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Abstract—Sixteen novel cephalosporin derivatives with activity against methicillin-resistant Staphylococcus aureus (MRSA) are
described. The compounds were synthesized using substituted thiopyridones, generated either by cyclization of functionalized pre-
cursors, or by direct alkylation of the enolate of 2-methyl substituted pyrones. The most active compound in vitro against a strain
of MRSA (A27223) displayed an MIC of 0.5 mg/mL. The most efficacious compound in vivo had a PD50 of 2.1 mg/kg. # 2001
Elsevier Science Ltd. All rights reserved.

Nosocomial infections due to methicillin-resistant
Staphylococcus aureus (MRSA) have increased alar-
mingly in the past two decades.1 Vancomycin remains
the most effective treatment of MRSA in the clinic.
Vancomycin resistance has developed in enterococci
precipitating concern that transfer of this resistance
from enterococci to MRSA would produce an extremely
lethal and incurable pathogen.2 Recent clinical isolates
of MRSA with reduced susceptibility to vancomycin
have given credence to this concern.3 Consequently the
search for new antibiotics with anti-MRSA activity

remains of utmost importance to the future manage-
ment of these infections. This search for new anti-
MRSA compounds has recently been extended to
include new derivatives with a cephem core structure.4

Early in our program to discover an injectable anti-
MRSA cephalosporin we found that compounds with a
lipophilic group at C-7, and a C-3 thio-linked pyr-
idinium moiety, had excellent anti-MRSA activity both
in vitro and in vivo.5 One early compound of biological
interest was the C-3 aminopropyl pyridinium derivative
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1. The MIC (minimum inhibitory concentration) of 1
against a homo-resistant MRSA strain (A 27223), was
0.125 mg/mL (2 mg/mL when assayed in the presence of
50% calf serum).6 In a mouse systemic infection model,
compound 1 showed a PD50 of 1.4 mg/kg.7 Unfortu-
nately, 1 was found to be acutely toxic to mice upon iv
bolus administration at concentrations above the
therapeutic dose.8

Subsequently, the ornithine-substituted C-3 pyridinium
derivative 2 was synthesized and found to have good
activity against MRSA. We were pleased to observe that
this compound was much less acutely toxic in mice than
1.9 However, cephem 2 had poor aqueous solubility at
neutral pH, likely a consequence of the compound’s bis-
zwitterionic nature.

Acute toxicity data from many more of our cephem
derivatives led us to formulate an empirical ‘rule of
thumb’ for predicting toxicity in our series of analogues.
In general, compounds with a net positive charge at
neutral pH (such as 1) produced rapid death in mice
upon iv dosage. Neutral compounds (such as 2) were
usually much safer, while derivatives with a net negative
charge were generally nontoxic when injected into
mice.10 Unfortunately, cephems carrying a net negative
charge usually had weak activity against MRSA. As a
consequence, we were often obliged to stay within the

manifold of cephems that were overall neutral in charge,
and attempt to maximize intrinsic antibacterial activity
while improving solubility and reducing toxicity.

One of our approaches to improve the solubility of
compounds such as 2 was to prepare derivatives that
had the ammonium and carboxylate moieties of the
ornithine side chain at C-3 separated by some distance.
It was hoped that the separation of these charged spe-
cies might have a beneficial effect on solubility by
attenuating their intramolecular association, and favor-
ing their interaction with aqueous media. Scheme 1
illustrates the synthesis of our first target based on this
thesis, cephem 5. Key thiopyridone 4 is generated by a
cyclization strategy in a few steps, and allowed to react
with a C-3 chloromethyl cephalosporanic acid inter-
mediate to provide the C-3 pyridinium derivative.11

Deprotection of the silylethyl ester prior to this step,
and the BOC group afterwards, ultimately yielded tar-
get 5. We were gratified to observe that cephem 5
appeared to be more soluble than compound 2 at varied
pH, and in the presence of added saline. For example, at
pH 7 in water the solubility of 5 was found to be 6 mg/
mL, while the solubility of 2 was 1.5 mg/mL.12 At pH 9,
the solubility of 5 rose to 16 mg/mL, while only 2.4 mg/
mL of 2 was in solution. When 5 was dissolved in 0.9%
saline at pH 9, the solubility was found to be 15 mg/mL,
indicating a negligible salt effect on solubility.

