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PREPARATION OF α-KETOPHOSPHONATES
BY OXIDATION OF α-HYDROXYPHOSPHONATES
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Various types of diethyl α-hydroxyphosphonates were converted effi-
ciently to their corresponding diethyl α-ketophosphonates by pyridi-
inum chlorochromate (PCC) without cleavage of C(O) P bond in the
absence of solvent or in solution in high yields.

Keywords: α-Hydroxyphosphonates; α-ketophosphonates; chlorochro-
mates; oxidation

INTRODUCTION

Organophosphorus compounds have found wide applications in chem-
istry, medicinal chemistry, and biology. Phosphonates, as a class of
organophosphorus compounds, are interesting complements to phos-
phates in terms of biological activity and have been well documented
in the literature.1 α-Ketophosphonates are an important subdivision
of this class of compounds. The adjacent phosphorus substituents and
carbonyl functional groups in α-ketophosphonates are the main reason
that makes them interesting compounds in organic synthesis.2 For in-
stance, it is possible to prepare α,α-difluorophosphonates3 and oximes4

from their carbonyl functional groups, to reduce enantioselectively
α-ketophosphonates to their corresponding α-hydroxyphosphonates,5

and use them in hetero Diels Alder6 and Wittig reactions.7 For several
years it has been known that the carbonyl of a α-ketophosphonate is ac-
tivated towards attack by nucleophiles and that the carbon-phosphorus
bond is readily cleaved.8 This property makes α-ketophosphonates
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potentially useful acylating agents but also susceptible to hydrolysis
and difficult to handle.8

The Michael-Arbuzov reaction is a general method for the prepara-
tion of these compounds from acyl chlorides and trialkylphosphites.9

This method works well for the less-complex acyl chlorides but shows
less success in the preparation of α-keto-β,γ -unsaturated phospho-
nates, where multiple addition products are often observed.9 An
alternative method for the preparation of α-ketophosphonates is the
oxidation of easily prepared and stable α-hydroxyphosphonates.10 A
literature survey indicates that in contrast to the existing methods
for the conversion of alcohols to carbonyl compounds, few methods are
known for the preparation of diethyl α-ketophosphonates from their cor-
responding diethyl α-hydroxysphonates. Oxidation by known reagents
requires long reaction times, high molar ratios of the oxidant/substrate,
or special treatment for the activation of the reagent.3,11

In recent years, we have started studies on the development of new
methods for the preparation of diethyl α-functionalized phosphonates
from diethyl α-hydroxyphosphonates. Along this line, we have reported
mild oxidation, silylation, halogenation, and azidation procedures for
the preparation of diethyl α-keto and α-trimethylsilyloxy, α-halo and
α-azidophosphonates in high yields.12

RESULTS AND DISCUSSION

Our recent report on the oxidative transformation of organic func-
tional groups by pyridiinum chlorochromate (PCC)13 in the absence
of solvent14 prompted us to apply this reagent to the important oxida-
tion of diethyl α-hydroxyphosphonates under solvent-free conditions.
Under such reaction conditions, various types of diethyl α-hydroxy-
phenyl, 2-naphthyl, 3-pyridyl, and β,γ -unsaturated phosphonates (1a–
h and 1l–o) were oxidized easily at room temperature in 65–88% yields
(Table I). Higher temperature (40◦C) was needed for the oxidation
of o-, m-, and p-substituted nitro derivatives of diethyl α-hydroxy-
(phenylmethyl)phosphonates (1i–k) to produce the desired products in
60–75% yields (Scheme 1 and Table I).

We have also tried similar oxidations in the presence of (nico-
tinium dichromate) NDC,15 (nicotinium chlorochromate) NCC,16 (ison-
icotinium dichromate) INDC,17 and (pyridinium dichromate) PDC18 as
the analogs of (pyridinium chlorochromate) PCC under solvent-free con-
ditions. Surprisingly, we observed that none of the oxidants were effec-
tive for this purpose and the starting materials were isolated intact
after long reaction times.

