 20 in widely different proportions. The pyrrolidinecarboxamide 20 was not reduced under the conditions of the reductive dehydroxylation. Hydrogenolysis of the benzyl-protected lactam 21 gave the trihydroxy lactam 22, while reduction with NaBH₄/BF₃ · OEt₂ led to the 2-acetamidopiperidine derivative 24 (*Scheme 2*). Selective (*tert*-butoxy)carbonylation of the lactam 21 (\rightarrow 25) followed by NaBH₄ reduction and acid-catalysed solvolysis in EtOH led to the α -ethoxycarbamates 28/29. Similarly, (*tert*-butoxy)carbonylation of 1 (\rightarrow 31) followed by reduction to 32/33 and glycosidation yielded the ethoxycarbamate 34. Treatment of the GlcNAc-derived ethyl glycosides 28/29 with Me₃SiCN/BF₃ · OEt₂ gave the equatorial amino nitrile 30. Under similar conditions, the Glc-derived glycoside 34 led to the axial, selectively monodebenzylated amino nitrile 36.

Introduction. – We, and *Pandit* and coworkers have reported an advantageous synthesis of 2,3,4,6-tetra-O-benzyl-D-gluconolactam (1) [1–4] that has been optimized [5][6] to provide 1 in overall yields of 70–75% from 2,3,4,6-tetra-O-benzylglucose. The lactam 1 proved a versatile intermediate in the synthesis of β -glucosidase inhibitors such as deoxynojirimycin (2) [7–9], D-nojirilactam (3) [2][8], the D-gluconhydroximo-1,5-lactam 4 [5] and related N-arylcarbamates 5 [5], the indolizines 6–9 [10], the tetrahydroimidazopyridines 10 [6][11] and 11 [10], the triazole 12 [6], and the tetrazole 13 [12][13].

In a similar way, the 2-acetamido-2-deoxylactam 21 should be a useful precursor of N-acetylglucosaminidase inhibitors. We report its synthesis from N-acetyl-3,4,6-tri-O-benzylglucosamine (14) and the results of studies aiming at the selective transformation of the lactam function.

Synthesis. - The hemiacetals 14 [14] (Scheme 1) were prepared from N-acetylglucosamine by allylation, benzylation, and deallylation in an overall yield of $24\%^{1}$). Oxidation of 14 with the Dess-Martin periodinane [15][16] yielded 98% of pure lactone 15 on a scale of up to $4 g^2$). Oxidation of 14 according to Swern [18] yielded 85% of recrystallized 15 on a scale of up to 50 g. Ammonolysis of 15 led quantitatively to the hydroxy amide 16. The products of the oxidation of 16 depended strongly upon the reagents and conditions. Oxidation with DMSO/pyridine · SO₃ [19] afforded the oxo amide 17 almost quantitatively and in a degree of purity exceeding 90%, as judged from the ¹H-NMR spectrum of the crude. Jones oxidation [20] of 16 gave a mixture of the D-gluco/L-ido hydroxy lactams 18/19 (4:1; ca. 60%), readily separated by chromatography. Oxidation by pyridinium chlorochromate (PCC) [21] led to a mixture of the hydroxy lactams 18/19 and the pyrrolidinecarboxamide 20^3) (18/19/20 35:15:50; $(70\%)^4$). Oxidation of **16** by the *Dess-Martin* periodinane led quantitatively to a mixture of the oxo-amide 17, the hydroxy lactams 18/19, and the pyrrolidinecarboxamide 20 $(17/18/19/20 \ 44:16:12:28)^5$). These results suggest that the cyclization is catalysed by traces of acid, similarly to what has been observed in the synthesis of 1. Indeed, a solution of the oxo amide 17 in CDCl₃ was transformed within 36 h into a 33:15:52 mixture of 18/19/20. Addition of 5% AcOH [5] to a solution of 17 in CHCl₃ had no influence on the ratio 18/19, but slightly disminished the proportion of 20, 17 being transformed within 48 h at room temperature into a 40:20:40 mixture of 18/19/20. This finding and the results of the oxidation of 16 with the *Jones* reagent suggest that 18 and 19 equilibrate rapidly, while 20 is only slowly transformed into 18/19. A CH₂Cl₂/MeCN solution of the pyrrolidinecarboxamide 20 was indeed stable in the presence of $BF_3 \cdot OEt_2$ at -15° . At 5°, it was transformed, within 24 h, into a 69:21:10 mixture of 18/19/20. Under the same conditions, equilibration between the isolated hydroxy lactams 18 and 19 began already at -15° . At 5°, each isomer led to a 75:25 mixture of 18/19. Conceivably, the equilibration of 18 and 19 proceeds without ring opening, by elimination/addition of H_2O , while the equilibration between 18/19 and 20 requires ring opening, elimination of H₂O being disfavoured by the allylic strain [24][25] of the resulting cation.

The plan for the synthesis of the lactam 21 involved the reductive dehydroxylation of the hydroxy lactams 18/19 by Et_3SiH and $BF_3 \cdot OEt_2$ [26][27] under conditions favouring the equilibration of the oxidation products of 16. We first treated the crude oxo amide 17 with $Et_3SiH/BF_3 \cdot OEt_2$ at 5°. This yielded 40% of 21. Reductive dehydroxy-

¹) This synthesis proved more convenient for batch sizes exceeding 5 g than the method of *Harrison* and *Fletcher* [14] (perbenzylation, hydrolysis, acetylation, deacetylation); it was scaled up to 50 g of *N*-acetylglucosamine.

²) As the hemiacetals 14 are poorly soluble in CH₂Cl₂, the *Dess-Martin* oxidation had to be performed in (EtOH-free) CHCl₃. Oxidation of 14 with DMSO/Ac₂O [17] gave a mixture of 15 and the anomeric acetates of 14.

³) Isolated after reductive dehydroxylation of the mixture 17-20; see below.

⁴) The formation of such tautomers is well known, *e.g.* see [22][23].

⁵) According to TLC, the cyclization of 17 occurred during workup, while drying the organic phases (MgSO₄).

a) Dess-Martin periodinane; 98% or $C_2O_2Cl_2$, DMSO, Et_3N ; 85%. b) NH_3 ; > 99%. c) DMSO, pyridine $\cdot SO_3$ or Dess-Martin periodinane. d) $BF_3 \cdot OEt_2$, CH_2Cl_2 , or AcOH, toluene. e) $BF_3 \cdot OEt_2$, Et_3SiH , CH_2Cl_2 , MeCN; 72% from 16. f) H_2 , 10% Pd/C, MeOH; 72%.

lation of the mixture 17-20 resulting from the oxidation of 16 by periodinane gave 55% of **21**. No products resulting from a reductive dehydroxylation of the pyrrolidinecarboxamide 20 were detected. This is in keeping with the destabilization of the acyliminium intermediate derived from **20** that was already postulated to rationalize the slow transformation of 20 into 18/19. Up to 15% of the pyrrolidinecarboxamide 20 were isolated by chromatography of the crude reduction products. Thus, the slow transformation of 20 into the hydroxy lactams 18/19 led to an unsatisfactory yield of 21. To obtain a high yield of 21, we had to increase the proportion of the hydroxy lactams before reduction, but treatment of the oxidation products first with $BF_3 \cdot OEt_2$ (12-24 h, 5°) and then with Et_3SiH failed to improve this yield. As the hydroxy lactams 18/19 proved much less soluble in toluene than the pyrrolidine 20, the oxo amide 17 was cyclized in toluene in the presence of AcOH. The solution of 17 in toluene/AcOH changed to a suspension of increasing density, and the crude consisted of a 83:17 mixture of the hydroxy lactams 18/19 that were reductively dehydroxylated. This procedure gave the lactam 21 in an overall yield of 72% from 16 on a 1.1-g scale. Hydrogenolysis of 21 yielded the trihydroxy lactam 22⁶).

Activation of the cyclic carbonyl group of the lactam **21** failed, using either *Lawesson*'s reagent [30]⁷), or (Et₃O)BF₄ under the conditions described by *Hoos et al.* [5] for the activation of the lactam **1**. Large amounts of starting material were reisolated. Prolonged heating of **21** with *Lawesson*'s reagent in toluene (48 h, 90°) led to partial epimerization, and the *manno*-configurated **23** was isolated in 33% yield (*Scheme 2*).

⁶) The lactam 22 has been prepared by oxidation of 2-acetamido-2-deoxynojirimycin [28]; however, details of the synthesis have so far not been published. It is a good inhibitor of a bovine-kidney N-acetylglucosaminidase [28]. The competitive inhibition of additional N-acetylglucosaminidases by 22 has been reported by Horsch et al. [29]; again, no details for the preparation of 22 were published.

⁷) This result was not changed by varying the thionating agent or the solvent.

a) 21, Lawesson's reagent, toluene; 33%. b) 21, BF₃ · OEt₂, NaBH₄, THF; 70%. c) 21, Boc₂O, DMAP, MeCN; 95%. d) 1, Boc₂O, DMAP, MeCN; 88%. e) 25, NaBH₄, EtOH, pH 6; 91%. f) 31, NaBH₄, EtOH, pH 6; 75%. g) EtOH, TsOH · H₂O; 77% (28/29 2:1). h) 33, EtOH, TsOH · H₂O; 91%. i) 13 equiv. of Me₃SiCN, 13 equiv. of BF₃ · OEt₂; 55%. j) 18 equiv. of Me₃SiCN, 18 equiv. of BF₃ · OEt₂; 77%. k) 53 equiv. of Me₃SiCN, 5 equiv. of BF₃ · OEt₂; 30%. l) LiAlH₄, THF; 53%.

Treatment of the gluco-lactam 21 with piperidine in $CDCl_3$ led to a 78:22 mixture of 23/21. Isolation of the isomers by FC yielded 40% of 23 and 11% of 21, both partially deuteriated at C(2). Similar treatment of 23 led to a 89:11 mixture of 23/21. Reduction of the lactam 21 with NaBH₄ and BF₃ · OEt₂ [31-35] proceeded regioselectively and yielded 70% of the protected 2-acetamido-2-deoxynojirimycin 24.

The carbonyl group at C(5) of the oxo-amide **17** gives rise to an IR absorption at 1733 cm⁻¹ and to a s at 207.45 ppm in the ¹³C-NMR spectrum. The disappearance of the d corresponding to HNAc and the two s corresponding to CONH₂ (4.87 and 7.71 ppm) in the ¹H-NMR spectrum of **20** allow to distinguish the pyrrolidinecarboxamide **20** from the hydroxylactams **18/19** characterized by a d (**18**: 6.50–6.97 ppm, depending on the concentration of **18**, J = 7.8 Hz; **19**: 6.06 ppm, J = 8.4 Hz) corresponding to HNAc and a s (**18**: 6.87 ppm; **19**: 6.74 ppm) corresponding to HN-C(5). The (5*R*)-configuration of **20** is postulated on the following grounds: the carboxamido and the (benzyloxy)methyl substituents are expected to be pseudo-axial to avoid the interaction with the acetamido group; the value of 5.9 Hz for J(3,4) is in keeping with an approximate ⁴T₃ conformation where H-C(4) is *cis* to BnO-C(3) and HO-C(5); this is confirmed by the chemical shift of H-C(4) (4.51 ppm) as compared to 3.82 ppm for **18** and 3.89 ppm for **19**) and by a NOE observed for H-C(3) (*dd* at 4.17 ppm) upon irradiation at the signal of H-C(6) (a.29 ppm). The absence of rotamers of **20** is naccordance with an H-bond between a pseudo-equatorial HO-C(5) and the AcN group. While the coupling constants of the hydroxylactam **18** evidence a ⁴H₃ conformation, those of the diastereoisomer **19** suggest a ³H₄ conformation⁸) probably stabilized by an intramolecular H-bond between HNAc and BnO-C(4) (D-gluco: J(2,3) = 8.4 and J(3,4) = 9.6 Hz; t-*ido* J(2,3) = 4.4 and J(3,4) = 5.5 Hz). H-C(2) of **19** is located in the plane of the carbamyl group and notably

⁸) In contrast to the ${}^{4}H_{3}$ conformation adopted by the analogous hydroxy lactam derived from 2,3,4,6-tetra-*O*-benzylglucose [2].

deshielded (18: 3.99 ppm; 19: 4.78 ppm). The configuration of the hydroxy lactams 18/19 was assigned on the basis of NOEs observed upon irradiation at the frequence of HO–C(5). For 18, irradiation at 5.59 ppm (HO–C(5)) led to a NOE for the H–C(3) t at 4.03 ppm ((D₆)DMSO), and for 19, irradiation at 6.05 ppm (HO–C(5)) led to a NOE for the H–C(4) d at 3.78 ppm ((D₆)DMSO). In accordance with the configuration of 18/19, H–C(3) of 18 is deshielded by the *cis*-oriented HO–C(5) (18: 4.24 ppm; 19: 3.97 ppm). The D-gluco configuration of the benzylated lactam 21 was assigned on the basis of the X-ray structure analysis of the trihydroxy lactam 22⁹). It possesses a ⁴H₃ conformation in the solid state, similar to nojirilactam (2) [36]. The coplanar arrangement of C(5), N(1), C(1), and C(2) of crystalline 22 is expressed by the small value of the C(5)–N(1)–C(1)–C(2) torsion angle (0.5°). Surprisingly, the N–H bond of the acetamido group is *cis* to C(2)–H. Acetamides crystallizing exclusively as (*Z*)-syn conformers such as 22 are rare [37]. To the best of our knowledge, the only known example is an *arabino*-1,4-lactone-derived acetamide [38]. In solution, the acetamides 18–21 are mixtures of the (*Z*)-*ant* and (*Z*)-syn conformers, as indicated by the moderate values (≈ 8.0 Hz) of the coupling constant between H–C(2) and NHAc. As shown by the vicinal J(H,H), the lactam 21 adopts the ⁴C₁ conformation in solution.

