A Novel Synthesis of Thiocarboxylic S-Esters from 1(Acylthio)ethaniminium Halides and Alkyl Halides Using
Liquid-Liquid Phase-Transfer Catalysis

Taskia Takida * Massharu Taringga Kunia Itahashi

Toshio Takido,* Masaharu Toriyama, Kunio Itabashi

Department of Industrial Chemistry, College of Science and Technology, Nihon University, Kanda Surugadai, Chiyoda-ku, Tokyo 101, Japan

S-Alkyl, S-benzyl, and S-(2-alkenyl) thiocarboxylates are prepared in good yields by acylation of thioacetamide with acyl halides and reaction of the resultant 1-(acylthio)ethaniminium halides with alkyl halides under liquid-liquid phase-transfer conditions.

The previously reported¹ reaction of 1-alkylthioethaniminium halides with alkyl halides under phase-transfer catalysis provides a high-yield synthesis of unsymmetrical sulfides.¹ In an

extension of this work, we now report a novel synthesis of thiocarboxylic S-esters from 1-(acylthio)ethaniminium halides and alkyl halides under similar conditions.

S-Alkyl thiocarboxylates (4) are useful acylating agents in biochemical reactions^{2,3} and various procedures for their synthesis have been reported.⁴⁻¹⁵ However, most of these preparations use unpleasantly smelling thiols or thioacids. Further, S-alkyl thiocarboxylates may be prepared by the hydrolysis of 1-(alkylthio)alkaneiminium halides in acidic media,¹⁶ but this method is not sufficiently general.¹⁷ A method for the preparation of S-alkyl thiocarboxylates using 1-(acylthio)alkaniminium halides as the source of thiocarboxylate ion has hitherto not been reported.

In our procedure, the 1-(acylthio)ethaniminium halides 2 are prepared from thioacetamide and acyl halides 1 in benzene at 30 °C (3 hours). Compounds 2 cannot be isolated because they decompose in air (in contrast to the stable 1-(alkylthio) ethaniminium salts which are prepared from thioacetamide and alkyl halides). They are therefore treated, in the mixture of their preparation with alkyl halides 3 using a two-phase system consisting of benzene, aqueous sodium hydroxide, and tetrabutylammonium bromide (TBAB) as a phase-transfer catalyst at 30 °C for 2 hours (Scheme A).

The yields of thioesters 4 depend on the structure of the catalyst; they decrease in the order: TBAB > methyltrioctylammonium chloride (MTOAC) > benzyltriethylammonium chloride (BTEAC). For example, the yields of S-octyl thiobenzoate (4f), obtained from 2 ($R^1 = C_6H_5$) and 3 ($R^2 = n - C_8H_{17}$), are 87% (TBAB), 71% (MTOAC), and 3%

(BTEAC), respectively. This result is consistent with the view that ammonium ions bearing identical, sufficiently long-chain substituents are better than those bearing different substituents. On the other hand, in the absence of a phase-transfer catalyst, the iminium salt $2 (R^1 = C_6 H_5)$ did not react with 3 as expected, thiobenzoic acid being obtained in 85% yield. In spite of the fact that thiocarboxylic S-esters are easily hydrolyzed in alkaline media, 19 the present method smoothly produced thioesters 4 in good yield.

$$H_3C \xrightarrow{S} + R^1 \xrightarrow{Q} \frac{C_6H_6, 30^{\circ}C, 3h}{X^1} \begin{bmatrix} 0 \\ S \xrightarrow{R^1} \\ NH_2 & (X^1)^- \end{bmatrix}$$

4a−k

4	R¹	R ²	4	R ¹	R ²
b c d e	n-C ₅ H ₁₁ n-C ₅ H ₁₁ n-C ₇ H ₁₅ t-C ₄ H ₉ C ₆ H ₅ C ₆ H ₅	n-C ₈ H ₁₇ C ₆ H ₅ CH ₂ C ₆ H ₅ CH ₂ n-C ₈ H ₁₇ n-C ₄ H ₉ n-C ₈ H ₁₇	h i j	C ₆ H ₅ C ₆ H ₅ 4-CH ₃ OC ₆ H ₄ 4-NO ₂ C ₆ H ₄ C ₆ H ₅ CH=CH	CH ₃ CH=CHCH ₂ C ₆ H ₅ CH ₂ <i>n</i> -C ₈ H ₁₇ <i>n</i> -C ₈ H ₁₇ C ₆ H ₅ CH ₂