Scheme 1. (a) TMSCH2CH2OH, Et3N, CH2Cl2; (b) (COCl)2, PhH, reflux; (c) MeOCH¼CHC(O)CH3, LiHMDS, THF, �78 �C; (d) TFA, PhH,
reflux; (e) Lawesson’s reagent, toluene, 80 �C; (f) H2N(CH2)3NHBOC, EtOH; (g) TBAF, THF; (h) MeOH, CH2Cl2; (i) TFA, CH2Cl2.
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Scheme 2.

Table 1.

No. type R MICa PD50
b No. type R MICa PD50

b

5,I 0.5 (4) 5.1 15,I 8 (16) >20

8,I 1 (4) 2.5 16,I 2 (4) >25

9,II 2 (4) 4.3 17,I 4 (8) >23

10,I 2 (2) 2.1 18,I 4 (8) >23

11,I 4 (8) 5.2 19,I 4 (8) >23

12,I 2 (2) 3.9 20,I 8 (8) >23

13,I 2 (4) 8.4 21,I 4 (8) 19.2

14,I 4 (8) >25 22,I 2 (4) >25

aMIC (in m/mL) versus MRSA A27223, value in parentheses is MIC in presence of 50% calf serum. For details see ref 6.
bPD50 (in mg/kg) for activity against MRSA A27223 in a mouse model of systemic infection. For details see ref 7.
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While the chemistry of Scheme 1 delivered ample quan-
tities of 5 for initial in vitro and in vivo assay, the over-
all sequence to key 4-thiopyridone 4 suffered from low
yields.13 We therefore desired a more simple and general
route to substituted thiopyridones to facilitate analogue
synthesis in this branched (relative to 1 and 2) pyr-
idinium series of compounds. We found 2,6-dimethyl-
pyran-4-one to be an inexpensive starting material, and
decided to attempt the direct g-alkylation of one of the
methyl groups via the extended enolate ion.14 We were
pleased to observe that dienolate 6 reacted smoothly
with tert-butyl bromoacetate to afford substituted pyr-
one 7 in 84% yield. The conversion of 7 to cephem 8 was
accomplished using chemistry similar to that depicted in
Scheme 1.

We found that alkylation of 6 was efficient with the
activated halides shown in Scheme 2.15 Using this
approach, and the chemistry of Scheme 1, we synthe-
sized the cephems shown in Table 1.16

Some SARs in this series of cephems can be gleaned
from the data presented in Table 1. In general, we have
found that cephems of Type II, containing a dichloro-
thiopyridyl substituent at C-7, are usually 2–4 times less
active in vitro than the corresponding dichloro-
thiophenyl substituted cephems of Type I . This effect is
observed by the loss of activity for 9 relative to 5 against
our marker strain of MRSA A27223. Interestingly, 9 is
just as active as 5 in vivo. This has often been observed
in our program for cephems of Type II relative to Type
I, and may result from an improved pharmacokinetic or
metabolic profile for compounds containing the
dichlorothiopyridyl substituent at C-7.

A comparison of the data for compound 5 relative to 10
indicates a slight preference in vitro for compounds with
a three-carbon link between the acid group and the
pyridinium ring, rather than a two-carbon link. How-
ever, the effect of this structural change on the in vivo
efficacy of these two compounds is the opposite; a pref-
erence for the two-carbon link is observed. The data for
compounds 8 and 10 indicate that an extra methyl sub-
stituent on the pyridinium ring is well tolerated. Com-
pounds 14–22 were found to be generally inactive in
vivo even though 16 and 22 had good in vitro activity.17

It is clear from the data presented in Table 1 that the
most active compounds in vivo contain an alkylam-
monium group on the pyridinium nitrogen, as com-
pared to a neutral or anionic group. Further
representative MIC data for the most interesting com-
pounds in this series is given in Table 2. As Table 1
indicates, these compounds are quite active against a
variety of streptococci, staphylococci, and enterococci.
(The cephems in this class are primarily active against
Gram-positive bacteria, with little activity against the
representative Gram-negative organisms (E. coli, K.
pneumoniae, E. cloacae, P. mirabilis, P. aeruginosa)
included in our screening panel.)

In summary, we have synthesized a set of substituted
thiopyridinium cephems via thiopyridones derived from
either acyclic precursors (Scheme 1), or direct alkylation
of 2,6-dimethyl-pyran-4-one (Scheme 2). Many of these
compounds have excellent activity against MRSA in
vitro and in vivo, and remain interesting leads in the
quest for agents to combat these important pathogens.
Additionally, the methods described here should prove
useful to those engaged in the synthesis of compounds
containing substituted thiopyridinium moieties.
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