The carbonyl groups of the *manno*-lactam **23** give rise to a C=O absorption at 1665 cm⁻¹ and to two ${}^{13}Cs$ (169.07 and 170.55 ppm). J(2,3) = 3.4 Hz, J(3,4) = 2.4 Hz, J(4,5) = 3.7 Hz are characteristic of a ${}^{3}S$ conformation 10). The regioselectivity of the reduction of the lactam **21** to the piperidine derivative **24** is evidenced by the typical 1 H-NMR signals of the acetamido group of **24** (NH: d, 5.00 ppm, J = 6.5 Hz; Me: s, 1.73 ppm) and two new dd at 2.27 and 3.32 ppm corresponding to CH₂(1) ($J_{gem} = 12.9$ Hz). The ddd at 2.74 ppm corresponding to H-C(5) is shifted to higher fields as compared to the H-C(5) signal of the lactam **21** ($\Delta \delta = 0.9$ ppm). The J(H,H) values for **24** (J(1ax,2) = 10.1, J(1eq,2) = 5.4, J(2,3) = 9.6, J(3,4) = 8.3, and J(4,5) = 8.0 Hz) are in agreement with a ${}^{4}C_{1}$ conformation.

Figure. X-Ray analysis of the trihydroxy lactam 22

Treatment of the lactam 21 with $Boc_2O[39-41]$ (*Scheme 2*) led to the *N*-acylcarbamate 25 (95%). Reduction of 25 with $NaBH_4$ in EtOH at pH 6 [42] gave regioselectively the anomeric hydroxy carbamates 26/27 (54:46) that were separated by FC (91%). Reduction at lower pH led to a mixture of the hydroxy carbamates 26/27 and the

⁹) Crystallographic data have been deposited at the *Cambridge Crystallographic Data Centre* as deposition No. CCDC-101230. Copies of the data can be obtained, free of charge, on application to the *CCDC*, 12 Union Road, Cambridge CB2 1EW, UK (fax: + 44 (1223) 336 033; e-mail: deposit (a ccdc.cam.ac.uk.

¹⁰) Also adopted by the related tetrazole [23].

ethoxy carbamates **28/29**. The ethoxy carbamates **28/29** (2:1) were obtained in 77% yield by glycosylation (EtOH/TsOH \cdot H₂O) of the hydroxy carbamates **26/27**. Treatment of the 2:1 mixture **28/29** with excess Me₃SiCN and BF₃ \cdot OEt₂ gave diastereoselectively the equatorial amino nitrile **30** in a yield of 55%¹¹). The stereoselectivity reflects the neighbouring-group participation of the acetamido group [45].

The same sequence of transformations was applied to the tetrabenzylated gluconolactam 1, leading via the N-Boc-protected lactam 31 [46] to a mixture of the hydroxy carbamates 32/33 (30:70; 75%), separated by FC. Glycosidation of the hydroxy carbamate 33 with EtOH/TsOH \cdot H₂O yielded 91% of the α -ethoxy carbamate 34¹²). Treatment of the ethoxypiperidine 34 with excess Me_3SiCN and $BF_3 \cdot OEt_2$ (18 equiv. each), at -78° , did not lead to a nitrile, but to the bicyclic imino carbamate 35 (77%). Presumably, the introduction of the cyano substituent at C(1) is followed by the $BF_3 \cdot OEt_2$ -promoted cleavage of the Me₃C-O bond, transfer of the *tert*-butyl cation to the nitrile group, and cyclization¹³). Treatment of 34 with smaller amounts of BF₃ \cdot OEt₂ (5 equiv.) in the presence of a large excess of Me₃SiCN (53 equiv.) at 5° yielded 30% of the selectively monodebenzylated axial amino nitrile 36. Probably, the Boc-protected amino nitrile is in equilibrium with the acyliminium cation that is intramolecularly attacked by O-C(6) leading, by cleavage of the Bn group at O-C(6), to an intermediate N,O-acetal. Cleavage of this acetal with $BF_3 \cdot OEt_2$, before or after loss of the Boc group, and introduction of the cyanide with inversion of configuration lead to the tribenzylated axial amino nitrile 36.

The regioselectivity of the (*tert*-butoxy)carbonylation of **21** is evidenced by the d for HN-C(2) (J = 8.6 Hz, 6.05 ppm) of 25, the disappearance of the s corresponding to HN-C(5), and the strong deshielding of H-C(5) $(\Delta \delta \approx 1.1 \text{ ppm})$. The H-C(2) signal is also affected, but to a lower extent ($\Delta \delta \approx 0.7 \text{ ppm}$). The N-Boc-protected lactams 25 and 31 are a mixture of ${}^{4}H_{3}$ and ${}^{5}S_{1}$ conformers as evidenced by the small value of J(3,5) (25: 1.2 Hz; 31: ca. 1 Hz). The reduction of the acyl carbamate 25 to the hydroxy carbamates 26/27 is again reflected by the chemical-shift changes for H-C(2) and H-C(5) ($\Delta\delta$ (H-C(2)) ≈ -0.4 ppm, $\Delta\delta$ (H-C(5)) ≈ -0.2 ppm). The acetamido and oxycarbonylamino groups give rise to C=O absorptions at 1680-1690 cm⁻¹. To minimize the $A^{(1,3)}$ strain [24][25] between the (*tert*-butoxy)carbonyl and the BnOCH₂-C(5), and/or the HO-C(1) groups [48], one expects the hydroxy carbamate 26 to adopt a conformation with a pseudo-axial BnOCH₂-C(5). The J(H,H)values of **26** values (J(1,2) = 3.4, J(2,3) = 4.8, J(3,4) = 4.3, and J(4,5) = 2.4 Hz), however, are too large for a ${}^{1}C_{4}$ conformation and do not fit with a boat conformation; they are best rationalized by assuming a mixture of ${}^{5}C_{2}$ and ${}^{2}S_{4}$ conformers. The broadening of the ¹H-signals of **26** in CDCl₃ indicates a mixture of rotamers. The J(OH,1) value of 26 (5.9 Hz) does not fit with the value expected for HO-C(1) involved in a H-bond with the Boc group. However, a H-bond between HO-C(1) and the acetamido group, requiring a deviation of H-C(2)-N-H from coplanarity is in agreement with the moderate value of J(NHAc,2) (6.8 Hz). The conformation of the hydroxy carbamate 32 is notably different from the one of 26; as the only change consists of the replacement of the 2-acetamido group by a benzyloxy group, this is in keeping with the involvement of the acetamido group of **26** in a H-bond. The hydroxy carbamate **32** adopts a $B_{3,N}$ conformation $(J(1,2) \approx 2, J(2,3) =$ 6.2, J(3,4) = 9.2, and J(4,5) = 6.4 Hz). The rotation about the N-CO₂(t-Bu) bond of **32** is hindered, giving rise to a broadening of signals in the ¹H- and ¹³C-NMR spectra. The (1S)-configurated hydroxy carbamates 27 and 33 adopt a similar flattened ^{5,2}B conformation, as shown by the J(H,H) values (27: J(1,2) = 3.0, J(2,3) = 7.7, J(3,4) = 0.8, and J(4,5) = 2.5 Hz; 33: J(1,2) = 3.1, J(2,3) = 6.5, J(3,4) = 0, and J(4,5) = 1.2 Hz). A small coupling constant (ca. 1 Hz) between H-C(3) and H-C(5) is in keeping with their diequatorial orientation. The large

¹¹) Piperidinose-derived acyliminium cations have been generated by Suzuki and Hashimoto [43] as key intermediates in the synthesis of oligosaccharide analogues. More recently, Schmidt and coworkers [44] have reported the synthesis of C-glycosides from anomeric fluorides derived from N-Z-protected nojirimycin.

¹²) The α -D-glycoside 34 was selectively obtained by glycosidation of a 3:7 mixture of 32/33.

¹³) A similar participation of the Boc group has recently been reported by *Lhommet* and coworkers [47].

J(OH,1) values (27: 10.3 Hz; 33: 11.2 Hz) are rationalized by postulating a H-bond between HO-C(1) and O-C(6). The ¹H-NMR spectrum of the ethoxy derivatives 28 and 29 are characterized by small coupling constants, but the signals overlap in several solvents and complicate the conformational analysis. The rotation about the N-CO₂(*t*-Bu) bond of the ethoxy carbamate 34 is hindered by the pseudo-equatorial BnOCH₂-C(5) group, giving rise to two signals each for H-C(1) and H-C(5). Similarly, in the ¹³C-NMR spectrum of 34, the C(1), C(5), C(6), and CO₂(*t*-Bu) signals appear each as two *s*. The conformation of 34 is assumed to be similar to the one of 28/29, the larger J(H,H) values indicating the participation of the ⁴C₁ conformer (J(2,3) = 6.6 and J(3,4) = 8.9 Hz). The pseudo-axial position of the ethoxy group is evidenced by the small value of J(1,2) (2.2 Hz).

The ¹³C-NMR spectra of the amino nitriles **30** and **36** show the characteristic *s* of the CN group at 118.15 and 117.78 ppm, respectively. The IR spectra show no CN absorption, similarly to other α -hetero-substituted nitriles [49–52]. The *J*(H,H) values for the amino nitrile **30** are characteristic of a ⁵C₂ conformation and an equatorial substituent at C(2) (*J*(2,3) = 9.5, *J*(3,4) = 9.0, *J*(4,5) = 8.6, and *J*(5,6) = 8.7 Hz). The *J*(H,H) values for **36** are in accordance with a ⁵C₂ conformation and the axial position of the nitrile group (*J*(2,3) = 5.6, *J*(3,4) = 9.5, *J*(4,5) = 9.0, and *J*(5,6) = 9.7 Hz). The debenzylation of the BnOCH₂ group causes a shift of the *t* corresponding to C(7) towards higher fields ($\Delta \delta = 7$ ppm). The MS of the imino-oxazolidinone **35** is in agreement with the proposed constitution. The ¹³C-NMR spectrum shows five *d* between 50 and 75 ppm. Me₃C resonates at higher field than in the starting material ($\Delta \delta = 25$ ppm), evidencing the cleavage of a Me₃C-O and the formation of an Me₃C-N bond. To determine the configuration at C(4), **35** was reduced to the axial homonojirimycin derivative **37** which adopts the ⁵C₂ conformation. The value of *J*(2,3) (5.9 Hz) evidences the α -D-configuration of **37** and consequently the (4*S*)-configuration of **35**.

We thank *R. Husi* for the preparation of 14, Dr. *B. Bernet* and *R. Hoos* for helpful discussions, Dr. *B. Schweizer* for the X-ray analysis, Ms. *B. Brandenberg* for the NOE measurements, and the *Swiss National Science Foundation* and *F. Hoffmann-La Roche AG*, Basel, for generous support.

Experimental Part

General. Solvents were distilled before use. Normal workup implies distribution of the crude product between CH_2Cl_2 and sat. aq. NH_4Cl soln. and ice, unless indicated otherwise, drying of the org. layer (MgSO₄), filtration, and evaporation of the filtrate. TLC: *Merck* silica gel 60*F*-254 plates; detection by heating with 'mostain' (400 ml of 10% H_2SO_4 soln., 20 g of $(NH_4)_6Mo_7O_{24} \cdot 6H_2O$, 0.4 g of $Ce(SO_4)_2$). Flash chromatography (FC): silica gel *Merck* 60 (0.04–0.063 mm). M.p.: uncorrected. Optical rotations: 1-dm cell. UV Spectra (λ_{max} in nm (log ϵ)): 1-cm quartz cell. IR Spectra: KBr or 3% CHCl₃ soln. ¹H-NMR (300 MHz, if not indicated otherwise) and ¹³C-NMR (75 MHz, if not indicated otherwise): chemical shifts δ in ppm and coupling constants J in Hz. FAB- and CI-MS: 3-nitrobenzyl alcohol and NH₃ as matrix, resp., unless indicated otherwise.

Preparation of 14 [14] from N-Acetylglucosamine. A soln. of N-acetylglucosamine (50 g, 0.226 mol) in allyl alcohol (520 ml) was treated with BF₃ · OEt₂ (4.6 ml, 0.037 mol), refluxed for 5 h, and evaporated. The residue was dried *i.v.*, dissolved in DMF (500 ml), treated with NaH (19.4 g, 0.808 mol), then within 30 min, dropwise at $T < 40^{\circ}$, with a soln. of benzyl bromide (88 ml, 0.741 mol) in DMF (400 ml), and stirred for 2 h. The mixture was cooled to 5°, treated with MeOH (20 ml), and poured on H₂O/ice (500 ml). Extraction with AcOEt, followed by evaporation and drying *i.v.* gave a residue that was dissolved in DMSO (800 ml). The resulting soln. was warmed to 35°, treated with *t*-BuOK (25 g, 0.22 mol), heated at 60° for 30 min, and poured on ice. Extraction with AcOEt/Et₂O 4:1 (3 × 300 ml), followed by evaporation and drying *i.v.* gave a residue that was dissolved in THF/H₂O 4:1 (600 ml). The resulting soln. was treated with I₂ (85 g, 0.335 mol), stirred for 30 min, treated with Na₂SO₃, and extracted with AcOEt (3 × 350 ml). The combined org. phases were washed with aq. Na₂SO₃ soln. and then with H₂O, dried (MgSO₄), and evaporated. Recrystallization of the residue in boiling MeOH (11) gave 14 (19.8 g, 17.8%). Evaporation of the mother liquor and recrystallization in MeOH (500 ml) gave additional 14 (7.3 g, 6.5%). White crystals. M.p. 218°.

