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Dihydroindolo[2,1-a]isoquinolines were synthesized from tetrahydroisoquinolines and a-fluoroaldehy-
des by a novel two-step procedure. These compounds exhibited significant immunosuppressive activity
against IL-2, IL-10 and IFN-c.
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The indolo[2,1-a]isoquinolines 1 represent a growing class of
natural and synthetic compounds with useful biological activity.
A sub-class whose members contain a quaternary ammonium salt
is represented by mangochinine (2a),1 cryptaustoline (2b),2 and O-
methylcryptaustoline (2c)3 and is shown in Figure 1. Certain indo-
lo[2,1-a]isoquinolines have been reported to inhibit the growth of
human mammary carcinoma cells,4 to treat multiple sclerosis,5 and
to exhibit antiviral activity.6 Compound 3 strongly inhibited tubu-
lin polymerization.7 To the best of our knowledge, there have been
no reports that indolo[2,1-a]isoquinolines exhibit immunosup-
pressive activity. We report herein that compounds synthesized
by our novel two-step procedure exhibit immunosuppressive
activity against IL-2, IL-10 and IFNc.

Scheme 1 depicts four versatile methods for the synthesis of
indolo[2,1-a]isoquinolines that have been reported. Orito reported
the cyclization of 1-bromobenzyl-5,6-dihydroisoquinolines 4 by
the nucleophilic addition of the dihydroisoquinoline nitrogen atom
to the bromobenzyl moiety.8 He constructed several analogs with
different patterns of oxygenation. Lautens and co-workers reported
an innovative palladium-catalyzed tandem reaction sequence
starting from a N-(2-bromoethyl)indole 5 and an aryl iodide.9

Importantly, this sequence can accommodate both electron-with-
drawing and electron-donating groups on the aromatic ring. Saa
and co-workers reported the synthesis of 1 from 3,4-dihydroiso-
quinolines 6 and benzyne.10 Although this pathway is a direct
ll rights reserved.
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one, the yields were modest. Kametani reported the synthesis of
an indolo[2,1-a]isoquinoline via an intramolecular benzyne reac-
tion.11 Several groups reported intramolecular radical cyclizations
onto indoles 7 to form the indolo[2,1-a]isoquinoline ring sys-
tem.12,13 The radicals were generated using either trialkyltin hy-
drides or trialkylgermanium hydrides. This pathway is flexible
with regard to substitution on either the indole or the bromoben-
zene ring.

Our approach to the synthesis of indolo[2,1-a]isoquinolines is
depicted in Scheme 2. This approach involves the preparation of
aldehyde 8 by the coupling of 9 and 10 followed by a base-induced
cyclization to generate the indolo[2,1-a]isoquinoline system. Since
tetrahydroisoquinolines are readily available14 and several 2-flu-
orobenzaldehydes are commercially available, this approach has
the potential to be a very flexible one. This synthetic strategy is dis-
tinctly different from the four general synthetic routes to indo-
lo[2,1-a]isoquinolines described above. It may also be noted that
recently, De Koning reported the deprotonation and cyclization
of N-benzyl pyrroles using t-BuOK to form related heterocyclic
systems.15

In order to test the concept, we treated 2-fluorobenzaldehyde
(10a) with anhydrous potassium carbonate and tetrahydroisoquin-
oline in DMF to generate 8a in 48% yield.16 Cyclization of aldehyde 8a
was attempted using t-BuOK, LDA, Li-TMP, KH, and P4-t-Bu. Only P4-
t-Bu (Scheme 3), a sterically hindered phosphazine base developed
by Schwesinger,17 generated the desired tetracyclic product 1a.
When aldehyde 8a was treated with P4-t-Bu at 80 �C for 2 h, indo-
lo[2,1-a]isoquinoline 1a was produced in 35% isolated yield.18
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With a successful two-step synthesis of dihydroindolo[2,1-
a]isoquinolines, we generated a number of related compounds
from commercially available tetrahydroisoquinolines and 2-fluoro-
benzaldehydes. The results of this effort are shown in Table 1.