D
ow

nl
oa

de
d 

by
 [

M
os

ko
w

 S
ta

te
 U

ni
v 

B
ib

lio
te

] 
at

 0
2:

13
 1

6 
Se

pt
em

be
r 

20
13

 



July 14, 2004 9:20 GPSS TJ1169-06

Ketophosphonates 1485

SCHEME 1

We have also studied oxidation of diethyl α-hydroxyphosphonates
in the presence of PCC in solvent. In order to optimize the reaction
conditions, we studied the oxidation of 1a to 2a in dry CH3CN,
CH2Cl2, CHCl3, and CCl4. We have found that 1a was oxidized
well by PCC to 2a in dry CH2Cl2 at room temperature. Therefore,
we applied similar conditions for the oxidation of other diethyl α-
hydroxyphosphonates (1b–o) by PCC (Table I). As shown in Table I,
various types of diethyl α-hydroxy-(phenylmethyl)phosphonates
(1a–k) were cleanly converted into their corresponding diethyl
α-keto-(phenylmethyl) phosphonates (2a–k) in excellent yields
(65–87% by PCC). Diethyl α-hydroxy-2-naphthyl, 3-pyridyl, and
β,γ -unsaturated phosphonates (1l–o) were also oxidized efficiently

TABLE I Oxidation of α-Hydroxyphosphonates to α-Ketophosphonates by
PCC

Product 2 R Time (h) Yielda,b (%) Time (h) Yielda,c (%)

a C6H5 5.4 88 2 87
b 4-CH3C6H4 6 85 2.4 85
c 4-CH3OC6H4 8.4 71 2 65
d 2,4,6-(CH3)3C6H2 5.5 73 3.5 70
e 2-ClC6H4 8 68 2.5 71
f 3-ClC6H4 8.5 72 3.5 65
g 4-ClC6H4 7.5 76 3 67
h 2,6-Cl2C6H3 4 86 3.5 78
i 2-O2NC6H4 10 70 3 81d

j 3-O2NC6H4 9.5 60 3.5 79d

k 4-O2NC6H4 12 75 3.75 80d

l 2-naphthyl 11 67 8.5 68
m 3-pyridyl 4.5 65 1.75 71
n PhCH CH 6 76 6.5 80
o CH3CH CH 12 79 9.5 60

aPCC/substrate = 1/1, isolated yields, room temperature. All compounds were
characterized by comparison of their spectral data with authentic samples.

bCH2Cl2, csolvent-free, and d40◦C.
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to their corresponding diethyl α-ketophosphonates (2l–o) in 60–80%
yields.

CONCLUSION

In general, conversion of α-hydroxyphosphonates to their α-
ketophosphonates using PCC as an oxidant proceeded well in solution
or under solvent-free conditions. Our results show that reactions in so-
lution proceeded with higher yields and required longer reaction times
in comparison with those under solvent–free conditions. Workup of the
reaction mixtures is easy, and by a simple vacuum distillation pure
products are isolated in good-to-excellent yields. Lack of cleavage of
C(O) P bond in both solvent–free conditions and in solution is a strong
practical advantage of the method.

EXPERIMENTAL

General

Chemicals were either prepared in our laboratories or were purchased
from Fluka and Merck Companies. Products were identified by com-
parison of their IR, NMR, and mass spectra with those reported for the
authentic samples. Progress of the reactions was followed by TLC using
silica-gel polygrams SIL G/UV 254 plates or by GC using a Shimadzu
gas chromatograph GC-14A, equipped with a flame ionization detector
and a glass column packed with DC-200 stationary phase and nitro-
gen as the carrier gas. IR spectra were record on a Perkin-Elmer 781
spectrophotometer. NMR spectra were run on a Bruker Avance DPX
250 MHz instrument. Mass spectra were recorded by GCMS-QP 1000
EX at 20 eV (Shimadzu).23