2-Acetamido-3,4,6-tri-O-benzyl-2-deoxy-D-glucono-1,5-lactone (15) [17]. a) At -70° , a soln. of freshly distilled oxalyl chloride (11 ml, 0.128 mol) in CH₂Cl₂ (350 ml) was treated dropwise within 1 h with a soln. of DMSO (20 ml) in CH₂Cl₂ (250 ml). The resulting soln. was stirred for 50 min and treated dropwise within 55 min with a soln. of 14 (27.1 g, 0.055 mol) in CH₂Cl₂/DMSO 25:4 (290 ml), stirred for 1 h at -70° , warmed to -40° within 1 h, cooled to -70° , and treated with Et₃N (40 ml; addition dropwise within 5 min). The mixture was stirred for 1 h at -70° , warmed to r.t., and washed with H₂O (3 × 300 ml). After drying (MgSO₄), filtration, and evaporation, the residue (brown oil) was treated under stirring with Et₂O (500 ml). Filtration of the resulting precipitate and drying *i.v.* gave 15 (22.9 g, 85%). White solid.

b) A soln. of 14 (4 g, 8.13 mmol) in CH_2Cl_2 (800 ml) was treated with *Dess-Martin* periodinane (5 g, 16.8 mmol), stirred for 30 min, treated again with *Dess-Martin* periodinane (1 g, 3.4 mmol), stirred for 20 min, treated with sat. aq. NaHCO₃/Na₂S₂O₃ soln., and stirred for 1 h. The aq. phase was extracted three times with CH_2Cl_2 . Drying of the combined org. phases (MgSO₄) and evaporation gave 15 (3.9 g, 98%). M.p. 142° (CHCl₃/Et₂O) ([17]: 141–142° (MeOH)). R_f (AcOEt): 0.52. IR (CHCl₃): 3460m, 3090w, 3067m, 3043w, 3007m, 2927m, 2870w, 1750s, 1718w, 1684s, 1675s, 1653m, 1636w, 1624w, 1616w, 1603w, 1576w, 1570w, 1559w, 1540m, 1506s, 1497s, 1473m, 1456s, 1436w, 1419w, 1364m, 1286w, 1253w, 1139m, 1091s, 1028m, 914w. ¹H-NMR (CDCl₃): 1.86 (*s*, Ac): 3.72–3.82 (*m*, 2 H–C(6)); 3.95–4.05 (*m*, H–C(3), H–C(4), H–C(5)); 4.45–4.52 (*m*, PhCH), H–C(2)); 4.58–4.68 (*m*, 3 PhCH); 4.80 (*d*, *J* = 11.8, PhCH); 4.82 (*d*, *J* = 11.2, PhCH); 6.46 (*d*, *J* = 5.8, NH); 7.22–7.32 (*m*, 15 arom. H). ¹³C-NMR (CDCl₃): 22.63 (*q*, Me); 55.55 (*d*, C(2)); 67.82 (*t*, C(6)); 73.62 (*t*, PhCH₂); 74.64 (*t*, 2 PhCH₂); 76.08, 78.54, 79.67 (3*d*, C(3), C(4), C(5)); 127.91–128.51 (several *d*); 137.57 (*s*); 137.63 (*s*); 137.98 (*s*); 168.88, 170.55 (2*s*, 2 C=O). FAB-MS: 49 (23), 490 (55, [*M* + 1]⁺), 382 (13), 244 (28), 181 (46), 91 (100). Anal. calc. for $C_{29}H_{31}NO_6$ (489.57): C 71.15, H 6.38, N 2.86; found: C 70.92, H 6.47, N 2.84.

2-Acetamido-3,4,6-tri-O-benzyl-2-deoxy-D-gluconamide (16). A soln. of 15 (22.9 g, 0.047 mol) in CH2Cl2 (400 ml) was added dropwise within 25 min to condensed ammonia (100 ml) at -78°. The cooling bath was removed, the reaction flask fitted with a cold-finger cooling trap, and the soln. kept at reflux for 30 min. After removal of the cooling trap, evaporation of NH₃ and CH₂Cl₂ gave 16 (24.2 g, > 99%) as a foam. $R_{\rm f}$ (acetone/ CH₂Cl₂1:1) 0.27. IR (CHCl₃): 3488m, 3406m, 3099w, 3067w, 3043w, 3007s, 2927m, 2869m, 1692s, 1671s, 1588m, 1497s, 1454m, 1398m, 1368m, 1262m, 1088s, 1028s, 914w. 1H-NMR (CDCl₃): 1.95 (s, Ac); 2.86-2.88 (br. s, OH); $3.57 - 3.70 \quad (m, 2 \text{ H} - \text{C(6)}, \text{ H} - \text{C(4)}); \quad 3.93 - 4.00 \quad (m, \text{H} - \text{C(5)}); \quad 4.40 \quad (dd, J = 2.8, \quad 5.7, \text{ H} - \text{C(3)}); \quad 4.43 - 4.62 \quad (dd, J = 2.8, \quad 5.7, \text{ H} - \text{C(3)}); \quad 4.43 - 4.62 \quad (dd, J = 2.8, \quad 5.7, \text{ H} - \text{C(3)}); \quad 4.43 - 4.62 \quad (dd, J = 2.8, \quad 5.7, \text{ H} - \text{C(3)}); \quad 4.43 - 4.62 \quad (dd, J = 2.8, \quad 5.7, \text{ H} - \text{C(3)}); \quad 4.43 - 4.62 \quad (dd, J = 2.8, \quad 5.7, \text{ H} - \text{C(3)}); \quad 4.43 - 4.62 \quad (dd, J = 2.8, \quad 5.7, \text{ H} - \text{C(3)}); \quad 4.43 - 4.62 \quad (dd, J = 2.8, \quad 5.7, \text{ H} - \text{C(3)}); \quad 4.43 - 4.62 \quad (dd, J = 2.8, \quad 5.7, \quad 1.5 \quad (dd, J = 2.8, \quad 5.7, \quad 5.$ (m, 4 PhCH); 4.65-4.80 (m, 2 PhCH, H-C(2)); 5.74 (br. s, NH); 6.55 (br. s, NH); 6.82 (d, J = 7.1, NHAc); 7.20-7.32 (m, 15 arom. H). ¹H-NMR (CD₃COCD₃): 1.97 (s, Ac); 3.67 (dd, J = 5.5, 9.7, H-C(6)); 3.76 (dd, J = 3.8, 9.7, H'-(6)); 3.79 (t, J = 6.5, H-C(4)); 3.93-4.03 (m, H-C(5)); 4.21-4.29 (br. s, exchange with the second secon CD_3OD , OH); 4.51 (*dd*, J = 2.5, 6.4, H-C(3)); 4.54 (*d*, J = 12.4, PhCH); 4.59 (*d*, J = 12.1, PhCH); 4.65–4.74 (m, 3 PhCH); 4.77 (d, J = 10.9, PhCH); 4.85 (dd, J = 2.5, 8.5, H-C(2)); 6.70 (br. s, exchange slowly with CD₃OD, NH); 7.05 (br. s, exchange slowly with CD₃OD, NH); 7.43-7.23 (m, 15 arom. H); 7.48 (d, J = 8.4, NHAc). ¹³C-NMR (CDCl₃): 23.23 (q, Me); 52.90 (d, C(2)); 70.55 (d, C(5)); 70.94 (t, C(6)); 73.59 (t, PhCH₂); 74.25 (t, PhCH₂); 74.54 (t, PhCH₂); 78.51, 78.84 (2d, C(3), C(4)); 127.82-128.65 (several d); 137.43 (s); 137.67 (s); 137.84 (s); 170.82, 172.69 (2s, 2 C=O). FAB-MS: 530 (8), 529 (18, $[M + Na]^+$), 508 (27, $[M + 2]^+$), 507 (58, $[M + 1]^+$, 181 (52), 162 (37), 91 (100).

2-Acetamido-3,4,6-tri-O-benzyl-2-deoxy-D-xylo-hex-5-ulosonamide (17). A soln. of pyridine SO3 (12.5 mg, 0.079 mmol) in DMSO (1 ml) was kept at r.t. for 15 min and then added dropwise at 20° to a soln. of 16 (47 mg, 0.09 mmol) in DMSO/Et₃N 25:21 (62 ml). The mixture was stirred at < 25° for 1.5 h and then poured into toluene/H2O. The aq. phase was extracted five times with toluene. Drying and evaporation of the combined org. phases gave 17 (> 90% pure according to ¹H-NMR). R_f (acetone/CH₂Cl₂ 1:1) 0.40. IR (CHCl₃): 3486m, 3387m, 3090w, 3067w, 3043w, 3001s, 2927w, 2871w, 1733m, 1692s, 1674s, 1616w, 1588w, 1497s, 1455m, 1435m, 1402m, 1310*m*, 1253*m*, 1054*s*, 1014*s*, 948*m*. ¹H-NMR (CDCl₃): 1.88 (*s*, Ac); 3.94 (*d*, J = 18.1, H–C(6)); 4.02 (*d*, JH'-C(6)); 4.07 (d, J = 3.9, H-C(4)); 4.26-4.33 (m, 3 PhCH); 4.38 (t, J = 3.8, irrad. at 4.07 $\rightarrow d, J \approx 3.8, J \approx 3$ H-C(3); 4.42 (d, J = 11.1, PhCH); 4.47-4.57 (m, 2 PhCH, H-C(2)); 5.82 (br. s, NH); 6.58 (br. s, NH); 6.74 (d, J = 6.9, NHAc); 7.02 - 7.30 (m, 15 arom. H).¹H-NMR (CD₃COCD₃): 1.93 (s, Ac); 4.33 (d, J = 5.2, H - C(4));4.34 (d, J = 18.0, H-C(6)); 4.40 (d, J = 18.0, H'-C(6)); 4.52 $(s, PhCH_2);$ 4.58 (dd, J = 5.2, 3.4, H-C(3)); 4.61 $(s, PhCH_2)$; 4.62 (d, J = 10.9, PhCH); 4.71 (d, J = 10.8, PhCH); 4.75 (dd, J = 3.4, 8.5, H-C(2)); 5.59 (d, J = 8.5, H-C(2)NHAc); 6.70 (br. s, NH); 7.05 (br. s, NH); 7.10-7.50 (m, 15 arom. H). ¹³C-NMR (CDCl₃, 50 MHz): 23.20 (q, Me); 52.24 (d, C(2)); 73.60 (t, C(6)); 74.21 (t, PhCH₂); 74.36 (t, PhCH₂); 74.46 (t, PhCH₂); 77.62, 82.25 (2d, C(3), C(4)); 128.19-129.56 (several d); 136.77 (s); 137.01 (s); 138.20 (s); 171.10, 172.43 (2s, 2 C=O); 207.45 (s, C(5)).

Oxidation of 16. a) With Dess-Martin Periodinane. A soln. of 16 (1.1 g, 2.17 mmol) in CH_2Cl_2 (50 ml) was treated with Dess-Martin periodinane (1.2 g, 4 mmol), stirred for 30 min, treated again with Dess-Martin periodinane (0.5 g, 1.7 mmol), stirred for 50 min, treated with sat. aq. NaHCO₃/Na₂S₂O₃ soln., and stirred for 1 h. The aq. phase was extracted with CH_2Cl_2 (3 × 200 ml). Drying (MgSO₄) of the combined org. phases and evaporation gave 17/18/19/20 44:16:12:28 (1.15 g, quant.; ¹H-NMR, assignment based on Ac signals). A soln. of this residue in toluene (50 ml) was treated with AcOH (0.5 ml). The resulting soln. (which showed increasing precipitation after a few h) was stirred at r.t. for 3 d and treated with sat. aq. NaHCO₃ soln. (20 ml). The aq. phase was extracted with CH_2Cl_2 (3 × 250 ml). Drying of the combined org. phases (MgSO₄) and evaporation gave 18/19 87:13 (1.05 g, 96%).

b) With Jones reagent. At 0°, a soln. of **16** (164.7 mg, 0.33 mmol) in acetone (20 ml) was treated with a soln. of CrO_3 (56 mg, 0.56 mmol) in H_2O /conc. H_2SO_4 83:17 (0.33 ml), stirred for 1 h at 0° and for 4 h at r.t., and treated with ice/sat. aq. Na_2CO_3 soln. Normal workup and FC (toluene/acetone 2:1) gave **18** (72.4 mg, 44%) and **19** (16.5 mg, 10%).

2-Acetamido-5-amino-3,4,6-tri-O-benzyl-2-deoxy-D-glucono-1,5-lactam (18). Crystallization of 18 (72.4 mg) from MeOH/hexane/Et₂O 5:20:7 (3.2 ml) gave 22.4 mg of white crystals. M.p. 164° (MeOH/hexane/Et₂O). $R_{\rm f}$ (acetone/CH₂Cl₂ 1:1) 0.27. IR (CHCl₃): 3457w, 3379m, 3090w, 3067w, 3043w, 3008m, 2927m, 2857w, 1685s, 1602m, 1512m, 1498m, 1454s, 1369m, 1301m, 1238w, 1100s, 1028w, 1000w. ¹H-NMR (CDCl₃): 1.81 (s, Ac); 3.42 (d, J = 9.8, 2 H - C(6)); 3.82 (d, J = 9.6, H - C(4)); 3.99 (t, $J \approx 8.0, \text{ H} - \text{C}(2)$); 4.24 (dd, J = 8.4, 9.6, H - C(3)); 4.44 (d, J = 11.8, PhCH); 4.54 (d, J = 11.8, PhCH); 4.63 (d, J = 12.1, PhCH); 6.87 (br. *s*, exchange with D₂O, OH); 4.82 (d, J = 11.6, PhCH); 4.91 (d, J = 11.2, PhCH); 6.87 (br. *s*, exchange with D₂O, NHAc); 7.15–7.36 (m, 15 arom. H). ¹H-NMR ((D₆)DMSO): 1.81 (s, Ac); 3.26–3.36 (covered by H₂O signal, H - C(6)); 3.56 (d, J = 13.5, PhCH); 4.59 (d, J = 11.5, PhCH); 4.66 (d, J = 11.2, PhCH); 4.51 (d, J = 10.9, PhCH); 4.54 (d, J = 11.8, PhCH); 4.66 (d, J = 1.2, PhCH); 4.51 (d, J = 10.9, PhCH); 4.54 (d, J = 11.8, PhCH); 4.65 (d, $J = 3.5, \text{ H}^{-}$ C(3)); 3.78 (d, J = 10.9, PhCH); 4.54 (d, J = 11.5, PhCH); 4.66 (d, J = 11.5, PhCH); 4.59 (s, OH); 7.18–7.30 (m, 15 arom. H); 8.24 (s, \text{ HN} - \text{C}(5)); 8.34 (d, J = 8.7, NHAc). ¹³C-NMR (CDCl₃): 2.268 (q, Me); 56.51 (d, C(2)); 71.95 (t, C(6)); 73.65 (t, \text{ PhCH}_2); 74.77 (t, \text{ PhCH}_2); 75.26 (t, \text{ PhCH}_2); 78.07, 78.61 (2d, C(3), C(4)); 82.20 (s, C(5)); 128.01–129.06 (several d); 137.24 (s); 137.51 (s); 138.14 (s); 169.83, 171.44 (2s, 2 C = O). FAB-MS: 506 (4), 505 (12, [M + 1]⁺), 489 (4), 488 (23), 487 (55, [M - OH]⁺).

