Note

The synthesis of tetra-, penta-, and hexa-saccharides related to an L-arabino-D-glucan*

YUMI KUROKAWA, TADAHIRO TAKEDA, YASUHIRO KOMURA, YUKIO OGIHARA, Faculty of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467 (Japan)

MASAKI SHIMIZU, AND MAKOTO TAKAI

Technical R and D Division, Terumo Co., Ltd., Hatagaya, Shibuya-ku, Tokyo, 151 (Japan) (Received July 24th, 1986; accepted for publication in revised form, May 27th, 1987)

We have previously reported an investigation of the structure of the watersoluble polysaccharide that was isolated from the bark of *Melia azadirachta* (Meliaceae)^{1,2}. GIa is a GIa(1 \rightarrow 4)- α -D-glucan having one (1 \rightarrow 6)- α -Larabinofuranosyl group for every five D-glucose residues (1). GIa showed a strong antitumor effect against Sarcoma-180. In our previous paper³, we reported the synthesis of the trisaccharides, methyl 6-O- α -L-arabinofuranosyl-4-O- α -D-glucopyranosyl- β -D-glucopyranoside and methyl O- α -L-arabinofuranosyl-(1 \rightarrow 6)-O- α -Dglucopyranosyl-(1 \rightarrow 4)- β -D-glucopyranoside, related to an L-arabino-D-glucan. We report herein the synthesis, as model compounds, of tetra-, penta-, and hexa-saccharides that contain the basic structural features of the L-arabino-D-glucan.

The synthesis of tetrasaccharide 7, which corresponds to the partial structure unit of GIa (1), was started by condensation of methyl 2,3,6,2',3',6',2",3"-octa-Oacetyl- β -D-maltotrioside (4) [which had been prepared from methyl 2,3,6,2',3',6',2'',3''-octa-O-acetyl-4'',6''-O-benzylidene- β -D-maltotrioside (3)] with 2,3,5-tri-O-benzoyl- α -L-arabinofuranosyl bromide^{4,5} (5) to give the α -L-linked tetrasaccharide, methvl 2,3,6-2',3',6',2",3"-octa-O-acetyl-6"-O-(2,3,5-tri-Obenzoyl- α -L-arabinofuranosyl)- β -D-maltotrioside (6) in 53% yield. Its ¹H-n.m.r. spectrum showed signals characteristic for three benzoyl, one methoxyl, and eight acetyl groups. Compound 6 was O-deacylated with tricthylamine to give methyl 6"-O- α -L-arabinofuranosyl- β -D-maltotrioside (7), the ¹H-n.m.r. spectrum of which indicated four H-1 signals at δ 4.34 (d, J 8 Hz, H-1), 5.00 (s, H-1"), and 5.34 (d, J 4 Hz, H-1',1"), and the ¹³C-n.m.r. spectrum four anomeric carbon atoms. Introduction of the α -L-arabinofuranosyl group at O-6 deshielded C-6" by 5.9 p.p.m., as

^{*}Studies on the Structure of Polysaccharides from the Bark of Melia azadirachta. Part 5.

1

a-L-Araf

ROCH2 ROCH2 ROCH₂ OMe OR OR ОBz BZÓCH₂ όR ÓBz ÓR 2 R = R' = H 5 = Ac; R', R" = CHPh R = Ac; R', R'' = HROCH₂ ROCH2 OCH₂ QМе OR OR OR R″oċ ÓR ÔR 6 R = Ac, R' = H, R" = Bz 7 R = R' = R'' = HROCH2 ROCH2 ROCH2 ROCH₂ OMe OR OR င်စ ဂ်ခ ÓΡ ÓR 8 R = R' = R" = H $R = Ac; R', R'' = CHC_6H_5$ 9 10 R = Ac, R', R" = H осн₂ ROCH2 ROCH₂ ROCH₂ OMe OR OR OR QR OR R οέι R'O റ്മ ÓR ÓP ÓR 11R = Ac, R' = H, R'' = Bz12R = R' = R'' = H

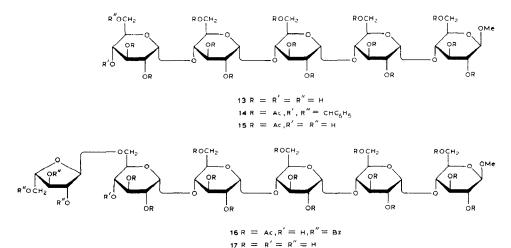

compared with methyl β -D-glucopyranoside⁶ (δ 61.9). The α -L configuration for the newly formed glycosidic bond in 7 was evident from the ¹³C-n.m.r. spectrum (C-1^{'''} at δ 109.0)^{3,6}. The ¹³C-shifts of the tetrasaccharide derivatives and related compounds are listed in Table I.