General Procedure for the Preparation of Diethyl
α-Ketophosphonates by the Oxidation of Diethyl
α-Hydroxyphosphonates with PCC under
Solvent-Free Conditions

Pyridinium chlorochromate (1.077 g, 5 mmol) and substrate (5 mmol)
were ground in a mortar and left at room temperature or in an oven
(40◦C) without further grinding for the appropriate reaction times
(Table I). The reaction mixture was washed with CCl4 (4 × 25 ml) and
dried over Na2SO4. After evaporation of the solvent, the pure product
was obtained by bulb-to-bulb vacuum distillation in 60–88% yields.
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General Procedure for the Preparation of Diethyl
α-Ketophosphonates by Oxidation of Diethyl
α-Hydroxyphosphonates with PCC

To a solution of the α-hydroxyphosphonate (5 mmol) in dry CH2Cl2
(50 ml), the PCC (5 mmol) was added. The resulting mixture was
stirred at room temperature for the appropriate time (Table I). After
completion of the reaction (monitoring by TLC or GC), the mixture
was filtered and the solid material was washed with the same reaction
solvent (2 × 25 ml). Evaporation of the solvent under reduced pres-
sure and then bulb-to-bulb vacuum distillation afforded the desired
α-ketophosphonates in 80–92% yields (Table I).

Spectral Data of α-Ketophosphonates
Diethyl benzoyl phosphonate (2a). Yield = 97–99%; b.p. = 125–

126◦C, 0.05 mmHg (reported b.p. = 106–109◦C, 0.01 mmHg);2a 1H NMR
(CDCl3, TMS): δ 1.37–1.68 (t, 6H, 2 JHH = 7.1 Hz, 2-OCH2CH3), 4.08–
4.28 (dq, 4H, 2 JPH = 7.1 Hz, 2 JHH = 7.1 Hz, 2-OCH2CH3), 7.28–7.6 (m,
3H), 8.03–8.25 (m, 2H) ppm; 13C NMR (CDCl3, TMS): 16.64 (d, 3 JCP =
5.7 Hz, 2-OCH2CH3), 64.31 (d, 2 JCP = 7.5 Hz, 2-OCH2CH3), 129.15,
130.06, 135.03, 136.29 ( C6H5), 199.12 (d, 1 JCP = 177.5 Hz, C O) ppm;
IR (neat): ν 1650 (C O), 1267 (P O) cm−1; MS: M+ (242), M P(O)(OEt)2
(105); C11H15O4P requires: C, 54.5; H, 6.2. Found: C, 54.2; H, 6.0.

Diethyl 4-methyl-benzoyl phosphonate (2b). Yield = 90–96%; b.p. =
130–131◦C, 0.05 mmHg (reported b.p. = 116–117◦C, 0.03 mmHg);2a

1H NMR (CDCl3, TMS): δ 1.29–1.42 (t, 6H, 2 JHH = 7.1 Hz, 2-OCH2CH3),
2.35 (s, 3H, CH3), 4.11–4.16 (dq, 4H, 2 JPH = 7.1 Hz, 2 JHH = 7.1 Hz,
2-OCH2CH3), 7.12–7.21 (m, 2H), 8.04–8.07 (m, 2H) ppm; 13C NMR
(CDCl3, TMS): 16.67 (d, 3 JCP = 5.7 Hz, 2-OCH2CH3), 22.18 ( CH3),
64.24 (d, 2 JCP = 7.5 Hz, 2-OCH2CH3), 127.35, 129.89, 130.31, 146.41
( C6H4), 198.46 (d, 1 JCP = 176.6 Hz, C O) ppm; IR (neat): ν 1650 (C O),
1261 (P O) cm−1; MS: M+ (256), M P(O)(OEt)2 (119); C12H17O4P re-
quires: C, 56.2; H, 6.6. Found: C, 56.0; H, 6.1.