Scheme A

Table 1. Thiocarboxylic S-Esters 4 Prepared^a

Prod- uct	X ¹ in 1	X ² in 3	Yield ^b (%)	mp (°C)° or bp (°C)/Torr	Molecular Formula ^d or Lit. Data	Exact Mass ^c (20 eV) m/z (M ⁺)	IR (neat) ^f v _{C=0} (cm ⁻¹)	$^{13}\text{C-NMR} \text{ (CDCl}_3/\text{TMS)}^g$ δ
a	Cl	Br	89	104-105/7	C ₁₄ H ₂₈ OS (244.4)	244.1495	1686	13.9, 14.1 (CH ₃); 22.4, 22.7, 25.5, 28.8, 29.2, 29.7, 31.2, 31.9, 44.2 (CH ₂); 199.5 (C=O)
b	Cl	Br	86	136-137/4	C ₁₃ H ₁₈ OS (222.3)	222.1099	1680	13.6 (CH ₃); 22.0, 25.0, 30.8, 32.8, 43.4 (CH ₂); 126.8, 128.2, 128.5, 137.5 (C ₆ H ₅); 198.1 (C =O)
c	Cl	Br	86	158-159/4	C ₁₅ H ₂₂ OS (250.3)	250.1391	1690	14.0 (CH ₃); 22.5, 25.5, 28.8, 31.5, 33.1, 43.7 (CH ₂); 127.1, 128.5, 128.7, 137.7 (C ₆ H ₅); 198.6 (C=O)
d	Cl	Br	83	110-111/5	C ₁₃ H ₂₆ OS (230.35)	230.1717	1672	14.0, 27.3 (CH ₃); 22.6, 28.4, 28.8, 29.1, 29.5, 31.8 (CH ₂); 46.2 (-C-); 206.4 (C=O)
e	Br	Br	91	127-128/8	125/54	194.0761	1660	13.7 (CH ₃); 22.1, 28.7, 31.7 (CH ₂); 127.1, 128.5, 133.1, 137.2 (C ₆ H ₅); 191.5 (C=O)
f	Br	Br	87	188-189/8	C ₁₅ H ₂₂ OS (250.3)	250.1372	1659	14.1 (CH ₃); 22.7, 29.1, 29.2, 29.7, 31.9 (CH ₂); 127.2, 128.5, 133.0, 137.3 (C ₆ H ₅); 191.5 (C = O)
g	Br	Cl	88	116-117/4	C ₁₁ H ₁₂ OS (192.2)	192.0616	1660	17.6 (CH ₃); 31.1 (CH ₂); 125.5, 129.2 (C=C); 127.0, 128.3, 133.0, 136.9 (C ₆ H ₅); 191.1 (C=O)
h	Br	Br	82	$38-39$ (hexane/ C_6H_6)	36-38 ²⁰	228.0627	1665 (KBr)	33.2 (CH ₂); 127.2, 128.5, 128.9, 133.3, 136.7,
i	Cl	Br	95	oil	$C_{16}H_{24}O_2S$ (280.4)	280.1495	1656	137.4 (2C ₆ H ₅); 191.0 (C=O) 14.0 (CH ₃); 55.3 (OCH ₃); 22.6, 28.8, 28.9, 29.1, 29.7, 31.8 (CH ₂); 113.5, 129.2, 130.0,
j	C1	Br	63	oil	C ₁₅ H ₂₁ NO ₃ S (295.3)	295.1277	1662	163.5 (C ₆ H ₄); 190.3 (C=O) 14.0 (CH ₃); 22.5, 28.8, 29.1, 29.2, 29.5, 31.7 (CH ₂); 123.7, 128.0, 141.7, 150.3 (C ₆ H ₄); 190.3 (C=O)
k	Cl	Br	93	$67-69$ (hexane/ C_6H_6)	7021	254.0745	1668 (KBr)	190.5 (C=O) 33.2 (CH ₂); 124.6, 127.2, 128.3, 128.6, 128.9, 134.0, 137.6 (2C ₆ H ₅); 130.6, 140.8 (C=C); 189.0 (C=O)

Reactions were carried out at 30°C and at the molecular ratio 1:1:1:0.03 for thioacetamide, acid halide, alkyl halide, and TBAB as phase-transfer catalyst.

b Yield of pure isolated 4, based on thioacetamide.

^c Uncorrected, measured with a Yanagimoto apparatus.