2-Acetamido-5-amino-3,4,6-tri-O-benzyl-2-deoxy-L-idono-1,5-lactam (19). Crystallization of 19 (16.5 mg) from CHCl₃/MeOH/hexane/Et₂O 4:6:40:15 (6.5 ml; induced by the slow evaporation of 1 ml of solvent) gave 2.4 mg of white crystals. M.p. 142° (CHCl₃/MeOH/hexane/Et₂O). $R_{\rm f}$ (acetone/CH₂Cl₂ 1:1) 0.21. IR (CHCl₃): 3439w, 3377w, 3042w, 3008w, 2927s, 2854m, 1679s, 1602m, 1497m, 1456m, 1370w, 1098w, 1002w. ¹H-NMR (CDCl₃): 1.84 (*s*, Ac); 3.62 (*d*, *J* = 9.4, H-C(6)); 3.70 (*d*, *J* = 9.4, H'-C(6)); 3.89 (*d*, *J* = 5.5, H-C(4)); 3.97 (*dd*, *J* = 4.4, 5.4, H-C(3)); 4.54 (*d*, *J* = 11.2, PhCH); 4.58 (*d*, *J* = 12.5, PhCH); 4.62 (*d*, *J* = 10.6, PhCH); 4.64 (*d*, *J* = 11.8, PhCH); 4.71 (*d*, *J* = 11.8, PhCH); 4.78 (*dd*, *J* = 4.4, 8.2, irrad. at 6.06 \rightarrow *d*, *J* \approx 3.7, H-C(2)); 4.80 (*d*, *J* = 11.8, PhCH); 4.82-4.89 (br. *s*, exchange with D₂O, OH); 6.06 (*d*, *J* = 8.4, NHAc); 6.74 (*s*, HN-C(5)); 7.17-7.40 (*m*, 15 arom. H). ¹H-NMR ((D₆)DMSO): 1.82 (*s*, Ac); 3.42 (*d*, *J* = 9.3, H-C(6)); 3.59 (*d*, *J* = 9.3, H'-C(6)); 3.78 (*d*, *J* = 5.6, H-C(4)); 3.84 (*dd*, *J* = 5.6, 9.3, H-C(3)); 4.47-4.55 (*m*, 3 PhCH); 4.58-4.73 (*m*, 2 PhCH, H-C(2)); 4.84 (*d*, *J* = 12.1, PhCH); 6.05 (*s*, OH); 7.18-7.20 (*m*, 15 arom. H); 7.72 (*s*, HN-C(5)); 8.09 (*d*, *J* = 9.4, NHAc). ¹³C-NMR (CDCl₃): 23.00 (*q*. Me); 52.21 (*d*, C(2)); 72.64 (*t*, C(6)); 73.06 (*t*, PhCH₂); 73.94 (*t*, PhCH₂); 73.99 (*t*, PhCH₂); 77.22, 77.30 (2*d*, C(3), C(4)); 84.41 (*s*, C(5)); 128.14-129.06 (several *d*); 136.99 (2*s*); 137.42 (*s*); 168.21, 170.13 (2*s*, 2 C=O). FAB-MS: 506 (5), 505 (10, [*M* + 1]⁺), 487 (40, [*M* - OH]⁺).

Equilibration of 18, 19, and 20. a) At -40° , a soln. of 18 (5 mg, 0.009 mmol) in CH₂Cl₂/MeCN 1:1 (3 ml) was treated with 0.8M BF₃ · OEt₂ in MeCN (0.025 ml), kept for 23 h at 5° then for 26 h at -15° . The mixture was treated with ice/sat. aq. Na₂CO₃ soln. Normal workup gave 18/19 76:24 (5 mg, 100%).

b) As a with 19 (7.5 mg, 0.015 mmol), kept for 23 h at 5° and for 26 h at $-15^{\circ} \rightarrow 18/19$ 73.5:26.5 (7 mg, 93%).

c) As a with 20 (6.5 mg, 0.013 mmol) in $CH_2Cl_2/MeCN$ 1:1 (4 ml), kept for 8 h at 5° and for 12 h at $-15^\circ \rightarrow 18/19/20$ 10:69:21 (7.5 mg, > 99%).

2-Acetamido-5-amino-3,4,6-tri-O-benzyl-2,5-dideoxy-D-glucono-1,5-lactam (21). a) From 18/19 87:13. At -50° , a soln. of 18/19 87:13 (1.05 g, 2.02 mmol) obtained from 16 by oxidation with *Dess-Martin* periodinane in CH₂Cl₂/MeCN 1:1 (40 ml) was treated dropwise within 20 min with a soln. of BF₃ · OEt₂ (1.3 ml, 10.3 mmol) and Et₃SiH (1 ml, 6.3 mmol) in CH₂Cl₂/MeCN 1:1 (30 ml). The soln. was warmed to -5° within 30 min, then cooled to -40° and poured into ice/sat. aq. Na₂CO₃ soln. (25 ml). Normal workup and recrystallization of the residue (1 g) from Et₂O/CH₂Cl₂ 5:1 (30 ml) gave 21 (692 mg, 68%). The mother liquors gave, after evaporation, filtration through silica gel (AcOEt), and recrystallization (Et₂O/CH₂Cl₂), a second crop (37 mg, 4%) of crystals. Total yield: 72% from 1.1 g of 16.

b) From 18. At -15° , a soln. of 18 (5.5 mg, 0.011 mmol) in CH₂Cl₂ (2 ml) was treated dropwise within 5 min with a soln. of BF₃ · OEt₂ (0.05 ml, 0.40 mmol) and Et₃SiH (0.05 ml, 0.31 mmol) in MeCN (2 ml). The soln. was stirred for 30 min at -5° and treated with sat. aq. Na₂CO₃ soln. Normal workup gave 21 (5.1 mg, 96%).

c) From the crude product obtained from 16 by oxidation with *Dess-Martin* periodinane, without intermediary equilibration. The crude residue obtained by oxidation of 16 (60 mg, 0.12 mmol) with *Dess-Martin* periodinane was dried *i.v.*, dissolved in CH_2Cl_2 (5 ml) and treated dropwise at -40° with a soln. of Et_3SiH (0.1 ml, 0.63 mmol) and $BF_3 \cdot OEt_2$ (0.1 ml, 0.8 mmol) in MeCN (6 ml). The soln, was warmed to 0° within 1 h, stirred at 0° for 4.5 h, then cooled to -20° , and treated with sat. aq. Na₂CO₃ soln. Normal workup and crystallization from Et_2O/hex -

ane (8 ml) gave 21 (18.3 mg, 32%) as white crystals. Evaporation of the filtrate and crystallization from Et₂O/hexane 5:3 gave a second crop of 21 (2.9 mg, 5%). Evaporation of the filtrate and FC (AcOEt) gave 20 (6.5 mg, 11%) and 21 (7.8 mg, 13.5%).

Data of 21: M.p. 150°. Rf (acetone/CH2Cl2 1:1) 0.15. IR (CHCl3): 3460m, 3391m, 3068w, 3006m, 2866m, 1675s, 1602m, 1510m, 1498m, 1454m, 1366m, 1316m, 1269m, 1100s, 1028m, 1003w, 914w. ¹H-NMR (CDCl₃): 1.90 (s, Ac); 3.31 $(t, J \approx 8.6, \text{ irrad. at } 3.65 \rightarrow \text{change, } H-C(6)$); 3.59 $(dd, J = 2.8, 9.0, \text{ irrad. at } 3.31 \rightarrow \text{change, } 1.53 \text{ change, } 1.53$ H'-C(6)); 3.60 (t, J ≈ 8.4, irrad. at 4.01 → change, H-C(4)); 3.62-3.72 (m, irrad. at 3.31 → change, H-C(5)); 4.01 $(t, J = 8.6, \text{ irrad. at } 3.65 \rightarrow \text{change, H-C(3)});$ 4.12 $(t, J = 8.4, \text{ irrad. at } 4.01 \rightarrow \text{change, irrad. at});$ $5.81 \rightarrow d, J \approx 8.0, H-C(2)$; 4.46 (s, PhCH₂); 4.57 (d, $J \approx 11.2$, PhCH); 4.68 (d, J = 11.5, PhCH); 4.83 (d, J = 11.5, PhCH); 4.85 (d, J = 11.3, PhCH); 5.81 (d, J = 7.8, NHAc); 6.00 (s, HN-C(5)); 7.15-7.50(m, 15 arom. H). ¹H-NMR (C₆D₆): 1.73 (s, Ac); 3.16 (dd, J = 6.7, 9.5, H-C(6)); 3.36 (dd, J = 2.8, 9.3, H'-C(6)); 3.54 (t, J = 8.3, H-C(4)); 3.57-3.67 (m, H-C(5)); 4.10 (d, J = 12.1, PhCH); 4.17 $(t, J \approx 7.6, H-C(3));$ 4.17 (d, J = 12.7, PhCH); 4.23 (t, J = 8.1, H-C(2)); 4.39 (d, J = 11.6, PhCH); 4.70 $(s, PhCH_2)$; 4.73 (d, J = 11.5, PhCH); 4.70 $(s, PhCH_2)$; 4.71 $(s, PhCH_2)$; 4.71 PhCH); 6.51 (s, HN-C(5)); 6.57 (d, J = 7.2, NHAc); 7.00-7.32 (m, 15 arom. H). ¹H-NMR (CD₃COCD₃): 1.89 (s, Ac); 3.53-3.63 (m, H-C(5), H-C(6)); 3.71-3.76 (m, H'-C(6)); 3.83 $(t, J = 8.3, irrad. at 3.57 \rightarrow d, J \approx 8.7, J \approx 0.7$ H-C(4)); 4.03 (t, J = 9.0, H-C(3)); 4.25 $(t, J = 8.9, irrad. at 7.47 \rightarrow d, J \approx 9.3, H-C(2))$; 4.51 (d, J = 12.1, J)PhCH); 4.54 (d, J = 12.1, PhCH); 4.63 (d, J = 11.3, PhCH); 4.77 (d, J = 11.5, PhCH); 4.80 (d, J = 11.4, PhCH); 4.87 (d, J = 11.2, PhCH); 6.66 (s, HN-C(5)); 7.25-7.40 (m, 15 arom. H); 7.47 (d, J = 7.8, NHAc). ¹³C-NMR (CDCl₃): 22.79 (q, Me): 54.00, 54.61 (2d, C(2), C(5)); 69.98 (t, C(6)); 73.05 (t, PhCH₂); 74.31 (t, PhCH₂); 74.38 (t, PhCH2); 77.09, 79.45 (2d, C(3), C(4)); 127.56-128.25 (several d); 136.97 (s); 137.11 (s); 137.64 (s); 168.25, 170.23 (2s, 2 C=O). FAB-MS: 490 (26), 489 (60, [M + 1]⁺), 201 (12), 181 (11), 154 (14).

Data of (5R)-2-Acetamido-3,4,6-tri-O-benzyl-2-deoxy-D-xylo-hex-5-ulo-5,2-furanosonamide (20): R_f (acetone/CH₂Cl₂ 1:1) 0.47. IR (CHCl₃): 3472m, 3325m, 3182w, 3088w, 3067w, 3043w, 3002s, 2926m, 2873w, 1731w, 1690s, 1604m, 1496m, 1455m, 1434m, 1388m, 1339m, 1310m, 1253m, 1144m, 1094s, 1054s, 1030s, 948m. 'H-NMR (CDCl₃): 2.05 (s, Ac); 3.29 (d, J = 9.1, H–C(6)); 4.06 (d, J = 10.5, PhCH); 4.07 (s, exchange with CD₃OD, OH); 4.17 (dd, J = 3.0, 5.7, H–C(3)); 4.32 (d, J = 10.3, irrad. at 4.06 \rightarrow s, PhCH); 4.38 (d, J = 9.0, irrad. at 3.29 \rightarrow s, H'-C(6)); 4.506 (d, J = 5.9, H–C(4)); 4.51 (d, J = 3.1, H–C(2)); 4.58 (d, J = 11.2, PhCH); 4.69 (d, J = 11.8, PhCH); 4.87 (br. s, slow exchange with CD₃OD, NH); 4.88 (d, J = 11.8, PhCH); 4.99 (d, J = 11.2, PhCH); 7.05–7.11 (m, 2 arom. H); 7.12–7.20 (m, 1 arom. H); 7.30–7.40 (m, 12 arom. H); 7.71 (br. s, slow exchange with CD₃OD, NH). ¹³C-NMR (CDCl₃): 23.15 (q, Me); 62.28 (d, C(2)); 69.03 (t, C(6)); 73.47 (t, 3 PhCH₂); 78.30, 79.71 (2d, C(3), C(4)); 87.03 (s, C(5)); 127.59–129.33 (several d); 136.34 (s); 137.37 (s); 137.54 (s); 171.05, 173.02 (2s, 2 C=O). FAB-MS: 527 (3, [M + Na]⁺), 505 (4, [M + 1]⁺), 445 (15), 355 (3), 273 (2), 91 (100).