Diethyl 4-methoxy-benzoyl phosphonate (2c). Yield = 90–94%; b.p.
= 166–167◦C, 0.05 mmHg (reported b.p. = 175–179◦C, 1.5 mmHg);2a

1H NMR (CDCl3, TMS): δ 1.11–1.29 (t, 6H, 2 JHH = 7.1 Hz, 2-OCH2CH3),
3.80 (s, 3H, CH3), 3.90–4.10 (dq, 4H, 2 JPH = 7.1 Hz, 2 JHH = 7.1 Hz,
2-OCH2CH3), 6.84–6.90 (m, 2H), 7.42–7.50 (m, 2H) ppm; 13C NMR
(CDCl3, TMS): 16.75 (d, 3 JCP = 5.7 Hz, 2-OCH2CH3), 55.59 ( CH3),
63.46 (d, 2 JCP = 7.5 Hz, 2-0CH2CH3), 114.03, 128.82, 129.21, 159.78
( C6H4), 198.01 (d, 1 JCP = 176.2 Hz, C O) ppm; IR (neat): ν 1655 (C O),
1265 (P O) cm−1; MS: M+ (272), M P(O)(OEt)2 (135); C12H17O5P re-
quires: C, 52.9; H, 6.2. Found: C, 52.2; H, 5.9.
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Diethyl 2,4,6-trimethyl-benzoyl phosphonate (2d). Yield = 88–95%;
b.p. = 108–109◦C, 0.07 mmHg (reported b.p. = 131–132◦C, 0.3 mmHg);2a

1H NMR (CDCl3, TMS): δ 1.25–1.32 (t, 6H, 2 JHH = 7.1 Hz, 2-OCH2CH3),
2.23 (s, 6H, 2,6-diCH3), 2.27 (s, 3H, 4-CH3), 4.06–4.17 (dq, 4H, 2 JPH =
7.1 Hz, 2 JHH = 7.1 Hz, 2-OCH2CH3), 6.83 (s, 2H) ppm; 13C NMR (CDCl3,
TMS): 16.81 (d, 3 JCP = 5.7 Hz, 2-OCH2CH3), 21.17 (2,6-diCH3), 21.38
(4-CH3), 63.12 (d, 2 JCP = 7.5 Hz, 2-OCH2CH3), 129.74, 130.3, 137.69,
137.75 ( C6H2), 199.01 (d, 1 JCP = 177.0 Hz, C O) ppm; IR (neat): ν

1665 (C O), 1250 (P O) cm−1; MS: M+ (284), M P(O)(OEt)2 (142);
C14H21O4P requires: C, 59.1; H, 7.4. Found: C, 59.3; H, 7.6.

Diethyl 2-chloro-benzoyl phosphonate (2e). Yield = 87–97%; b.p. =
105–106◦C, 0.05 mmHg (reported b.p. = 158–160◦C, 2.3 mmHg);19 1H
NMR (CDCl3, TMS): δ 1.58 (t, 6H, 2 JHH = 7.1 Hz, 2-OCH2CH3), 4.17–
4.30 (m, 4H, 2-OCH2CH3), 7.24–7.44 (m, 3H), 8.14–8.20 (m, 1H) ppm;
13C NMR (CDCl3, TMS): 16.65 (d, 3 JCP = 5.7 Hz, 2-OCH2CH3), 64.82
(d, 2 JCP = 7.4 Hz, 2-0CH2CH3), 126.84, 127.10, 130.64–132.07, 132.68–
133.85, 134.16–135.98 ( C6H4), 200.53 (d, 1 JCP = 182.0 Hz, C O) ppm;
IR (neat): ν 1650 (C O), 1245 (P O) cm−1; MS: M+ (276), M+2 (279),
M P(O)(OEt)2 (139); C11H14ClO4P requires: C, 47.8; H, 5.1. Found: C,
47.5 H, 4.9.