Satisfactory microanalyses obtained: $C \pm 0.1$, $H \pm 0.04$, $S \pm 0.2$.

e Recorded on a Hitachi M-80B spectrometer.

Recorded on a Shimazu IR-435 infrared spectrophotometer.

⁸ Obtained on a JEOL FX-100 spectrometer.

Table 2. Alkyl N-Acylethanimidothioates 6 Prepared^a

Product 6	Yield ^b (%)	bp (°C/Torr)	Molecular Formula ^c or Lit. Data	IR (neat) ^d v _{C=0} (cm ⁻¹)	¹H-NMR (CDCl ₃ /TMS)° δ, J(Hz)	¹³ C-NMR (CDCl ₃ /TMS) ^f δ
e	90	143-145/4	C ₁₃ H ₁₇ NOS (235.3)	1635	0.94 [t, 3H, $J = 7.4$, (CH ₂) ₃ C \underline{H}_3]; 1.45 [qt, 2H, $J = 7.4$, (CH ₂) ₂ C \underline{H}_2 CH ₃]; 1.69 (tt, 2H, $J = 7.4$, CH ₂ C \underline{H}_2 C ₂ C ₃ H ₅); 2.19 (s, 3H, =CCH ₃); 3.03 (t, 2H, $J = 7.4$, SC \underline{H}_2 C ₃ H ₇); 7.43–7.97 (m, 5H _{arom})	13.7, 23.5 (CH ₃); 22.1, 30.5, 30.8 (CH ₂); 128.5, 129.4, 132.9, 133.6 (C ₆ H ₅); 171.2, 177.9 (C=O, C=N)
f	93	181–182/4	C ₁₇ H ₂₅ NOS (291.4)	1633	0.87 [t, 3H, $J = 7.2$, (CH ₂) ₇ CH ₃]; 1.26 [br, 8H, (CH ₂) ₄]; 1.41 [qt, 2H, $J = 7.2$, (CH ₂) ₆ CH ₂ CH ₃]; 1.71 (tt, 2H, $J = 7.2$, CH ₂ CH ₂ C ₆ H ₁₃); 2.19 (s, 3H, =CCH ₃); 3.03 (t, 2H, $J = 7.2$, SCH ₂ C ₇ H ₁₅); 7.43-7.96 (m, 5H _{arom})	14.1, 23.7 (CH ₃); 22.6, 28.8, 29.0, 29.1. 30.9, 31.8 (CH ₂); 128.4, 129.4, 132.9, 133.5 (C ₆ H ₅); 171.2. 178.3 (C=O, C=N)

Reactions were carried out at 30 °C for 15 min and at the molecular ratio 1:1:0.03 for thioiminium salt 5, 1, and TBAB. X^{1} (in 1) = X^{2} (in 3) = Br

Yield of pure isolated product, based on 5.

In the case of the reaction using p-substituted benzoyl halides 1, the yields of 4 are increased by an electron-releasing group on the benzene ring, whereas electron withdrawing groups decrease the vield of 4.

We also attempted to prepare thioesters 4 by the reaction of 1-(alkylthio)ethaniminium halides 5 (obtained from S-alkylation of thioacetamide with alkyl halides 3) with acyl halides 1. However, this reaction afforded N-(acyl)thioimidates 6 as the major products together with a small amount of 4 (Scheme B, Table 2). This result shows that the C-S bond of 2 is easily cleaved to generate the thioacylate ion, while the C-S bond of 5 is stable under these conditions.

$$H_{3}C \xrightarrow{S} + R^{2}X^{2} \xrightarrow{CHCl_{3}, reflux, 1h} H_{3}C \xrightarrow{SR^{2}} H_{3}C \xrightarrow{NH_{2}} (X^{2})^{-}$$

$$3 \qquad \qquad 5$$

$$R^{1}-C \xrightarrow{N} (1)/C_{6}H_{6}/NaOH/H_{2}O$$

$$\frac{1BAB, 30 °C, 15 min}{90-93 %} H_{3}C \xrightarrow{SR^{2}} R^{1}$$

$$6 e R^{1}= C_{6}H_{5}, R^{2}= n-C_{4}H_{9}$$

$$f R^{1}= C_{6}H_{5}, R^{2}= n-C_{4}H_{9}$$

Scheme B

As far as we know, the present synthesis of thiocarboxylic Sesters 4 from 1-(acylthio)ethaniminium halides 2 and alkyl halides 3 is the first example of this type of reaction. The method does not use unpleasantly smelling alkanethiols or thioacids and it can be applied to the synthesis of a wide range of thiocarboxylic S-esters under mild conditions.