2-Acetamido-5-amino-2,5-dideoxy-D-glucono-1,5-lactam (22). A suspension of 10% Pd/C (98 mg) in MeOH (4 ml) was hydrogenated at 6 bar for 2 h, treated with 21 (100 mg, 0.20 mmol), hydrogenated at 6 bar for 60 h, and filtered through *Celite*. Evaporation of the filtrate and recrystallization from MeOH/H₂O/acetone gave 22 (32 mg, 72%). White crystals suitable for X-ray analysis. M.p. 219°. $R_{\rm f}$ (AcOEt/MeOH 1:1) 0.15. ¹H-NMR (D₂O): 2.03 (s, Ac); 3.31 · 3.36 (m, H-C(5)); 3.71 (dd, $J = 5.0, 12.1, {\rm irrad. at } 3.34 \rightarrow d, J \approx 12.8, H-C(6)); 3.71 (t, <math>J = 9.7, {\rm irrad. at } 3.34 \rightarrow d, J \approx 10.6, {\rm irrad. at } 3.87 \rightarrow {\rm change, H-C(4)}); 3.79 (dd, <math>J = 2.7, 12.0, {\rm irrad. at } 3.34 \rightarrow d, J \approx 11.2, {\rm H'-C(6)}); 3.87 (t, <math>J = 10.0, {\rm H-C(3)}); 4.10 (d, J = 10.3, {\rm irrad. at } 3.87 \rightarrow {\rm change, H-C(2)}).$ ¹³C-NMR (D₂O): 24.59 (q, Me); 57.59, 59.18 (2d, C(2), C(5)); 62.88 (t, C(6)); 70.75, 73.74 (2d, C(3), C(4)); 173.75, 177.26 (2s, 2 C=O). FAB-MS: 460 (20, [2 *M* + Na]⁺), 443 (12), 307 (100), 220 (11), 219 (30, [*M* + 1]⁺), 218 (8), 217 (12), 216 (13), 201 (20).

X-Ray Analysis of 22. Monoclinic P21 (No. 4); a = 8.174, b = 7.063, c = 8.634 Å; $\beta = 106.76^{\circ}$; V = 477.29 Å³; $D_{ealc} = 1.518$ Mg/m³; Z = 2. The reflexions were measured on an *Enraf-Nonius-CAD4* diffractometer (graphite monochromator, Mo K_x , $\lambda 0.71073$) at 293 K. R = 0.0429, $R_w = 0.1199$. The structure was solved with the direct-methods routine of SHELX-86, and the refinement was performed with SHELXL-92 [53][54].

2-Acetamido-5-amino-3,4,6-tri-O-benzyl-2,5-dideoxy-D-mannono-1,5-lactam (23). a) A soln. of 21 (10 mg, 0.02 mmol) in toluene (2 ml) was treated with Lawesson's reagent (5 mg, 0.013 mmol) and heated for 48 h at 90°. Normal workup and FC (CH₂Cl₂/acetone 2:1) gave 23 (3.3 mg, 33%).

b) In a NMR tube, a soln. of **21** (10 mg, 0.02 mmol) in CDCl_3 (0.6 ml) was treated with piperidine (0.007 ml, 0.07 mmol), leading after 5 d at 50° to **21/23** 22:78. Evaporation and FC (CH₂Cl₂/acetone 2:1) gave **23** (4 mg, 40%) and **21** (1.1 mg, 11%).

c) Similarly as for b, **23** (4 mg, 0.008 mmol; obtained in b)) gave, after 7 d at 55°, **21/23** 11:89. **23**: R_t (CH₂Cl₂/acetone 1:1) 0.38. IR (CHCl₃): 3398m, 3090w, 3067w, 3007m, 2962w, 2924w, 1665s, 1628m, 1511m, 1498w, 1454w, 1403w, 1364w, 1262m, 1094s, 1074s, 1028m. ¹H-NMR (CDCl₃): 2.00 (s, Ac); 3.42-3.43 (*m*, H–C(4), 2 H–C(6)); 3.69 (*ddd*, J = 1.4, 4.3, 8.4, H–C(5)); 4.36 (*d*, J = 12.0, PhCH); 4.37 (*dd*, J = 2.3, 3.1, H–C(3)); 4.39–4.54 (*m*, 4 PhCH); 4.61 (*d*, J = 11.8, PhCH); 4.77 (*dd*, J = 2.5, 5.9, H–C(2)); 6.00 (*s*, HN–C(5)), 6.46 (*d*, J = 5.9, NHAc); 7.21–7.40 (*m*, 15 arom. H). ¹H-NMR (CD₃OCD₃): 1.98 (*s*, Ac); 3.55–3.78 (*m*, H–C(5), 2 H–C(6)); 3.91 (*dd*, J = 2.4, 3.7, irrad. at 4.25 \rightarrow *d*, J = 4.0, H–C(4)); 4.25 (*t*, J = 2.8, H–C(3)); 4.52 (*s*, PhCH₂); 4.54 (*d*, J = 11.0, PhCH); 4.55 (*d*, J = 11.8, PhCH); 4.61 (*d*, J = 11.8, PhCH); 4.69 (*d*, J = 11.8, PhCH); 4.80 (*dd*, J = 3.4, 6.9, irrad. at 4.25 \rightarrow *d*, $J \approx 7.2$, H–C(2)); 6.73 (*s*, HN–C(5)); 7.12 (*d*, J = 7.0, NHAc); 7.30–7.41 (*m*, 15 arom. H). ¹³C-NMR (CDCl₃): 23.37 (*q*, Me); 51.88 (*d*, C(5)); 55.57 (*d*, C(2)); 70.71 (*t*, C(6)); 71.75 (*t*, PhCH₂); 73.29 (*t*, PhCH₂); 73.55 (*t*, PhCH₂); 74.68, 76.39 (2*d*, C(3), C(4)); 128.19–129.04 (several *d*); 137.42 (*s*); 137.63 (*s*); 138.77 (*s*); 169.07, 170.55 (2*s*, 2 C=O). FAB-MS: 977 (5, [2 M + 1]⁺), 490 (38), 489 (100, [M + 1]⁺), 447 (7), 381 (4), 91 (72).

2-Acetamido-3,4,6-tri-O-benzyl-1,2,5-trideoxy-1,5-imino-D-glucitol (24). A soln. of BF₃ · OEt₂ (0.05 ml, 0.40 mmol) in THF (3 ml) was treated with 21 (19.2 mg, 0.039 mmol), heated for 9 min at 50°, cooled to 4°, and treated with NaBH₄ (100 mg, 2.6 mmol). The mixture was stirred for 20 min at 4° and then treated with ice/ CH2Cl2. The residue obtained after normal workup was dissolved in MeOH (2 ml) and treated (using a Pasteur pipette) with six drops of conc. HCl soln. and the resulting soln. evaporated. After repetition of this operation, the residue was dissolved in CH_2Cl_2 and treated with ice/ H_2O , then with 7% aq. KOH soln. (3 ml \rightarrow pH 10). The aq. phase was extracted with CH2Cl2 and the combined org. phase dried (MgSO4), and evaporated. Recrystallization of the residue from AcOEt/hexane at r.t. gave 24 (13 mg, 70%). R_t (AcOEt/MeOH 10:2) 0.17. IR (CHCl₃): 3420w, 3090w, 3067w, 3007m, 2927m, 2857m, 1667s, 1515m, 1497m, 1454m, 1358w, 1313w, 1261m, 1100s, 1028m, 910w. ¹H-NMR (CDCl₃): 1.73 (s, Ac); 1.77 (br. s, exchange with CD₃OD, HN-C(5)); 2.27 (dd, J = 10.1, 12.9, irrad. at $3.76 \rightarrow$ change, $H_{ax} - C(1)$; 2.74 (*ddd*, J = 3.0, 4.9, 8.0, H - C(5)); 3.32 (*dd*, J = 5.4, 12.9, irrad. at $2.27 \rightarrow d, J \approx 4.7$, irrad. at $3.76 \rightarrow$ change, $H_{eq} - C(1)$; $3.34 (dd, J = 8.3, 9.6, irrad. at <math>3.76 \rightarrow$ change, H - C(3)); $3.52 (t, J \approx 8.7, H-C(4)); 3.62 (dd, J = 3.0, 9.0, H-C(6)); 3.68 (dd, J = 5.0, 9.1, H'-C(6)); 3.75-3.77 (m, irrad.); 3.75-3.77 (m, irra$ at 2.27 \rightarrow change, irrad. at 5.00 \rightarrow change, H-C(2)); 4.47 (d, J = 11.7, PhCH); 4.50 (d, J = 11.8, PhCH); 4.55 (d, J = 11.2, PhCH); 4.64 (d, J = 12.0, PhCH); 4.83 (d, J = 11.0, PhCH); 4.87 (d, J = 12.1, PhCH); 5.00 $(d, J = 6.5, \text{ irrad. at } 3.76 \rightarrow s, \text{ exchange with CD}_3\text{OD}, \text{NHAc}); 7.25-7.42 (m, 15 \text{ arom. H}).$ ¹³C-NMR (CDCl₃): 23.07 (q, Me); 47.63 (t, C(1)); 51.90 (d, C(5)); 59.37 (d, C(2)); 69.08 (t, C(6)); 73.38 (t, PhCH₂); 74.06 (t, PhCH₂); 77.48 (t, PhCH₂); 80.18, 82.54 (2d, C(3), C(4)); 127.87-128.70 (several d); 137.85 (s); 137.99 (s); 138.37 (s); 170.41 (s, C=O). FAB-MS: 476 (8), 475 (15, $[M + 1]^+$), 91 (86).

2-Acetamido-3,4,6-tri-O-benzyl-5-{{(tert-butoxy)carbonyl]amino}-2,5-dideoxy-D-glucono-1,5-lactam (25). A soln. of **21** (290 mg, 0.59 mmol) and DMAP (17.0 mg, 0.14 mmol) in MeCN (10 ml) was treated with Boc₂O (50 mg, 0.23 mmol), stirred for 40 min, treated again with Boc₂O (100 mg, 0.46 mmol), and stirred for 30 min. Normal workup gave **25** (332 mg, 95%). R_t (AcOEt/hexane 1:1) 0.28. IR (CHCl₃): 3434m, 3090w, 3067w, 3008m, 2986m, 2963m, 2931m, 2869m, 1775s, 1731s, 1681s, 1602m, 1511m, 1498m, 1474m, 1455m, 1394m, 1370s, 1287s, 1261s, 1152s, 1098s, 1028s, 909w, 844w. ¹H-NMR (CDCl₃): 1.49 (s, Me₃C); 2.01 (s, Ac); 3.63 (ddd, J = 1.2, 3.8, 8.2, irrad. at $4.05 \rightarrow dd$, $J \approx 0.8$, 7.9, irrad. at $4.96 \rightarrow dd$, $J \approx 0.8$, 3.9, H-C(3)); 3.64 (dd, J = 5.6, 9.5, H-C(6)); 3.77 (dd, J = 7.2, 9.6, H'-C(6)); 4.05 (dd, J = 2.5, 3.9, H-C(4)); 4.49-4.65 (m, 6 PhCH); 4.77-4.80 (m, irrad. at 4.96 $\rightarrow s$, NHAc); 7.24-7.36 (m, 15 arom. H). ¹³C-NMR (CDCl₃): 2.328 (q, Me); 27.92 (q, Me₃C); 54.58 (d, C(5)); 57.58 (d, C(2)); 69.27 (t, C(6)); 71.39 (t, PhCH₂); 72.56 (t, PhCH₂); 73.25 (t, PhCH₂); 75.94, 81.45 (2d, C(3), C(4)); 83.91 (s, Me₃C); 127.72-128.54 (several d); 137.38 (s); 137.65 (br. s, 2 C); 152.06 (s, NCO₂); 168.47, 170.26 (2s, 2 C=O). FAB-MS: 1177 (8, [2 M + 1]⁺), 589 (5, [M + 1]⁺), 588 (1), 491 (10), 490 (44), 489 (100), 273 (13), 154 (14).

2-Acetamido-3.4.6-tri-O-benzyl-5-{[(tert-butoxy)carbonyl]amino]-2.5-dideoxy- α - and - β -D-glucopyranose (26 and 27). At -10° , a soln. of 25 (240 mg, 0.41 mmol) in EtOH (12 ml) was treated with NaBH₄ (130 mg, 3.43 mmol). The pH of the suspension was adjusted to 6–6.5 by addition of 1N HCl. The addition of NaBH₄ (90 mg, 2.38 mmol) and the pH regulation was repeted every 50 min till completion of the reaction. The soln. was treated with ice/sat. aq. NH₄Cl soln. The aq. phase was neutralized with 1N HCl. Normal workup and FC (AcOEt/hexane 1:2 \rightarrow 1:0) of the residue (26/27 7:6) gave 26 (41.5 mg, 17%), 26/27 80:20 (53.4 mg, 22%), 26/27 70:30 (40.8 mg, 17%), 26/27 20:80 (39.6 mg, 16%), and 27 (43.2 mg, 18%).

Data of **26**: $R_{\rm f}$ (AcOEt/hexane 1:1) 0.22. $[\alpha]_{\rm D}^{25} = -1.7$ (c = 0.32, CHCl₃). IR (CHCl₃): 3502w, 3403m, 3008m, 2884m, 2961m, 2930m, 2873m, 1690s, 1518m, 1455m, 1374s, 1318m, 1166m, 1074s, 1046s, 941w, 909w, 892w. ¹H-NMR (CD₃COCD₃): 1.44 (br. s, Me₃C); 1.78 (s, Ac); 3.62 (dd, J = 4.7, 9.4, irrad. at 4.04 \rightarrow m, irrad. at 4.55 \rightarrow m, H-C(6)); 3.77 (t, J = 4.8, irrad. at 4.34 \rightarrow d, $J \approx 4.2$, H-C(3)); 4.04 (t, J = 9.5, irrad. at 4.55 \rightarrow d, $J \approx 8.9$, H'-C(6)); 4.14 (dd, J = 2.4, 4.3, irrad. at 3.77 \rightarrow d, $J \approx 1.9$, irrad. at 4.55 \rightarrow d, $J \approx 4.0$, H-C(4)); 4.29-4.39 (br. s, irrad. at 3.77 \rightarrow br. d, $J \approx 6.8$, H-C(2)); 4.55-4.60 (m, PhCH, H-C(5)); 4.61-4.74

(*m*, 5 PhC*H*); 4.75 (*d*, J = 5.9, irrad. at 5.57 \rightarrow *s*, OH); 5.57 (*dd*, J = 3.4, 5.3, irrad. at 4.34 \rightarrow *d*, $J \approx 5.4$, irrad. at 4.75 \rightarrow *d*, $J \approx 3.1$, H–C(1)); 6.96 (br. *d*, J = 6.8, irrad. at 4.34 \rightarrow *s*, NH); 7.25–7.40 (*m*, 15 arom. H). ¹³C-NMR (CDCl₃): 23.23 (*q*, Me); 28.33 (*q*, Me₃C); 48.48 (*d*, C(2)); 51.44 (*d*, C(5)); 70.06 (*t*, C(6)); 71.52 (*t*, PhCH₂); 72.57 (*t*, PhCH₂); 72.97 (*t*, PhCH₂); 71.52, 74.95 (2*d*, C(2), C(3)); 77.63 (*d*, C(1)); 80.68 (*s*, Me₃C); 128.22–129.24 (several *d*); 139.18 (*s*); 139.31 (*s*); 139.66 (*s*); 155.40, 169.22 (*s*, 2 C=O). ESI-MS: 1204 (22, [2 *M* + Na]⁺), 906 (36), 629 (10), 613 (100, [*M* + Na]⁺), 466 (95), 365 (60).

