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Abstract: The C13-C23 part (5) of tedanolide (1) was synthesized
starting from enantiomeric methyl (R)- and (S)-3-hydroxy-2-meth-
ylpropionates (8) via coupling between the C13-C17 aldehyde (6)
and the C18-C21 iodoakene (7).
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Tedanolide (1) is a potent cytotoxic macrolide isolated
from a Caribbean sponge, Tedaniaignis, by Schmitz et al.
in 1984, and its structure was elucidated by X-ray analy-
sis.!2|tsrelated compound 13-deoxytedanolide (2), isolat-
ed later from a Japanese marine sponge, Mycale
adhaerens, showed more potent cytotoxicity against P388
murine leukemia cells.’® This significant biological activ-
ity, along with unusual structural features, four labile al-
dol units, an a-epoxy acohol, and an 18-membered
lactone constructed with the C16 primary (not the usua
secondary) hydroxy group, has prompted considerable
synthetic interest.?

Recently, we reported the synthesis of the 18-membered
lactone (3), a key intermediate to 1, via highly efficient
lactonization of the corresponding seco-acid (4), which
was designed with the aid of molecular mechanics (MM)
calculations, and synthesized via condensation of the C1-
C7, C8-C11, C13-C17, and C18-C21 fragments, although
the procedure required considerable improvement.2

The selective protection strategy of different hydroxy
groups usually plays akey rolein the successful synthesis
of polyol-containing compounds, and a variety of selec-
tive protecting groups such as silyl ethers and benzyl
ethers has been reported.> Among the benzyl ethers, 4-
methoxybenzyl (MPM) and 3,4-dimethoxybenzyl
(DMPM) ethers* were highlighted, because they can be
selectively cleaved® or converted with a neighboring hy-
droxy group to a benzylidene acetal,® which on regiose-
lective reductive opening’ gives an MPM or DMPM
ether.

The advantage of this MPM methodology was demon-
strated in the recent synthesis of the C1-C12 part of 1.% In
this paper, we report a stereoselective and practical syn-
thesis of the C13-C23 part (5), ailmost a half molecular of
4, achieved successfully again, by taking advantage of the
DMPM protecting group.
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Scheme 1 outlines the synthesis plan. The C13-C23 part
(5) would be synthesized by coupling between the C13-
C17 (6) and C18-C21 (7) fragments, which were obtained
from enantiomeric (R) and (S)-methyl 3-hydroxy-2-meth-
ylpropionates (R- and S-8), respectively.
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The synthesis of 6 from (R)-8 is shown in Scheme 2. (R)-
8 wasfirst converted to the alkene (9), acommon synthet-
ic intermediate to the C1-C12 part, by using the procedure
described in our previous report.% Oxidative cleavage of
the double bond of 9 gave the adehyde (10), which was
then reduced with LiBH,, and protection of the resulting
hydroxy group as a tert-butyldimethylsilyl (TBS) ether
gave 11. Regioselective reductive cleavage of the ben-
zylidene acetal of 11 with DIBAH gave the primary alco-
hol (12) in 54% yield, abeit accompanied with a by-
product with loss of the TBS group in 30% yield. Subse-
guent Swern oxidation of 12 completed the synthesis of 6.
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Scheme 2 i. a) OsO,, NMO, acetone-H,0 (3 : 1), rt, 95%; b) NalO,,
THF-H,O (1: 1), rt, 100%. ii, @) LiBH,, Et,0, rt, 93%; b) TBSCI, imi-
dazole, CH,Cl,, rt, 100%. iii. DIBAH, CH,Cl,, -20°C, 54%. iv. DM-
SO, (COCl), CH,Cl,, EtN, 98%.

A shorter and efficient synthesis of 6 was accomplished
by using Evans’ asymmetric aldol reactiomhus, treat-

ment of R)-13 with titanium enolate of the Evans auxilia-

ry (14)% gave the desired syn addud5) in high
diastereoselectivity (>95% d.e.). Reduction 1&f with

LiBH,® and protection of the resulting diol as a DMPM

acetal gavel6, which was transformed #® in the usual
manner as described above.
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Scheme 3 i. TiCl,, i-Pr,EtN, CH,Cl,, -76~0°C, 70%. ii, a) LBkl
cat. HO, EtO-THF, 87%; b) DMPCH(OMeg) CSA, CHCI,, rt,
99%. iii, a) DIBAH, toluene, -30°C; b) TBSCI, imidazole, &H,,
0°C, 92%, in two-steps. iv, a) OgONMO, acetone-5D (3 : 1), rt;
b) NalQ,, THF-H,0O (1 : 1), rt, 90%, in two-steps.
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Coupling of 6 and 7% was next carefully examined. Ex-
cess (1.5 equiv) 7 wasfirst lithiated with tert-BuLi and al-
lowed to react with 6 at —78 ~ —30 °C. The coupling
proceeded smoothly to git@ as a 7.5 : 1 mixture of C17-
isomers, but unfortunately the major product was the un-
desired Cram adductgb). All attempts to selectively get
the desired chelation- controlled addu&s) by the addi-
tion of MgBLOELt, and ZnC} were unsuccessful. In order
to convert the C17 configuration, selective reduction of
the corresponding keton#&9), readily available by Dess-
Martin oxidatiort* of 18, was examined. However, reduc-
tion with LiAIH, gave a 1 : 2 mixture (82%) of the desired
18a and the diol Z1) deprotecting the TBS group, and
hencel9 was firstly subjected to selective deprotection of
the TBS group. Treatment &9 with PPTS gave the ketol
(20) in 99% vyield. Subsequent reduction 20 with
Zn(BH,),*? proceeded with complete stereoselectivity due
to B-chelation of zinc with the C16 carbinol to give the de-
sired21 as a single product in 96% yield. The C17 config-
uration was confirmed by NOE studies of the
corresponding 3,4-dimethoxybenzylidene aceta?),(
which was obtained by protection of the primary hydroxy
group of21 with a pivaloyl group followed by oxidation
with DDQ ® Protection of the diol a1 by acetylation and
removal of the two TBDPS groups gave a new d8},(
which was then treated with DDQ to selectively protect
the C13 hydroxy group as a benzylidene atatad the al-
cohol @4) was isolated in excellent yield. Dess-Martin
oxidation of the C21 hydroxy group & and subsequent
Wittig reaction with ethyltriphenyl-phosphonium bro-
mide andert-BuOK led to theZ)-alkene 5) with excel-
lent selectivity (15 : 1). Deprotection of the diacetyl
groups of25 with LiAIH , gave the diolZ6). Protection of
the primary alcohol 026 as a TBS ether and the second-
ry alcohol as a methoxymethyl (MOM) ether forn2&d
Selective cleavage of the benzylidene aceta7ofvith
DIBAH provided the alcohol28), which was finally sub-
jected to Dess-Martin oxidation to achieve the synthesis
of the title compounds). Coupling of5 with the C1-C12
part, followed by macrolactonization to the lactoSg (
will be reported soon.
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