Diethyl 3-chloro-benzoyl phosphonate (2f). Yield = 89–98%; b.p. =
101–102◦C, 0.06 mmHg (reported b.p. = 127◦C, 0.4 mmHg);20 1H NMR
(CDCl3, TMS): δ 1.28–1.34 (m, 6H, 2-OCH2CH3), 4.16–4.27 (m, 4H, 2-
OCH2CH3), 7.22–7.53 (m, 3H), 7.96 (s, 1H) ppm; 13C NMR (CDCl3,
TMS): 18.44 (d, 3 JCP = 5.7 Hz, 2-OCH2CH3), 66.45 (d, 2 JCP = 7.4
Hz, 2-0CH2CH3), 130.15–139.50 ( C6H4), 201.46 (d, 1 JCP = 182.0 Hz,
C O) ppm; IR (neat): ν 1650 (C O), 1267 (P O) cm−1; MS: M+ (276),
M+2 (279), M P(O)(OEt)2 (139); C11H14ClO4P requires: C, 47.8; H,
5.1. Found: C, 47.4; H, 4.7.

Diethyl 4-chloro-benzoyl phosphonate (2g). Yield = 93–95%; b.p. =
142–143◦C, 0.06 mmHg (reported b.p. = 112–113◦C, 0.01 mmHg);2a

1H NMR (CDCl3, TMS): δ 1.13–1.42 (t, 6H, 2 JHH = 7.1 Hz, 2-OCH2CH3),
4.15–4.33 (dq, 4H, 2 JPH = 7.1 Hz, 2 JHH = 7.1 Hz, 2-OCH2CH3), 7.47–
7.50 (m, 2H), 8.21–8.24 (m, 2H) ppm; 13C NMR (CDCl3, TMS): 16.75
(d, 3 JCP = 5.7 Hz, 2-OCH2CH3), 64.49 (d, 2 JCP = 7.5 Hz, 2-OCH2CH3),
129.62, 131.58, 133.72, 141.85 ( C6H4), 198.09 (d, 1 JCP = 180.0 Hz,
C O) ppm; IR (neat): ν 1650 (C O), 1260 (P O) cm−1; MS: M+ (277),
M+2 (279), M P(O)(OEt)2 (139); C11H14ClO4P requires: C, 47.8; H,
5.1. Found: C, 47.9; H, 5.3.

Diethyl 2,6-dichloro-benzoyl phosphonate (2h). Yield = 92–99%;
b.p. = 150–151◦C, 0.05 mmHg; 1H NMR (CDCl3, TMS): δ 1.04–1.24 (t,
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6H, 2 JHH = 7.1 Hz, 2-OCH2CH3), 3.95–4.23 (dq, 4H, 2 JPH = 7.1 Hz,
2 JHH = 7.1 Hz, 2-OCH2CH3), 6.90–7.09 (m, 3H) ppm; 13C NMR (CDCl3,
TMS): 16.61 (d, 3 JCP = 5.7 Hz, 2-OCH2CH3), 64.85 (d, 2 JCP = 7.5 Hz,
2-OCH2CH3), 128.06, 128.56, 131.51, 132.07 ( C6H3), 204.36 (d, 1 JCP =
195.5 Hz, C O) ppm; IR (neat): ν 1691 (C O), 1264 (P O) cm−1; MS:
M+ (311), M+2 (313), M+4 (315), M P(O)(OEt)2 (174); C11H13Cl2O4P
requires: C, 42.4; H, 4.2. Found: C, 42.0; H, 4.0.