Data of **27**: R_f (AcOEt/hexane 1:1) 0.17. $[\alpha]_D^{25} = 7.3$ (c = 0.75 CHCl₃). IR (CHCl₃): 3500w, 3408m, 3067w, 3008m, 2930m, 2868w, 1684s, 1603w, 1515m, 1455m, 1370s, 1316m, 1262m, 1165m, 1073s, 1023m. ¹H-NMR (CDCl₃): 1.58 (br. *s*, Me₃C); 1.96 (*s*, Ac); 3.50 (*dd*, J = 0.8, 7.7, irrad. at 4.30 \rightarrow br. *s*, H–C(3)); 3.62 (*dd*, J = 4.7, 8.8, irrad. at 4.45 \rightarrow *d*, $J \approx 8.5$, H–C(6)); 3.68 (*t*, J = 8.8, 10.1, irrad. at 4.45 \rightarrow *d*, $J \approx 8.6$, H'–C(6)); 4.00 (*d*, J = 10.3, irrad. at 5.16 \rightarrow *s*, exchange with CD₃OD, OH); 4.19 (*dd*, J = 0.9, 2.5, irrad. at 4.45 \rightarrow *d*, J = 0.8, irrad. at 3.50 \rightarrow *d*, $J \approx 2.3$, H–C(4)); 4.26 (*d*, J = 12.5, PhCH); 4.30 (*ddd*, J = 3.0, 8.0, 9.4, irrad. at 3.50 \rightarrow *dd*, $J \approx 2.8$, 9.3, irrad. at 5.16 \rightarrow *dd*, $J \approx 7.9$, 9.7, irrad. at 5.74 or addn. of CD₃OD \rightarrow *dd*, $J \approx 3.0$, 7.7, H–C(2)); 4.40–4.55 (*m*, 4 PhCH), H–C(5)); 4.65 (*d*, J = 11.7, PhCH); 5.16 (*dd*, J = 3.0, 10.3, addn. of CD₃OD \rightarrow *d*, $J \approx 2.9$, H–C(1)); 5.74 (*d*, J = 9.6, slow exchange with CD₃OD (> 12 h), irrad. at 4.30 \rightarrow br. *s*, NHAc); 7.20–7.38 (*m*, 15 arom. H). ¹³C-NMR (CDCl₃): 23.45 (*q*, Me); 28.31 (*q*, Me₃C); 52.98 (2*d*); 68.72 (*t*, C(6)); 70.90 (*t*, PhCH₂); 71.54 (*t*, PhCH₂); 73.05 (*t*, PhCH₂); 74.55, 76.48, 78.81 (3d, C(1), C(3), C(4)); 81.35 (*s*, Me₃C); 127.54–128.71 (several *d*); 136.49 (*s*); 137.57 (*s*); 138.24 (*s*); 154.44 (*s*, NCO₂); 169.39 (*s*, C=O). ESI-MS: 1204 (15, [2 M + Na]⁺), 906 (24), 629 (15), 613 (100, [M + Na]⁺), 465 (60), 365 (40).

Ethyl 2-Acetamido-3,4,6-tri-O-benzyl-5-{[(tert-butoxy)carbonyl]amino}-2,5-dideoxy-α- and -β-D-glucopyranoside (28 and 29). A soln. of 26/27 7:6 (28 mg, 0.047 mmol) in EtOH (1 ml) was treated with TsOH · H₂O (10 mg, 0.05 mmol), stirred for 15 min, and treated with sat. aq. NaHCO3 soln. Normal workup and FC (AcOEt/hexane 1:2) gave 28/29 2:1 (22.6 mg, 77%). Rf (AcOEt/hexane 1:1) 0.37. IR (CHCl₃): 3400m, 3008m, 2979m, 2871m, 1689s, 1518m, 1454m, 1374s, 1320m, 1169m, 1074s. 'H-NMR (CDCl₃; 2:1 diastereoisomer mixture): selected data: 1.14 (t, J = 7.0, Me); 1.46 (s, Me₃C); 1.74 (s, Ac); 3.38-3.48 (m, irrad. at $1.14 \rightarrow d, J = 9.3, 0.67$ H), 3.52-3.56 (*m*, irrad. at $1.14 \rightarrow d, J = 9.0, 1.34$ H, OCH₂); 3.60-3.73 (*m*, irrad. at $4.05 \rightarrow$ change, irrad. at 4.12 → change, irrad. at 4.96 → change, 1.67 H, PhCH; 0.67 H, H-C(3), 0.67 H, H-C(6)); 4.05 (br. s, 0.33 H, H-C(4); 3.97 (br. s, 0.67 H, H-C(4)); 4.12 (br. t, $J \approx 9.5$, irrad. at 3.60 \rightarrow change, irrad. at 4.96 $\rightarrow d, J = 9.0$, 0.67 H, H-C(6)); 4.35-4.49 (m, PhCH); 4.54 (br. d, J = 7.5, irrad. at 5.33 \rightarrow change, irrad. at 6.80 \rightarrow s, 0.67 H, H-C(2); 4.63-4.77 (m, irrad. at 3.65 \rightarrow change, irrad. at 5.42 \rightarrow change, irrad. at 6.55 \rightarrow change, 1.33 H, PhCH, 0.33 H, H–C(2)); 4.82 (d, J = 11.2, 0.33 H, PhCH); 4.96 (br. t, J = 5.9, irrad. at 3.65 \rightarrow br. $d, J \approx 6.9$, irrad. at 4.05 → change, irrad. at 4.12 → change, 0.67 H, H–C(5)); 5.33 (br. s, 0.67 H), 5.42 (br. s, 0.33 H, H–C(1)); 6.55 $(d, J = 8.7, \text{ irrad. at } 4.70 \rightarrow s, 0.33 \text{ H}), 6.80 (d, J = 8.7, 0.67 \text{ H}, \text{ NH}); 7.28-7.41 (m, 15 \text{ arom. H}).$ ¹H-NMR $(C_6D_6; 2:1 \text{ diastereoisomer mixture})$: selected data: 1.10 (t, J = 7.0, Me); 1.41 (s, Me_3C) ; 1.56 (s, 1 H), 1.57 $(s, 2 \text{ H}, \text{Ac}); 3.40-3.53 \text{ } (m, \text{ irrad. at } 1.10 \rightarrow J \approx 8.7, 0.67 \text{ H}, \text{OCH}_2); 3.57-3.77 \text{ } (m, \text{ irrad. at } 1.10 \rightarrow \text{ change, irrad.})$ at 5.14 \rightarrow change, 1.34 H, OCH₂, 0.33 H, H–C(3)); 3.87–4.00 (*m*, irrad. at 5.37 \rightarrow change, 0.67 H, H–C(6)); 4.00-4.13 (m); 4.13 (br. s, 0.67 H, H-C(4)); 4.17-4.50 (m); 4.54 (d, J = 11.5, 0.67 H), 4.59 (d, J = 11.5, 0.67 H, PhCH); 4.72 (d, J = 11.5, 0.33 H, PhCH); 4.88-4.98 (m, 0.33 H, H-C(5), 0.67 H, H-C(2)); 5.14 (br. d, J = 8.7, 0.33 H, C(2); 5.14 (br.0.33 H, H–C(2)); 5.32–5.42 (m, irrad. at 3.93 \rightarrow br. d, $J \approx 7.5$, 0.67 H, H–C(5)); 5.71 (br. s, 0.67 H), 5.99 (br. s, 0.67 H), 5. 0.33 H, H-C(1)); 6.49 (d, J = 7.8, irrad. at 5.14 \rightarrow s, 0.33 H, exchange slowly with CD₃OD), 6.75 (d, J = 8.7, irrad. at 4.94 \rightarrow s, 0.67 H, exchange slowly with CD₃OD, NH); 7.00-7.40 (m, 15 arom. H). ¹³C-NMR (CDCl₃; 2:1 diastereoisomer mixture): signals of major diastereoisomer: 14.97 (q. Me); 23.40 (q. MeCO); 28.41 (q. Me₃C); 46.76 (d); 50.32 (d); 63.28 (t); 69.83 (t); 71.12 (t); 71.37 (t); 72.89 (t); 73.63 (d); 74.55 (d); 80.80 (s); 83.03 (d); 127.00-129.00 (several d); 137.86 (s); 138.33 (s); 138.94 (s); 156.64 (s, NCO₂); 169.39 (s, C=O); signals of minor diastereoisomer: 15.18 (q, Me); 23.40 (q, MeCO); 28.41 (q, Me₃C); 46.16 (d); 52.63 (d); 63.92 (t); 70.30 (t); 71.12 (1); 71.59 (1); 73.10 (1); 74.27 (d); 74.55 (d); 80.80 (s); 82.58 (d); 127.00-129.00 (several d); 137.86 (s); 138.40 (s); 138.76 (s); 156.04 (s, NCO₂); 169.39 (s, C=O). ESI-MS: 948 (15), 657 (10), 641 (100, [M + Na]⁺), 465 (60), 365 (40).

3-Acetamido-4,5,7-tri-O-benzyl-2,3,6-trideoxy-2,6-imino-D-glycero-D-gulo-heptononitrile (**30**). At 5°, a soln. of **28/29** 2:1 (9 mg, 0.015 mmol) in CH₂Cl₂ (1 ml) was treated dropwise with Me₃SiCN (0.025 ml, 0.20 mmol) and BF₃ · OEt₂, (0.025 ml, 0.20 mmol), stirred for 1 h at r.t., and poured into ice/sat. aq. NH₄Cl soln. Normal workup and FC (AcOEt/hexane 1:2 \rightarrow 2:1) gave **30** (4 mg, 55%). $R_{\rm f}$ (AcOEt/hexane 1:1) 0.05. IR (CHCl₃): 3451w, 3340w, 3067w, 3008m, 2928m, 2869m, 1676s, 1497w, 1454m, 1369m, 1263m, 1098s. ¹H-NMR (CDCl₃): 1.86 (s, Ac); 2.25–2.33 (m, irrad. at 2.87 \rightarrow change, NH); 2.82–2.91 (m, irrad. at 2.29 \rightarrow dt, J = 4.5, 9.0, irrad. at 3.41 \rightarrow change, irrad. at 3.62 \rightarrow d, J \approx 9.0, addn. of CD₃OD \rightarrow dt, J \approx 5.3, 9.0, H–C(6)); 3.41 (t, J = 8.7, irrad. at 2.87 \rightarrow change, irrad. at 2.87 \rightarrow change, irrad. at 3.95 \rightarrow change, H–C(3),

2 H−C(7)); 3.95 (*dd*, J = 8.6, 9.0, irrad. at 3.41 → *d*, $J \approx 9.3$, irrad. at 3.62 → change, H−C(4)); 4.17 (*dd*, J = 7.0, 9.5, irrad. at 2.29 → *d*, $J \approx 9.7$, irrad. at 3.62 → change, addn. of CD₃OD → *d*, J = 10.0, H−C(2)); 4.48 (*s*, PhCH₂); 4.51 (*d*, J = 12.3, PhCH); 4.64 (*d*, J = 11.5, PhCH); 4.78 (*d*, J = 10.9, PhCH); 4.83 (*d*, J = 11.5, PhCH); 5.71 (*d*, J = 8.0, irrad. at 3.62 → change, exchange with CD₃OD, NHAc); 7.40–7.17 (*m*, 15 arom. H). ¹³C-NMR (CDCl₃): 23.47 (*q*, Me); 48.18 (*d*, C(2)); 55.66, 58.42 (2*d*, C(3), C(6)); 69.06 (*t*, C(7)); 73.51 (*t*, PhCH₂); 74.79 (*t*, PhCH₂); 74.94 (*t*, PhCH₂); 79.75 (*d*), 80.38 (*d*, C(4), C(5)); 118.15 (*s*, CN); 127.80–129.00 (several *d*); 137.58 (*s*); 137.73 (*s*); 138.03 (*s*); 170.66 (*s*, C=O). FAB-MS: 999 (2, [2 *M* + 1]⁺), 501 (39), 500 (100, [*M* + 1]⁺), 499 (6), 460 (26), 371 (10), 365 (22).

2,3,4,6-Tetra-O-benzyl-5-{/(tert-butoxy)carbonyl]amino}-5-deoxy-D-glucono-1,5-lactam (**31**). A soln. of **1** [2][4] (232 mg, 0.43 mmol) and DMAP (16 mg, 0.13 mmol) in MeCN (7 ml) was treated with Boc₂O (200 mg, 0.92 mmol) and stirred for 5.5 h. Normal workup and FC (Et₂O/hexane 2.5) gave **31** (242 mg, 88%). $R_{\rm f}$ (Et₂O/hexane 2:1) 0.62. IR (CHCl₃): 3090w, 3067m, 3008m, 2979m, 2933m, 2869m, 1776s, 1732s, 1604m, 1497s, 1454s, 1394m, 1370s, 1291s, 1252s, 1151s, 1098s, 1074s, 1028m. ¹H-NMR (CDCl₃): 1.53 (s, Me₃C); 3.49 (dd, J = 4.7, 9.7, irrad. at 4.64 \rightarrow d, $J \approx 9.0$, H-C(6)); 3.62 (dd, J = 6.2, 9.7, irrad. at 4.64 \rightarrow d, $J \approx 9.0$, H'-C(6)); 3.86 (ddd, J = 0.9, 4.4, 8.4, irrad. at 4.21 \rightarrow d, $J \approx 4.0$, irrad. at 4.64 \rightarrow dd, $J \approx 4.4$, 8.4, H-C(3)); 3.92 (dd, J = 2.7, 4.5, irrad. at 4.64 \rightarrow d, $J \approx 4.4$, H-C(4)); 4.21 (d, J = 8.4, H-C(2)); 4.40 (d, J = 11.8, PhCH); 4.46 (d, J = 11.8, PhCH); 4.55 (d, J = 10.9, PhCH); 4.57 (s, PhCH₂); 4.60 (d, J = 11.5, PhCH); 4.60 – 4.68 (m, H-C(5)); 4.73 (d, J = 12.5, PhCH); 5.07 (d, J = 11.2, PhCH); 7.24–7.32 (m, 20 arom. H). ¹³C-NMR (CDCl₃): 28.06 (q, Me₃C); 57.91 (d, C(5)); 69.73 (t, C(6)); 71.85 (t, PhCH₂); 73.39 (t, PhCH₂); 73.71 (t, PhCH₂); 74.24 (t, PhCH₂); 76.33, 79.81, 81.96 (3d, C(2), C(3), C(4)); 83.84 (s, Me₃C); 127.94–128.72 (several d); 137.79 (s, 2 C); 138.18 (s); 138.24 (s); 152.35 (s, NCO₂); 170.02 (s, C(1)). FAB-MS: 1298 (10, [2 M + Na]⁺), 660 (12), 638 (6, [M + 1]⁺), 637 (12), 561 (13), 560 (38), 539 (62), 538 (100), 536 (8, [M - Boc]⁺).