TABLE I

Carbon atom	Compound						
	2	3	4	6	7		
C-1	104.2	101.0	101.1	101.1	104.2		
C-2	74.4	71.8	71.8	71.7	74.3		
C-3	77.3	72.2	72.5	72.2	77.3		
C-4	78.1	75.4	75.3	75.3	78.6		
C-5	75.6	69.0	69.6	72.1	75.6		
C-6	61.8	62.8	63.2	63.1	61.8		
C-1′	100.6	95.7	95.6	95.6	100.6		
C-2′	74.0	70.5	70.4	70.6	72.5		
C-3'	72.6	72.1	72.0	72.2	74.1		
C-4′	77.9	73.7	73.5	73.6	78.2		
C-5'	72.3	68.5	68.4	70.3	72.3		
C-6′	61.6	62.2	62.0	62.8	61.6		
C-1"	100.9	96.5	96.0	95.8	101.0		
C-2"	72.9	70.9	71.3	72.1	72.8		
C-3"	74.0	72.6	72.8	72.2	74.1		
C-4″	70.5	78.8	68.1	68.1	70.6		
C-5″	73.8	63.7	69.2	69.2	74.0		
C-6"	61.6	68.5	62.6	66.3	67.8		
OCH ₃	58.3	56.9	57.0	56.9	58.3		
C ₆ H ₅ CH		101.7					
C-1‴				106.5	109.0		
C-2"'				80.8	82.2		
C-3‴				77.6	77.5		
C-4‴				82.4	84.7		
C-5"'				63.7	62.2		

¹³ C-N.M.R. DATA	(δ)	FOR MALTOTRIOSE DERIVATIVES $2-4$, 6 AND 7^a	1
-----------------------------	-----	---	---

^{*a*}For solutions of compound 3, 4, and 6 in $CDCl_3$, and for solutions of 2 and 7 in D_2O .

TABLE II

Carbon atom	Compound						
	8	9	10	11	12		
C-1	104.2	101.0	101.0	101.0	104.2		
C-2	74.4	71.9	71.6	71.9	74.4		
C-3	77.3	72.2	72.0	72.2	77.3		
C-4	78.1	75.4	75.4	75.4	78.6		
C-5	75.6	70.4	69.1	71.5	75.6		
C-6	61.8	62.9	62.9	63.1	61.7		
C-1′	100.6	95.8	95.8	95.7	100.6		
C-2'	74 .1	71.6	70.5	71.9	74.4		
C-3'	72.6	72.2	72.0	72.2	72.7		
C-4′	78.1	73.8	73.9	73.9	78.2		
C-5'	72.6	69.0	69.1	70.5	72.6		
C-6′	61.6	62.4	62.9	62.6	61.6		
C-1″	100.8	95.8	95.8	95.7	100.8		
C-2"	74.4	70.9	70.5	71.8	74.4		
C-3"	72.6	72.1	72.0	72.1	72,7		
C-4"	78.0	73.4	73.6	73.5	77.5		
C-5″	72.3	69.0	69.1	70.5	72.3		
C-6″	61.6	62.1	61.7	62.6	61.5		
C-1‴	100.8	96.4	95.8	95.7	101.0		
C-2‴	72.9	71.9	71.6	71.8	72.8		
C-3‴	74.1	72.1	72.0	72.1	74,1		
C-4‴	70.5	78.8	69.1	69.0	70.5		
C-5‴	73.9	63.7	69.1	69.2	74.0		
C-6‴	61.6	68.4	62.4	66.1	67.8		
C-1'''				106.5	109.0		
C-2""				80.1	82.2		
C-3""				77.6	78.1		
C-4''''				82.4	84.7		
C-5''''				63.7	62.2		
OCH ₃ C ₆ H ₅ CH	58.3	56.9 101.6	56.9	56.9	58.3		

^aFor solutions of compound 9, 10, and 11 in CDCl₃, and for solutions of 8 and 12 in D₂O.