Diethyl 2-nitro-benzoyl phosphonate (2i). Yield = 89–91%; b.p. =
146–147◦C, 0.05 mmHg; 1H NMR (CDCl3, TMS): δ 1.34 (t, 6H, 2 JHH =
7.0 Hz, 2-OCH2CH3), 4.20–4.32 (dq, 4H, 2 JPH = 7.2 Hz, 2 JHH = 7.3 Hz,
2-OCH2CH3), 7.4 (d, 1H, 2 JHH = 7.4 Hz), 7.70–7.85 (m, 2H), 8.44 (d,
1H, 2 JHH = 7.7 Hz,) ppm; 13C NMR (CDCl3, TMS): 16.64 (d, 3 JCP =
5.7 Hz, 2-OCH2CH3), 64.92 (d, 2 JCP = 7.2 Hz, 2-OCH2CH3), 123.92,
124.48, 128.56–130.44, 131.93–132.88, 136.24, 147.08 ( C6H4), 203.86
(d, 1 JCP = 180.0 Hz, C O) ppm; IR (neat): ν 1655 (C O), 1260 (P O)
cm−1; MS: M+ (287), M P(O)(OEt)2 (150); C11H14NO6P requires: C,
46.0; H, 4.9. Found: C, 46.3; H, 5.3.

Diethyl 3-nitro-benzoyl phosphonate (2j). Yield = 88–91%; b.p. =
149–150◦C, 0.05 mmHg; 1H NMR (CDCl3, TMS): δ 1.15–1.43 (m, 6H,
2-OCH2CH3), 4.10–4.20 (q, 2H, 2 JHH = 7.1 Hz, 2-OCH2CH3), 4.30–
4.39(q, 2H, 2 JHH = 7.1 Hz, 2-OCH2CH3), 8.44–8.48 (m, 2H), 8.59–8.62
(m, 1H), 8.84 (s, 1H) ppm; 13C NMR (CDCl3, TMS): 16.63 (d, 3 JCP =
5.5 Hz, 2-OCH2CH3), 65.12 (d, 2 JCP = 7.5 Hz, 2-OCH2CH3), 129.04,
129.94, 130.64, 132.74, 135.71–137.33, 167.0 ( C6H4), 197.75 (d, 1 JCP
= 183.4 Hz, C O) ppm; IR (neat): ν 1650 (C O), 1260 (P O) cm−1; MS:
M+ (287), M P(O)(OEt)2 (150); C11H14NO6P requires: C, 46.0; H, 4.9.
Found: C, 45.8 H, 4.6.

Diethyl 4-nitro-benzoyl phosphonate (2k). Yield = 87–90%; m.p. =
1140.141◦C (reported m.p. = 142–143◦C);21 1H NMR (CDCl3, TMS): δ

1.23–1.321 (m, 6H, 2-OCH2CH3), 4.00–4.18 (m, 2H, 2-OCH2CH3), 7.66
(d, 2H, 2 JHH = 7.5 Hz), 8.7 (d, 2H, 2 JHH = 8.7 Hz) ppm; IR (KBr):
ν 1650 (C O), 1260 (P O) cm−1; MS: M+ (287), M P(O)(OEt)2 (150);
C11H14NO6P requires: C, 46.0; H, 4.9. Found: C, 46.4; H, 5.2.

Diethyl 2-naphthoyl phosphonate (2l). Yield = 87–91%; b.p. =
152–153◦C, 0.07 mmHg (reported b.p. = 188–191◦C, 1.2 mmHg);19

1H NMR (CDCl3, TMS): δ 11.33–1.44 (m, 6H, 2-OCH2CH3), 4.28–
4.39 (m, 4H, 2-OCH2CH3), 7.57–7.64 (m, 2H), 7.85–7.93 (m, 2H),
8.04–8.14 (m, 2H), 9.08 (s, 1H) ppm; 13C NMR (CDCl3, TMS): 16.79 (d,
3 JCP = 5.7 Hz, 2-OCH2CH3), 64.52 (d, 2 JCP = 7.3 Hz, 2-OCH2CH3),
123.75–136.67, 169.90 (C10H7), 199.07 (d, 1 JCP = 174.9 Hz, C O)
ppm; IR (neat): ν 1655 (C O), 1260 (P O) cm−1; MS: M+ (292),
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M P(O)(OEt)2 (155); C15H17O4P requires: C, 61.6; H, 5.8. Found: C,
61.2; H, 5.3.