2,3,4,6-Tetra-O-benzyl-5-{[(tert-(butoxy)carbonyl]amino}-5-deoxy- α - and - β -D-glucopyranose (**32** and **33**). At 5°, a soln. of **31** (242 mg, 0.38 mmol) in EtOH (10 ml) was treated with NaBH₄ (220 mg, 5.8 mmol) and the pH of the suspension adjusted to 6 by addition of aq. 1N HCl. The soln. was stirred for 13 h, treated with ice/sat. aq. NH₄Cl soln., and neutralized with 1N HCl. Normal workup and FC (Et₂O/hexane 1:3 \rightarrow 1:2) of the residue (**32**/**33** 30:70) gave **32** (43 mg, 18%) and **33** (139.5 mg, 57.5%).

Data of 32: Rf (Et2O/hexane 2:1) 0.22. IR (CHCl3): 3401m, 3067w, 3008m, 2981m, 2932m, 2871m, 1694s, 1497w, 1454m, 1394s, 1368s, 1329s, 1258w, 1163m, 1072s. ¹H-NMR (CDCl₃): 1.45 (s, Me₃C); 3.42 (br. d, J = 9.7, irrad. at 3.63 \rightarrow change, irrad. at 4.14 \rightarrow d, $J \approx 8.7$, H-C(6)); 3.59-3.67 (m, irrad. at 3.71 \rightarrow change, irrad. at $4.02 \rightarrow$ change, irrad. at $4.14 \rightarrow$ change, H-C(3), H'-C(6)); 3.71 (br. d, J = 6.2, irrad. at $3.63 \rightarrow$ change, irrad. at 5.67 \rightarrow change, H-C(2)); 4.02 (dd, J = 6.4, 9.2, irrad. at 3.63 \rightarrow change, irrad. at 4.14 \rightarrow d, J \approx 8.7, H-C(4)); 4.10-4.18 (m, H-C(5), exchange with CD₃OD, OH); 4.37-4.59 (m, 4 PhCH); 4.62 (d, J = 11.5, PhCH); 4.73-4.84 (m, 3 PhCH); 5.47-5.77 (m, H-C(1)); 7.26-7.36 (m, 20 arom. H). ¹H-NMR (CD₃COCD₃): 1.44 (s, Me₃C); $3.56 (t, J = 8.1, \text{ irrad. at } 3.99 \rightarrow d, J \approx 8.1, \text{H}-\text{C}(3)); 3.60 (dd, J = 4.1, 9.6, \text{ irrad. at } 4.28 \rightarrow d, J \approx 9.3, \text{H}-\text{C}(6));$ 3.71 (dd, J = 3.7, 8.1, irrad. at 5.62 \rightarrow d, $J \approx 7.8$, H-C(2)); 3.73 (dd, J = 6.5, 9.3, irrad. at 4.28 \rightarrow d, $J \approx 9.7$, H'-C(6); 3.99 (dd, J = 5.0, 8.4, irrad. at 4.28 $\rightarrow d, J \approx 8.1, H-C(4)$); 4.23-4.33 (m, H-C(5)); 4.55 (d, J = 11.8, 1.25); 4.55 (d, J = 11.25); 4.55 (d, PhCH); 4.60 (d, J = 12.1, PhCH); 4.64 (d, J = 11.8, PhCH); 4.71 (d, J = 11.5, PhCH); 4.75 (d, J = 12.5, PhCH); 4.79 (d, = 11.5, PhCH); 4.80 (d, J = 11.8, PhCH); 4.82 (d, J = 11.5, PhCH); 4.86-4.90 (br. s, exchange with CD₃OD, OH); 5.58-5.65 (br. s, H-C(1)); 7.20-7.55 (m, 20 arom. H). ¹³C-NMR (CDCl₃): 28.36 (q, Me₃C); 57.45 (br. d, C(5)); 67.74 (t, C(6)); 72.61 (t, PhCH₂); 73.58 (t, PhCH₂); 74.21 (t, PhCH₂); 74.49 (t, PhCH₂); 81.28 (s, Me₃C); 75.86 (d); 79.00 (br. d); 82.92 (d); 84.83 (br. d); 127.50-129.50 (several d); 137.19 (s); 138.26 (s); 138.49 (s); 138.86 (s); 154.29 (s, C=O). ¹³C-NMR (CD₃COCD₃): 28.48 (q, Me₃C); 57.53 (br. d, C(5)); 70.72 (t, C(6)); 73.43 (br. t, PhCH₂); 73.53 (br. t, PhCH₂); 73.79 (t, PhCH₂); 74.75 (t, PhCH₂); 79.02 (d); 80.36 (br. d); 81.14 (s, Me₃C); 83.47 (d); 84.42 (d); 128.38-129.50 (several d); 139.39 (s); 139.91 (s); 139.98 (s); 140.25 (s); 155.30 (s, C=O). FAB-MS: 623 (2), 622 (5, $[M - OH]^+$), 524 (9), 523 (39), 522 (100, $[M - Boc - OH + 1]^+$), 432 (14), 415 (7), 414 (22), 253 (33).

Data of 33: R_t (Et₂O/hexane 2:1) 0.17. IR (CHCl₃): 3431*m*, 3067*w*, 3008*m*, 2981*m*, 2932*m*, 2871*m*, 1694*s*, 1497*w*, 1454*m*, 1393*s*, 1369*s*, 1332*s*, 1258*w*, 1163*m*, 1072*s*. ¹H-NMR (CDCl₃): 1.54 (*s*, Me₃C); 3.52 (*dd*, J = 9.0, 10.3, irrad. at 4.45 \rightarrow *d*, $J \approx 9.0$, H–C(6)); 3.60 (*dd*, J = 4.4, 8.7, irrad. at 4.45 \rightarrow *d*, $J \approx 9.0$, H–C(6)); 3.70 (*dd*, J = 3.1, 6.5, irrad. at 4.01 \rightarrow *d*, $J \approx 3.1$, irrad. at 5.56 \rightarrow *d*, $J \approx 6.5$, H–C(2)); 4.01 (*dd*, $J \approx 1.0$, 6.9, irrad. at 4.45 \rightarrow *d*, J = 6.9, irrad. at 3.70 \rightarrow change, H–C(3)); 4.20 (*d*, J = 11.2, irrad. at 5.56 \rightarrow *s*, exchange with CD₃OD, OH); 4.22 (*d*, J = 1.2, irrad. at 4.45 \rightarrow *s*, H–C(4)); 4.43 – 4.51 (*m*, H–C(5)); 4.48 (*s*, PhCH₂); 4.53 (*s*, PhCH₂); 4.57 (*d*, J = 11.8, PhCH); 4.65 (*d*, J = 11.8, PhCH); 4.71 (*d*, J = 11.8, PhCH); 4.83 (*d*, J = 11.8, PhCH); 5.56 (*dd*, J = 3.1, 11.2, irrad. at 4.20 \rightarrow *d*, J = 3.1, addn. of CD₃OD \rightarrow br. *d*, $J \approx 2.8$, H–C(1)); 7.29–7.40 (*m*, 20 arom. H). ¹³C-NMR (CDCl₃): 28.48 (*q*, Me₃C); 53.60 (*d*, C(5)); 69.02 (*t*, C(6)); 71.75 (*t*, PhCH₂); 71.96

 $(t, PhCH_2)$; 72.01 $(t, PhCH_2)$; 73.13 $(t, PhCH_2)$; 74.41 (d), 74.81 (d), 80.51 (d), 80.99 (d, C(1), C(2), C(3), C(4)); 81.33 (s, Me_3C) ; 127.94–128.72 (several d); 136.82 (s); 138.08 (s); 138.34 (s); 138.54 (s); 155.07 (s, C=O). FAB-MS: 622 $(10, [M - OH]^+)$, 524 (10), 523 (44), 522 $(100, [M - Boc - OH + 1]^+)$, 414 (23), 253 (13).

Ethyl 2,3,4,6-Tetra-O-benzyl-5-{{(tert-butoxy)carbonyl]amino}-5-deoxy-α-D-glucopyranoside (34). A soln. of 33 (76 mg, 0.12 mmol) in EtOH (2 ml) was treated with TsOH · H₂O (10 mg, 0.05 mmol), stirred for 20 min, and treated with sat. aq. NaHCO₃ soln. Normal workup gave 34 (72 mg, 91%). R_f (Et₂O/hexane 1:2) 0.45. IR (CHCl₂): 3090w, 3067m, 2980m, 2932m, 2904m, 2870m, 1690s, 1497w, 1454m, 1393w, 1368s, 1262w, 1163m, 1072s. ¹H-NMR $(CD_3COCD_3, (Z)/(E) 1:1): 1.11 (t, J = 7.0, Me); 1.46 (s, Me_3C); 3.42 - 3.52 (m, OCHMe); 3.56 (dd, J = 6.7, 8.9, COCHMe); 3.56 ($ irrad. at $3.75 \rightarrow d$, $J \approx 9.0$, irrad. at $4.00 \rightarrow$ br. d, $J \approx 4.0$, H-C(3); 3.63-3.72 (*m*, irrad. at $4.22 \rightarrow$ change, H−C(6), OCHMe); 3.75 (dd, J = 2.2, 6.5, irrad. at 5.53 → d, $J \approx 6.5$, H−C(2)); 3.72 - 3.83 (m, irrad. at 4.22 → change, H'-C(6)); 3.93-4.07 (m, irrad. at 4.22 → br. $d, J \approx 6.5$, H-C(4)); 4.07-4.20 (br. s, irrad. at $3.68 \rightarrow$ change, irrad. at $5.78 \rightarrow$ change, 0.5 H), 4.21-4.33 (br. s, irrad. at $3.68 \rightarrow$ change, irrad. at $5.78 \rightarrow$ change, 0.5 H, H-C(5); 4.53 (d, J = 11.8, PhCH); 4.58 (d, J = 11.8, PhCH); 4.63-4.82 (m, 6 PhCH); 5.40-5.50 (br. s, 10.5); 5.40-0.5 H), 5.57-5.66 (br. s, 0.5 H, H-C(1)); 7.28-7.41 (m, 20 arom. H). ¹³C-NMR (CD₃COCD₃, (Z)/(E) 1:1): 15.39 (q, Me); 28.51 (q, Me₃C); 56.85, 57.63 (br. d, C(5)); 63.73 (t, CH₂Me); 70.85, 71.53 (t, C(6)); 72.83, 72.93 (2t, PhCH₂); 73.69 (t, PhCH₂); 74.18 (br. t, PhCH₂); 74.42 (t, PhCH₂); 81.02 (s, Me₃C); 78.39, 83.92, 84.19 (3d, C(2), C(3), C(4)); 85.45, 86.18 (2d, C(1)); 128.38-129.50 (several d); 139.68 (s); 139.86 (s); 140.17 (s); 140.25 (s); 155.70, 156.50 (2s, C=O). FAB-MS: 668 (5, [M + 1]⁺), 667 (3), 622 (19), 567 (4), 566 (10), 524 (12), 523 (48), 522 (100), 476 (18), 460 (10), 414 (22), 400 (23).

(4S)-5[(tert-Butyl) imino]-2.3.4.5-tetrahydro-(5-amino-2.3.4.6-tetra-O-benzyl-1.5-dideoxy-D-glucopyranoso)-[N⁵,1-C]-1,3-oxazol-2-one (**35**). At -78° , a soln. of **34** (9 mg, 0.013 mmol) in CH₂Cl₂ (1 ml) was treated dropwise with Me₃SiCN (0.03 ml, 0.24 mmol) and BF₃ · OEt₂ (0.03 ml, 0.24 mmol), warmed to r.t. within 3 h, then poured into ice/sat. aq. NH₄Cl soln. Normal workup and FC (Et₂O/hexane 1:2) gave **35** (6.7 mg, 77%). R_f (Et₂O/hexane 1:2) 0.1. IR (CHCl₃): 3090w, 3067m, 2970m, 2930m, 2869m, 1800s, 1727s, 1675w, 1497w, 1454s, 1393w, 1366s, 1262s, 1094s. ¹H-NMR (CDCl₃, 200 MHz): 1.32 (s, Me₃C); 3.61-3.71 (m, 2 H-C(6')); 3.70 (t, $J \approx 3.3$, irrad. at $4.32 \rightarrow d$, $J \approx 4.2$, H-C(3')); 3.75 (t, J = 3.1, irrad. at $4.37 \rightarrow d$, $J \approx 2.9$, H-C(4')); 3.88 (t, J = 2.5, irrad. at $4.32 \rightarrow d$, $J \approx 2.1$, H-C(2')); 4.24 (d, J = 12.0, PhCH); 4.32 (d, J = 12.0, PhCH); 4.32 (d, J = 2.5, irrad. at $3.88 \rightarrow s$, H-C(4)); 4.33-4.44 (m, H-C(5')); 4.44 (d, J = 12.0, PhCH); 4.48 (d, J = 11.0, PhCH); 4.55 (d, J = 12.5, PhCH); 4.58 (s, PhCH₂); 4.60 (d, J = 12.0, PhCH); 4.706-7.23 (m, 2 arom. H); 7.26-7.32 (m, 18 arom. H). ¹³C-NMR (CDCl₃): 30.07 (q, Me₃C); 52.39 (d, C(4)); 55.25 (s, Me₃C); 56.41 (d, C(5')); 67.45 (t, C(6')); 72.26 (d); 72.31 (t, PhCH₂); 72.37 (t, PhCH₂); 73.10 (t, PhCH₂); 73.24 (t, PhCH₂); 74.04 (d); 74.88 (d); 127.74-129.00 (several d); 137.76 (s); 138.09 (s); 138.21 (s); 146.76 (s, C=N); 154.42 (s, C=O). FAB-MS: 1299 (5), 1298 (6), 816 (16), 815 (21), 651 (13), 650 (48), 649 (100, [M + 1]⁺), 648 (8), 624 (23), 623 (49), 622 (3), 593 (10), 549 (15), 523 (32), 522 (74, [M - CO₂CN(t-Bu) + 1]⁺), 520 (12).