Similarly, methyl 2,3,6,2',3',6',2",3",6",2"',3"'-undeca-O-acetyl- β -D-maltotetraoside (10) (which was prepared from the 4"',6"'-O-benzylidene compound 9) and bromide 5 in nitromethane containing mercuric cyanide gave, after column chromatography, in 29% yield (based on 10), a pentasaccharide containing a (1 \rightarrow 6)-linked α -L-arabinofuranosyl group, methyl 2,3,6,2',3',6',2"',3",6",2"'',3"'undeca-O-acetyl-6"''-O-(2,3,5-tri-O-benzoyl- α -L-arabinofuranosyl)- β -D-maltotetraoside (11). Removal of the blocking groups with 50% methanolic tri-

TABLE III

Carbon atom	Compound	Compound						
	13	14	15	16	17			
C-1	104.2	101.1	101.1	101.3	104.2			
C-2	74.5	71.9	71.6	71.8	74.4			
C-3	77.3	72.1	72.1	72.4	77.3			
C-4	78.1	75.4	75.6	75.2	78.5			
C-5	75.6	70.5	69.0	71.7	75.6			
C-6	61.6	62.9	62.9	62.9	61.8			
C-1'	100.8	95.8	95.6	95.7	100.6			
C-2'	72.7	71.7	70.5	71.8	72.7			
C-3′	74.5	72.1	72.1	72.1	74.4			
C-4'	78.1	73.8	73.7	73.8	78.3			
C-5'	72.3	70.5	69.0	70.5	72.3			
C-6′	61.6	62.6	62.8	62.6	61.5			
C-1"	100.8	95.8	95.6	95.7	100.8			
C-2"	72.7	70.9	70.5	71.7	72.7			
C-3"	74.5	72.1	72.1	72.1	74.4			
C-4″	78.1	73.5	73.1	73.6	78.0			
C-5″	72.3	69.1	69.0	70.5	72.3			
C-6"	61.6	62.2	62.7	62.5	61.5			
C-1‴	100.9	95.8	95.8	95.8	100.8			
C-2'''	72.7	71.7	70.5	71.7	72.7			
C-3‴	74.1	72.1	72.3	72.1	74.1			
C-4‴	78.1	73.2	72.7	73.2	77.5			
C-5‴	72.3	69.1	69.0	70.5	72.3			
C-6'''	61.6	62.0	62.4	62.1	61.3			
C-1""	100.9	96.4	95.8	95.8	101.0			
C-2""	72.9	71.9	71.8	71.7	72.9			
C-3""	74.1	72.1	72.3	72.4	74.1			
C-4""	70.5	78.9	69.2	69.0	70.5			
C-5""	73.8	63.7	70.1	69.2	74.0			
C-6""	61.6	68.5	62.3	66.3	67.8			
C-1""				105.7	109.0			
C-2"""				80.3	82.2			
C-3"""				77.6	78.0			
C-4""				82.6	84.7			
C-5"""				63.7	62.2			
OCH₃ C₅H₅CH	58.3	56.9 101.7	56.9	56.9	58.3			

¹³ C-N.M.R. DATA	(δ) FOR MALTOPENTAOSE DERIVATIVES	13-	- 17 ª
-----------------------------	----	---------------------------------	-----	---------------

^{*a*}For solutions of compound 14, 15, and 16 in $CDCl_3$, and for solutions of 13 and 17 in D_2O .

ethylamine afforded methyl 6^{'''}-O- α -L-arabinofuranosyl- β -D-maltotetraoside (12). The α -L configuration for the newly formed glycosidic bond in 12 was evident from the ¹³C-n.m.r. spectrum (C-1^{'''} at δ 109.0) (Table II).

The hexasaccharide, methyl $6''''-O-\alpha$ -L-arabinofuranosyl- β -D-maltopentaoside (17) was synthesized by conversion of methyl β -D-maltopentaoside (13) into the benzylidene derivative 14 by the method of Evans⁷ using α, α -dimethoxytoluene. In all cases of preparation of the acetylated benzylidene derivatives (3, 9, and 14), the yields were very low. This may be due to the insolubility of methyl maltooligosaccharide and because the acetylation was performed on the reaction mixture, *i.e.*, without an intermediate workup. Condensation of 15, obtained by removal of the benzylidene group of 14, with bromide 5 in the presence of mercuric cyanide and molecular sieves, gave the hexasaccharide derivative 16 in 52% yield. O-Deacetylation and O-debenzoylation of 16 at room temperature with triethylamine in 50% methanol gave methyl 6^{''''}-O- α -L-arabinofuranosyl- β -D-maltopentaoside (17). The ¹³C-n.m.r. spectrum of 17 in D₂O contained signals for C-1,C-1',C1",C-1"",C-1"", and C-1"" at 8 104.2, 100.6, 100.8, 100.8, 101.0, and 109.0, respectively. The introduction of the α -L-arabinofuranosyl residue at OH-6"" in 13 was confirmed by a 6.2 p.p.m. downfield shift of the C-6"" signal of 17 (from δ 61.6 in 13 to 67.8), as shown in Table III. No anomeric impurities were observed by 1 Hand ¹³C-n.m.r. spectrometry in all the compounds described.