Diethyl 3-pridoyl phosphonate (2m). Yield = 96–97%; b.p. = 125–
126◦C, 2 mmHg (reported b.p. = 128◦C, 2 mmHg);22 1H NMR
(CDCl3, TMS): δ 1.23–1.36 (m, 6H, 2-OCH2CH3), 4.14–4.30 (m, 4H,
2-OCH2CH3), 7.38–7.43 (m, 1H), 7.90 (d, 2H, 2 JHH = 7.9 Hz), 8.78 (d,
2H, 2 JHH = 3.8 Hz), 9.34 (s, 1H) ppm; 13C NMR (CDCl3, TMS): 16.72
(d, 3 JCP = 5.5 Hz, 2-OCH2CH3), 64.72 (d, 2 JCP = 7.5 Hz, 2-OCH2CH3),
124.11, 131.96, 151.27, 154.90 (C5H4N), 199.18 (d, 1 JCP = 183.5 Hz,
C O) ppm; IR (neat): ν 1654 (C O), 1245 (P O) cm−1; MS: M+ (243),
M P(O)(OEt)2 (106); C10H14NO4P requires: C, 49.4; H, 5.8. Found: C,
49.0; H, 5.4.

Diethyl 1-oxo-3-phenyl-2-propenylphosphonate (2n). Yield 90–95%;
b.p. 108–109◦C, 0.05 mmHg; 1H NMR (CDCl3, TMS): δ 1.30 (t, 6H,
2 JHH = 7.1 Hz, 2-OCH2CH3), 4.14 (dq, 4H, 2 JPH = 7.1 Hz, 2 JHH =
7.1 Hz, 2-OCH2CH3), 7.38–7.43 (m, 1H), 8.45–8.48 (m, 1H), 8.77–8.78
(m, 1H), 9.34 (s, 1H) ppm; 13C NMR (CDCl3, TMS): 16.72 (d, 3 JCP = 5.7
Hz, 2-OCH2CH3), 64.72 (d, 2 JCP = 7.5 Hz, 2-OCH2CH3), 124.11, 137.34,
151.27, 154.90 ( C5H5N), 199.18 (d, 1 JCP = 195.5 Hz, C O) ppm; IR
(neat): ν 1655 (C O), 1260 (P O) cm−1; MS: M+ (268), M P(O)(OEt)2
(131); C13H17O4P requires: C, 58.2; H, 6.3. Found: C, 58.0; H, 6.1.

Diethyl 1-oxo-2-butenylphosphonate (2o). Yield = 85–88%; b.p. =
105–105◦C, 10 mmHg; (reported b.p. = 109◦C, 10 mmHg);2d 1H NMR
(CDCl3, TMS): δ 1.18–1.33 (m, 6H, 2-OCH2CH3), 1.90–1.96 (m, 3H,
CH3), 4.02–4.20 (m, 4H, 2-OCH2CH3), 6.27–6.42 (m, 1H), 7.38–7.53
(m, 1H) ppm; 13C NMR (CDCl3, TMS): 16.71 (d, 3 JCP = 5.5 Hz,
2-OCH2CH3), 18.18 (CH3), 63.14 (d, 2 JCP = 7.3 Hz, 2-OCH2CH3),
126.10, 129.78 (CH CH), 198.08 (d, 1 JCP 189.5 Hz, C O) ppm; IR
(neat): ν 1665 (C O), 1265 (P O) cm−1; MS: M+ (206), M P(O)(OEt)2
(69); C8H15O4P requires: C, 46.46; H, 7.3. Found: C, 46.41; H, 7.1.
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