3,4,5-Tri-O-benzyl-2,6-dideoxy-2,6-imino-D-glycero-D-ido-heptononitrile (36). At 5', a soln. of 34 (10 mg, 0.015 mmol) in CH2Cl2 (2 ml) was treated dropwise with Me3SiCN (0.1 ml, 0.8 mmol) and BF3 · OEt2 (0.01 ml, 0.08 mmol), stirred for 1 h at r.t., and poured into ice/sat. aq. NH4Cl soln. Normal workup and FC (Et2O/hexane $1:1 \rightarrow 2:1$) gave **36** (2 mg, 30%). $R_{\rm f}$ (Et₂O/hexane 2:1) 0.1. IR (CHCl₃): 3356w, 3067m, 3008m, 2928m, 2872m, 1497m, 1454s, 1363s, 1131m, 1070s, ¹H-NMR (CDCl₃): 1.44 (br. s, exchange with CD₃OD, OH); 1.97-2.10 (*m*, exchange with CD₃OD, NH); 3.05 (*dddd*, J = 2.8, 5.9, 6.5, 9.3, irrad. at 3.82 \rightarrow br. *dd*, $J \approx 5.6, 9.0$, addn. of $CD_3OD \rightarrow 3.01, ddd, J = 2.9, 6.4, 9.6, H-C(6)); 3.30 (dd, J = 9.0, 9.7, irrad. at 3.05 \rightarrow d, J \approx 8.1, H-C(5)); 3.55$ $(dd, J = 5.6, 10.9, \text{ irrad. at } 3.05 \rightarrow d, J \approx 10.1, \text{ addn. of } CD_3OD \rightarrow 3.46, dd, J = 6.4, 11.0, H-C(7)); 3.59$ $(dd, J = 5.5, 9.5, H-C(3)); 3.82 (dd, J = 2.8, 10.9, irrad. at 3.05 \rightarrow d, J \approx 10.9, addn. of CD₃OD <math>\rightarrow 3.83$, dd, J = 2.7, 10.8, H' - (7)); 3.85 (t, J = 9.2, H - C(4)); 4.10 (d, J = 5.6, H - C(2)); 4.61 (d, J = 11.9, PhCH); 4.68 ((d, J = 11.8, PhCH); 4.79 (d, J = 12.1, PhCH); 4.85 (d, J = 10.9, PhCH); 4.90 (d, J = 11.2, PhCH); 4.99 (d, J = 11.2, PhCH); 7.27-7.37 (m, 15 arom. H). ¹³C-NMR (CDCl₃): 49.85 (d, C(2)); 57.57 (d, C(6)); 62.86(t, C(7)); 73.55 (t, PhCH₂); 75.30 (t, PhCH₂); 76.19 (t, PhCH₂); 78.43, 78.58, 84.31 (3d, C(3), C(4), C(5)); 117.78 (s, CN); 127.80-129.10 (several d); 137.68 (s); 138.28 (s); 138.62 (s). FAB-MS: 460 (1), 459 (4, [M + 1]⁺), 432 (2), 342 (1), 324 (2), 306 (3), 261 (1), 253 (1), 234 (1), 218 (1), 200 (8), 199 (3), 188 (1), 187 (8), 186 (57), 185 (8), 108 (64), 107 (12), 92 (14), 91 (100).

3.4,5,7-Tetra-O-benzyl-1-[/(tert-butyl)amino]-1,2,6-trideoxy-2.6-imino-D-glycero-L-ido-heptitol (37). A soln. of 35 (10 mg, 0.012 mmol) in THF (2 ml) was treated with LiAlH₄ (10 mg, 0.26 mmol), stirred for 1 h at r.t., and poured into ice/sat. aq. NH₄Cl soln. Normal workup and FC (AcOEt/MeOH 1:0 \rightarrow 9:1) gave a residue which was dissolved in C₆D₆ (0.6 ml), treated with TsOH \cdot H₂O (5 mg, 0.026 mmol), heated at reflux for 2 min, and poured into sat. aq. NaHCO₃ soln. Normal workup gave 37 (5 mg, 53%). R_t (AcOEt) 0.1. IR (CHCl₃): 3356w, 3067m, 3008m, 2928m, 2872m, 1497m, 1454s, 1363s, 1131m, 1070s. ¹H-NMR (C₆D₆): 1.02 (s, Me₃C); 1.20–1.30 (*m*, exchange with CD₃OD, 2 NH); 2.78 (*t*, *J* = 11.2, irrad at 3.76 \rightarrow *d*, *J* \approx 10.3, H–C(1)); 2.87–2.95 (*m*, H–C(6)); 3.01 (*dd*, *J* = 3.4, 11.2, irrad at 2.78 \rightarrow *d*, *J* \approx 3.4, irrad at 3.76 \rightarrow *d*, *J* \approx 11.2, H'–C(1)); 3.71–3.81 (*m*, H–C(2)); 3.50 (*t*, *J* = 9.3, irrad at 2.91 \rightarrow *d*, *J* \approx 8.7, H–C(5)); 3.58 (*dd*, *J* = 2.5, 9.0, irrad at 2.91 \rightarrow *d*, *J* \approx 8.4, H–C(7)); 3.62 (*dd*, *J* = 5.9, 9.3, irrad at 3.76 \rightarrow *d*, *J* \approx 9.0, irrad at 3.82 \rightarrow *d*, *J* \approx 5.0, H–C(3)); 3.64 (*dd*, *J* = 4.7, 9.3, irrad at 2.91 \rightarrow *d*, *J* \approx 7.8, H'–C(7)); 3.82 (*t*, *J* = 9.2, H–C(4)); 4.20 (*d*, *J* = 11.8, PhCH); 4.54 (*d*, *J* = 11.2, PhCH); 4.57 (*d*, *J* = 11.2, PhCH); 4.68 (*d*, *J* = 11.2, PhCH); 4.97 (*d*, *J* = 11.2, PhCH); 5.07 (*d*, *J* = 11.2, PhCH); 7.00–7.50 (*m*, 20 arom. H).

REFERENCES

- [1] Jpn. Kokai Tokkyo Koho, 80,105,666, to Nippon Shinyaku Co. (CA: 1981, 94, 103174e).
- [2] R. Hoos, A. B. Naughton, A. Vasella, Helv. Chim. Acta 1993, 76, 1802.
- [3] H. S. Overkleeft, J. van Wiltenburg, U. K. Pandit, Tetrahedron Lett. 1993, 34, 2527.
- [4] H. S. Overkleeft, J. van Wiltenburg, U. K. Pandit, Tetrahedron 1994, 50, 4215.
- [5] R. Hoos, A. B. Naughton, W. Thiel, A. Vasella, W. Weber, K. Rupitz, S. G. Withers, Helv. Chim. Acta 1993, 76, 2666.
- [6] T. Granier, N. Panday, A. Vasella, Helv. Chim. Acta 1997, 80, 979.
- [7] H. Paulsen, I. Sangster, K. Heyns, Chem. Ber. 1967, 100, 802.
- [8] S. Inouye, T. Tsuruoka, T. Ito, T. Niida, Tetrahedron 1968, 23, 2125.
- [9] R. Hoos, Diss. ETH No. 12120, ETH-Zürich, 1997.
- [10] T. Granier, F. Gaiser, L. Hintermann, A. Vasella, Helv. Chim. Acta 1997, 80, 1443.
- [11] K. Tatsuta, S. Miura, S. Ohta, H. Gunji, Tetrahedron Lett. 1995, 36, 1085.
- [12] P. Ermert, A. Vasella, Helv. Chim. Acta 1991, 74, 2043.
- [13] S. Vonhoff, A. Vasella, Synth. Commun. 1998, in press.
- [14] R. Harrison, H. G. Fletcher, J. Org. Chem. 1965, 30, 2317.
- [15] D. B. Dess, J. C. Martin, J. Org. Chem. 1983, 48, 4155.
- [16] D. B. Dess, J. C. Martin, J. Am. Chem. Soc. 1991, 113, 7277.
- [17] N. Pravdic, H. G. Fletcher, Carbohydr. Res. 1971, 19, 353.
- [18] A. J. Mancuso, S.-L. Huang, D. Swern, J. Org. Chem. 1978, 43, 2480.
- [19] J. R. Parikh, W. v. E. Doering, J. Am. Chem. Soc. 1967, 89, 2480.
- [20] A. Bowers, T. G. Halsall, E. R. H. Jones, A. J. Lemin, J. Chem. Soc. 1953, 2548.
- [21] E. J. Corey, J. W. Suggs, Tetrahedron Lett. 1975, 31, 2647.
- [22] H. Paulsen, K. Todt, Adv. Carbohydr. Chem. 1968, 23, 115.
- [23] T. D. Heightman, P. Ermert, D. Klein, A. Vasella, Helv. Chim. Acta 1995, 78, 514.
- [24] F. Johnson, Chem. Rev. 1968, 68, 375.
- [25] J. B. Lambert, in 'Conformational Analysis of Cyclohexenes, Cyclohexadienes, and Related Hydroaromatic Compounds', Ed. P. W. Rabideau, VCH, New York, 1989, p. 47.
- [26] M. D. Lewis, J. K. Cha, Y. Kishi, J. Am. Chem. Soc. 1982, 104, 4976.
- [27] S. Czernecki, M.-C. Perlat, J. Org. Chem. 1991, 56, 6289.
- [28] G. Legler, E. Lüllau, E. Kappes, F. Kastenholz, Biochim. Biophys. Acta 1991, 1080, 89.
- [29] M. Horsch, L. Hoesch, G. W. J. Fleet, D. M. Rast, J. Enzyme Inhibition 1993, 7, 47.
- [30] S. Sheibye, B. S. Pedersen, S.-O. Lawesson, Bull. Soc. Chim. Belg. 1978, 87, 229.
- [31] G. R. Pettit, T. R. Kasturi, J. Org. Chem. 1961, 26, 986.
- [32] G. R. Pettit, U. R. Ghatak, B. Green, T. R. Kasturi, D. M. Piatak, J. Org. Chem. 1961, 26, 1685.
- [33] U. Groth, L. Richter, U. Schöllkopf, Liebigs Ann. Chem. 1992, 903.
- [34] U. Groth, L. Richter, U. Schöllkopf, Tetrahedron 1992, 48, 117.
- [35] T. D. Cushing, J. F. Sanz-Cervera, R. M. Williams, J. Am. Chem. Soc. 1993, 115, 9323.
- [36] H. Ogura, K. Furuhata, H. Takayanagi, N. Tsuzuno, Y. Iitaka, Bull. Chem. Soc. Jpn. 1984, 57, 2687.
- [37] P. Fowler, B. Bernet, A. Vasella, Helv. Chim. Acta 1996, 79, 269.
- [38] A. K. Saksena, R. G. Lovey, V. M. Girijavallabhan, A. K. Ganguly, A. T. McPhail, J. Org. Chem. 1986, 51, 5024.
- [39] D. L. Flynn, R. E. Zelle, P. A. Grieco, J. Org. Chem. 1983, 48, 2424.
- [40] L. Grehn, K. Gunnarsson, U. Ragnarsson, J. Chem. Soc., Chem. Commun. 1985, 1317.
- [41] L. Grehn, K. Gunnarsson, U. Ragnarsson, Acta Chem. Scand., Ser. B 1986, 40, 745.
- [42] J. C. Hubert, J. B. P. A. Wijnberg, W. N. Speckamp, Tetrahedron 1975, 31, 1437.

- [43] K. Suzuki, H. Hashimoto, Tetrahedron Lett. 1994, 34, 4119.
- [44] T. Fuchs, H. Streicher, R. R. Schmidt, Liebigs Ann. Chem. 1997, 1315.
- [45] K. Toshima, K. Tatsuta, Chem. Rev. 1993, 93, 1503.
- [46] A. B. Naughton, A. Vasella, unpublished results.
- [47] S. Brocherieux-Lanoy, H. Dhimane, J.-C. Poupon, C. Vanucci, G. Lhommet, J. Chem. Soc., Perkin Trans. 1 1997, 2163.
- [48] M. Rubiralta, E. Giralt, A. Diez, 'Piperidine. Structure, Preparation, Reactivity, and Synthetic Applications of Piperidine and its Derivatives', Elsevier, Amsterdam-Oxford-New York-Tokyo, 1991.
- [49] B. Coxon, H. G. Fletcher, J. Am. Chem. Soc. 1963, 85, 2637.
- [50] B. Coxon, H. G. Fletcher, J. Am. Chem. Soc. 1964, 86, 922.
- [51] R. Meuwly, A. Vasella, Helv. Chim. Acta 1985, 68, 997.
- [52] E. M. Acton, A. N. Fujiwara, L. Goodman, D. W. Henry, Carbohydr. Res. 1974, 33, 135.
- [53] G. M. Sheldrick, Acta Crystallogr. 1990, 46, 467.
- [54] G. M. Sheldrick, 'SHELXL93, Program for the Refinement of Crystal Structures', University of Göttingen, Germany, 1993.

Received February 18, 1998