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Abstract: The reaction of l-triphenylsilyl-2-propenyllithium with ethylene oxide afforded an adduct, 
a lithium salt of 3-triphenylsilyl-4-penten-I-ol, which regenerated an allyllithium species, 3-1ithio-5- 
triphenylsiloxy- l-pentene via anionic rearrangement ofa silyl group from carbon to oxide in the presence 
of HMPA. This allylic lithium compound could be trapped in one-pot by various electrophiles to 
provide the corresponding adducts as regioisomeric mixtures. A successive addition of epoxides, 
aldehydes, and HMPA to 1,3-bis(triphenylsilyl)-2-propenyllithium gave 1,4-diol monosilylethers in one- 
pot with high regioselectivity. © 1998 Elsevier Science Ltd. All rights reserved. 

The tandem carbon-carbon bond formation reaction triggered by anionic rearrangement of a silyl group 

from carbon to oxide has increasingly attracted the attention of many chemists and has become a new 

methodology for the construction of complex organic molecules.l ,2 Herein we wish to report an HMPA- 

induced anionic 1,4-rearrangement of a silyl group 3 from carbon to oxide in the reaction of 1-triphenylsilyl-2- 

propenyllithium (1) and 1,3-bis(triphenylsilyl)-2-propenyllithium with epoxide. 

The reaction of silylpropenyllithium 4 1 with ethylene oxide has been reported to afford 3-silyl-4-pentenol 

4 predominantly. 5 We found, however, that a mixture of triphenylsilyl ether of 4-penten-l-ol 7 and 3-penten- 

l-ol 8 was obtained in good combined yield in the presence of HMPA (Scheme 1). Obviously, the formation of 

these products was attributed to anionic rearrangement of a silyl group in the alkoxide 2 to regenerate allylic 

lithium compound 6. 
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The allylic lithium species 6 could be trapped by benzaldehyde. An addition of butyllithium to a THF 

solution of allyltriphenylsilane at 0 °C provided l-triphenylsilyl-2-propenyllithium (1) after stirring for 1 h. A 

sequential addition of  ethylene oxide, benzaldehyde, and HMPA to the resulting solution of 1 gave a 

regioisomerie mixture of monosilyl ethers of L4-diol 9a and 1,6-diol 1011 in 70% combined yield. 6 The yield 

heavily depended upon the nature of the substituent on the silicon atom (Scheme 2). The use of a tripbenylsilyl 

group gave the best result. 

Scheme 2 OH OH 

.,~..,..Si 0 PhCHO 
Li 1 0 °C =- HMPA ~" Ph + Ph 

THF -78  °C --> r.t .  OSi OSi 

Si = Ph3Si 70% yield (45 : 55) 

Si = Ph2MeSi 

Si = PhMe2Si 

48% yield (45 : 55) 

54% yield (45 : 55) 

Tandem carbon-carbon bond formation reaction of  1 with epoxides and various electrophiles is 

summarized in Table 1. In this reaction, silylpropenyllithium 1 behaved as a synthetic equivalent of dianion, 

1,1- or 1,3-dilithio-2-propene. The yields of 9 and 10 were not very high because of the formation of a 7- 

addition product, 5-silyl-4-penten-l-ol derivative 5, as a by-product. The use of 2-methyloxirane or 2- 

methoxymethyloxirane instead of oxirane provided the corresponding adducts (Entries 5 and 6 in Table 1). 

Unfortunately, styrene oxide or 1,2-epoxyoctane could not be used since these epoxides would react with 1 

predominantly at the 7-position. Rearrangement of the silyl group did not occur in the ~hadducts 3. 

Table 1. Tandem carbon-carbon bond formation reaction of 1. 

Si ~ E' + E' 

Li 1 0 ° C  ~ HMPA ~" 9 L,~.~OSi OSi 
THF -78  °C ----> r.t .  

R R 

Entry R Electrophile E' Yield(%) 9 : 10 

1 H PhCHO PhCH(OH) 70 45 : 55 

2 H c-C6HI1CHO c-C6Hll(OH ) 36 45 : 55 

3 H CH3I CH 3 41 31 : 69 

4 H CH2=CHCH2Br CH2=CHCH 2 56 55 : 45 

5 CH 3 PhCHO PhCH(OH) 56 42 : 58 

6 CH3OCH 2 PhCHO PhCH(OH) 57 42 : 58 

allyltriphenylsilane (I.0 mmol), n-BuLi (1.3 mmol), epoxide (1.3 mmol), electrophile 

(4.0 mmol), and HMPA (4.0 mmol) were employed. 
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Regioselectivities of the reaction described above were generally low. It then occurred to us that the use 

of 1,3-bis(triphenylsilyl)-l-propene as a starting material would give silyl-substituted allyllithium via the 

migration of silicon which might react with electrophiles with high regioseloctivity. 4 Indeed, this proved to b¢ the 

case and l-lithio-l,3-bis(triphenylsilyl)-l-propene with epoxides followed by a sequential addition ot 

benzaldehyde and HMPA in a mixed solvent (THF : ether = 1 : 2) gave 1,4-diol derivatives. The representative 

results are shown in Table 2. The use of a mixed solvent was essential for the successful reactions. In THF, 

even in the absence of HMPA, the rearrangement of silicon to oxide took place easily to provide 3-1ithio-l- 

triphenylsilyl-5-triphenylsiloxy-l-pentene which reacted with another molecule of the epoxide to afford the 

complex reaction mixture. 