S-Alkyl, S-Benzyl, and S-(2-Alkenyl) Thiocarboxylates 4; General Procedure:

A mixture of thioacetamide (1.83 g, 30 mmol) and an acyl halides I (30 mmol) in benzene (50 mL) is stirred at 30 °C for 3 h under N₂. Then, the alkyl halide 3 (30 mmol), TBAB (0.29 g, 0.9 mmol), and 10 % (w/w) aqueous NaOH (50 g) are added and the mixture is vigorously stirred for 2 h at 30°C. The organic layer is separated, washed with H₂O (3 × 50 mL), dried (Na₂SO₄), and evaporated. The residual product is column-chromatographed on silica gel with hexane/EtOAc (4:1) as eluent to afford the pure thioesters 4.

- Satisfactory microanalyses obtained: $C \pm 0.2$, $H \pm 0.02$, $N \pm 0.1$, $S \pm 0.2$.
- Recorded on a Shimazu IR-435 infrared spectrophotometer.
- Obtained on a JEOL GX-400 spectrometer.
- Obtained on a JEOL FX-100 spectrometer.

Alkyl N-Acylethanimidothioates 6; General Procedure:

A mixture of the freshly prepared 1-(alkylthio)ethaniminium salt1 5 (10 mmol), the acyl halide 1 (10 mmol), TBAB (97 mg, 0.3 mmol), benzene (50 mL), and 30 % (w/w) aqueous NaOH (50 g) is vigorously stirred under N₂ at 30 °C for 15 min. The organic layer is separated, washed with H_2O (3 × 50 mL), dried (Na₂SO₄), and evaporated. The residue is distilled under reduced pressure to afford the pure product 6.

Received: 4 September 1987; revised: 3 December 1987

- (1) Takido, T., Itabashi, K. Synthesis 1987, 817.
- (2) Bruice, T., Benkovic, S. Bioorganic Mechanisms, Vol. 1, W. A. Benjamin, New York, 1966, p. 259.
- Janssen, M. The Chemistry of Carboxylic Acids and Esters, Patai, S. (ed.), John Wiley & Sons, New York, 1969, p. 705.
- (4) Yamada, S., Yokoyama, Y., Shioiri, T. J. Org. Chem. 1974, 39, 3302.
- (5) Harpp, D.N., Aida, T., Chan, T.H. Tetrahedron Lett. 1979, 2853.
- Cainelli, G., Contento, M., Manescalchi, F., Mussatto, M.C. Synthesis 1981, 302.
- Imamoto, T., Kodera, M., Yokoyama, M. Synthesis 1982, 134.
- (8) Soai, K., Hayashi, H., Ookawa, A. J. Chem. Res. (S) 1983, 20.
- (9) Reutrakul, V., Poochaivatananon, P. Tetrahedron Lett. 1983, 24,
- (10) Nowicki, T., Markowska, A. Synthesis 1986, 305.
- (11) Davy, H., Metzner, P. Chem. Ind. (London) 1985, 824.
- (12) Cardellicchio, C., Fiandanese, V., Marchese, G., Ronzin, L. Tetrahedron Lett. 1985, 26, 3595.
- (13) Payne, N.G., Peach, M.E. Sulfur Lett. 1986, 4, 217.
- Gauthier, J.Y., Bourden, F., Young, R.N. Tetrahedron Lett. 1986, 27, 15.
- (15) Dellaria, J. F., Nordeen, C., Swett, L. R. Synth. Commun. 1986, 16, 1047.
- (16) Chaturvedi, R. K., McMahon, A. E., Schmir, G. L. J. Am. Chem. Soc. 1967, 89, 6984.
- Walter, W., Krohn, J. Chem. Ber. 1969, 102, 3786.
- (18) Herriott, A.W., Picker, D. J. Am. Chem. Soc. 1975, 97, 2345.
- (19) Venkatasnbban, K.S., Davis, K.R., Hogg, J.L. J. Am. Chem. Soc. 1978, 100, 6125. Fife, T.H., DeMark, B.R. J. Am. Chem. Soc. 1979, 101, 7379.
 - Miyaki, K., Yamagishi, S. Yakugaku Zasshi 1956, 76, 436; C.A. 1956, 50, 13808.
- Romero, M., Rome, J. Bol. Inst. Quim. Univ. Nac. Auton. Mex. 1952, 4, 3; C.A. 1953, 47, 10498.