Compound 1f could be used in a direct synthesis of O-methyl-
cryptaustoline 3c as shown in Scheme 4. The reduction of com-
pound 1f using sodium cyanoborohydride in acetic acid at
ambient temperature afforded the tetrahydro compound 111

which on treating with methanol containing excess methyl iodide
over 48 h afforded 2c in 73% overall yield from 16. The NMR and
melting point of our synthetic compound were identical to that
of the literature19 compound.
NH
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Scheme
We next evaluated compounds 1a–j for their ability to modu-
late immune response. Spleen cells obtained from influenza
virus-infected mice were cultured in vitro with compounds 1a–j
and influenza virus. Addition of virus to cultures significantly in-
creases cytokine production. The virus-induced change was ob-
served in the comparison between vehicle treatment and
vehicle + virus treatment in Figures 2a–c. With respect to the cyto-
kine interleukin-10 (IL-10), viral infection may induce secretion
from T lymphocytes as well as monocytes and macrophages. IL-
10 often acts to limit inflammation. Each compound (1a–j) sup-
pressed the production of IL-10 (Fig. 2a). In Figure 2b, influenza
virus-induced Interferon-c (IFNc) results are shown. IFNc is typi-
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Table 1
Synthesis of 5,6-dihydroindolo[2,1-a]isoquinolines
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cally secreted by cytotoxic T lymphocytes, and exhibits anti-viral
activity, but prolonged release may result in immunopathology.
Again, every compound (1a–j) inhibited production of IFNc. Inter-
leukin-2 (IL-2) is produced primarily by T-helper cells during influ-
enza infection and plays an important role in activating T
lymphocytes. Compounds 1a–j also significantly reduced IL-2
production.

All compounds were then evaluated for their impact on cell via-
bility, as reduced cell viability may limit cytokine production.
Spleen cells typically do not proliferate in culture without stimu-
lus, and in these experiments, no stimulus was added. Therefore,
these results likely reflect cell viability rather than proliferation.
Each of the compounds was incubated with spleen cells obtained
from non-infected mice for 24, 48 and 72 h. Compounds 1a–d, 1f,
and 1h significantly reduced viability at all three times points as
compared to the vehicle control (Fig. 3). Compounds 1i and 1j re-
duced viability at 24 h, but not after 48 or 72 h, however, there
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was a large degree of variability in the response with spleen cells
from some mice showing a large increase in viability whereas
spleen cells from other mice showed a decrease in viability. Com-
pound 1g did not significantly reduce viability as compared to
vehicle at any time point. In Figure 2a, it is apparent that adding
virus induces production of each cytokine as compared to the con-
trol wells without virus [vehicle compared to vehicle (DMSO) +
virus]. Each chemical compound (1a–j) when added to the well
with virus resulted in a significant (p <0.05) decline of cytokine
produced (Fig. 2a, IL-10; Fig. 2b, IFNc, and Fig. 2c, IL-2). In contrast
to the cytokine production, not all compounds reduced viability.
Instead, compounds 1a–f, and 1h reduced viability as compared
to vehicle control whereas 1g, 1i, and 1j were not different from
vehicle control. However, it is important to note that the effects
of compounds 1g, 1i, and 1j were variable. In some mice these
compounds reduced viability whereas in other mice these com-
pounds actually increased viability as assessed with Cell Titer
reagent.

In conclusion, this methodology constitutes a novel and direct
route to dihydroindolo[2,1-a]isoquinolines. The route is flexible
with respect to functionality and can be scaled up to prepare gram
quantities of dihydroindolo[2,1-a]isoquinolines. These compounds
exhibited significant immunosuppressive activity against IL-2, IL-
10 and IFN-c, and the majority of the compounds reduced cell via-
bility with the exception of 1g, 1i, and 1j.20
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