Table 2. Tandem carbon-carbon bond formation reaction of bissilylallyllithium. 

n-BuLi R'~-~O 
Et20 / THF 0 °C 

(2 : 1) THF 

Ph3Si ~ SiPh3 

PhaSi ~ E' 

electrophile _=- + 11 L,~OSiPh3 
HMPA 

r.t. E'x,,l,. ~ R 
-78 °C --) Ph3Si 12 t ~  OSiPh3 

R 
Entry R Electmphile E' Yield(%) 1 1 : 1 2 

l H PhCHO PhCH(OH) 50 >99 : <l 

2 H n-C6HI3CHO n-C6HI3(OH) 39 >99 : <l 

3 H c-C6HIICHO c-C6HII(OH) 41 >99 : <l 

4 H CH3I CH 3 50 81 : 19 

5 H CH2=CHCH2Br CH2=CHCH 2 51 24 : 76 

6 CH 3 PhCHO PhCH(OH) 52 >99 : <l 

7 CH3OCH 2 PhCHO PhCH(OH) 50 >99 : <l 

8 Ph PhCHO PhCH(OH) 52 >99 : <l 

9 n-C4H 9 PhCHO PhCH(OH) 35 >99 : <l 

Experimental procedure is as follows. To a solution of 1,3-bis(triphenylsilyl)-l-propene (279 mg, 0.5 

mmol) in a mixed solvent of ether (5.6 ml) and THF (2.8 mi) was added butyllithium in hexane ( 1.57 M hexane 

solution, 0.32 ml, 0.5 mmol) at 0 °C. After stirring for 2 h at that temperature, to the resulting solution ethylene 

oxide (0.5 mmol) in THF was added and stirred for 1 h. Then, after the mixture was cooled to -78 °C, 

benzaldehyde (2.0 mmol) and HMPA (2.0 retool) was added and the whole reaction mixture was allowed to 

warm to ambient temperature with stirring for another 6 h. The mixture was poured into saturated aqueous 

ammonium chloride and extracted with ethyl acetate (20 ml x 3). The organic layer was dried over Na2SO 4 and 

concentrated in vacuo.  The residual oil was diluted with THF (5 ml) and a solution of tetrabutylammonium 
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fluoride (1.0 M, 1.0 ml, 1.0 mmol) was added at 0 °C and the mixture was stirred for 1 h. Extractive workup 

followed by silica gel column purification gave l-phenyl-2-((E)-2-triphenylsilylethenyl)-1,4-butanediol (113 mg, 

0.25 mmol, 59:41 isomeric mixture) in 50 % yield: Faster moving band; Rf = 0.46 (Hexane/AcOEt = 1/I); IR 

(nujol) 3360, 1612, 1430, 1111, 1044, 998, 773, 698 c m - l ;  IH NMR (CDC13)8 1.41-1.87 (bs, 2H), 

1.48-1.73 (m, 2H), 2.74 (dddd, J = 3.3, 6.0, 8.7, 14.1 Hz, IH), 3.58 (ddd, J = 6.3, 7.5, 10.8 Hz, 1H), 3.68 

(ddd, J -- 6.0, 6.0, 10.8 Hz, 1H), 4.61 (d, J = 6.0 Hz, IH), 6.05 (dd, J = 8.7, 18.6 Hz, 1H), 6.29 (d, J = 

18.6 Hz, 1H), 7.22-7.50 (m, 20H); 13C NMR (CDCI3) 8 33.48, 52.32, 60.94, 76.45, 126.73, 127.65, 

127.98, 128.35, 128.93, 129.65, 134.47, 142.31, 152.21. slower moving band; Rf = 0.36 (Hexane/AeOEt = 

1/1); IR (nujol) 3360, 1612, 1440, 1110, 1019, 697 cm-1; IH NMR (CDCI 3) 8 1.66 (dddd, J = 5.4, 5.4, 8.3, 

13.7 Hz, 1H), 1.98 (dddd, J = 5.4, 5.4, 8.1, 13.7 Hz, 1H), 1.79-2.62 (bs, 2H), 2.78 (dddd, J = 5.4, 7.8, 

8.3, 8.7 Hz, 1H), 3.63 (ddd, J = 5.4, 8.1, 10.8 Hz, IH), 3.74 (ddd, J = 5.4, 5.4, 10.8 Hz, 1H), 4.53 (d, J = 

7.8 Hz, IH), 5.82 (dd, J = 8.7, 18.6 Hz, IH), 6.06 (d, J = 18.6 Hz, 1H), 7.19-7.44 (m, 20H); 13C NMR 

(CDC13) 8 33.98, 52.21, 61.06, 77.21, 126.96, 127.72, 127.86, 128.43, 129.51, 134.49, 135.90, 142.84, 

152.46. 
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