EXPERIMENTAL

General methods. — Melting points were determined with a Yanagimoto microapparatus and are uncorrected. Optical rotations were measured with a JASCO DIP-4 digital polarimeter. ¹H-N.m.r. spectra were recorded with a JNM MH-100 spectrometer, and ¹³C-n.m.r. spectra with a FX-100 instrument, tetramethylsilane being the internal standard in both cases. T.l.c. was conducted on precoated silica gel plates (Merck GF-254), and the detection of compounds was achieved by quenching of u.v. fluorescence and with 10% H₂SO₄ solution. Column chromatography was carried out on silica gel (Merck Kieselgel 60).

Methyl β -D-maltotrioside (2), methyl β -D-maltotetraoside (8), and methyl β -Dmaltopentaoside (13). — A maltooligosaccharide mixture (30 g), purchased from Pfanstiehl laboratories, was acetylated with acetic anhydride (70 mL) and pyridine (70 mL). A solution of the glycosyl bromides (46 g) was prepared from the mixture of acetates (50 g) by treatment with 25% HBr-acetic acid (90 mL) in chloroform (110 mL), and then methanol (200 mL) and mercuric cyanide (20 g) were added. The mixture was stirred for 6 h at 40°, and filtered, and the filtrate concentrated to dryness. The residue (52.4 g) of the mixture of methyl β -D-maltooligosaccharide acetates was chromatographed on silica gel in 4:1 benzene-acetone to provide the pure acetates of methyl trioside (9.4 g), tetraoside (5.7 g), and pentaoside (7.2 g). Compound 2 (4.5 g), 8 (3 g), and 13 (4 g) were prepared by deacetylation with triethylamine (8 mL) in 50% methanolic solution (30 mL) of the corresponding acetate. Methyl 2,3,6,2',3',6',2",3"-octa-O-acetyl-4",6"-O-benzylidene- β -D-maltotrioside (3). — To a solution of methyl β -D-maltotrioside (2; 3 g, 5.8 mmol) in benzaldehyde (8 mL) was added anhydrous ZnCl₂ (5 g). The mixture was stirred overnight at room temperature, and then acetylated with pyridine (12 mL) and acetic anhydride (5 mL), and the solution was kept overnight. The mixture was poured into ice-water. The precipitate was washed with petroleum ether and chromatographed on a column of silica gel. The product, eluted with 4:1 (v/v) benzeneacetone, crystallized from methanol (500 mg, 12.0%), m.p. 98–99°, [α]_D²¹ +56.6° (*c* 13.5, chloroform); ¹H-n.m.r. (CDCl₃): δ 7.56–7.26 (m, 5 H, C₆H₅CH), 5.46 (s, 1 H, C₆H₅CH), 3.45 (s, 3 H, OCH₃), and 2.12–1.95 (24 H, 8 COCH₃).

Anal. Calc. for $C_{42}H_{54}O_{24} \cdot H_2O$: C, 52.50; H, 5.87. Found: C, 52.26; H, 5.76. Methyl 2,3,6,2',3',6',2",3"-octa-O-acetyl- β -D-maltotrioside (4). — A solution

of **3** (130 mg, 0.14 mmol) in 60% acetic acid (5 mL) was stirred for 4 h at 40°. It was then poured into ice-water and extracted with chloroform, and the extract washed with water, dried (Na₂SO₄), and evaporated under diminished pressure to give a solid (87 mg, 74%), m.p. 66–68°, $[\alpha]_{6}^{21}$ +42.5° (*c* 3.74, chloroform); ¹H-n.m.r. (CDCl₃): δ 3.46 (s, 3 H, OCH₃) and 2.14–1.97 (24 H, 8 COCH₃).

Anal. Calc. for C35H50O24: C, 49.18; H, 5.90. Found: C, 49.47; H, 5.95.

Methyl 2,3,6,2',3',6',2",3"-octa-O-acetyl-6"-O-(2,3,5-tri-O-benzoyl- α -L-arabinofuranosyl)- β -D-maltotrioside (6). — A solution of 2,3,5-tri-O-benzoyl- α -Larabinofuranosyl bromide (5) (308.7 mg, 0.59 mmol) in nitromethane (3 mL) was added to a mixture of 4 (87 mg, 0.1 mmol), Hg(CN)₂ (1 g), and molecular sieve 4A (0.3 mg) in the same solvent (3 mL). After being stirred for 3 h at 60°, the mixture was cooled and washed successively with saturated aqueous NaHCO₃, saturated aqueous NaCl, and water, dried (Na₂SO₄), and evaporated to give a syrup that contained, as shown by t.l.c. in 4:1 (v/v) benzene-acetone, a major product ($R_{\rm F}$ 0.46). The residue was chromatographed on a column of silica gel. The product, eluted with 4:1 (v/v) benzene-acetone, crystallized from ethanol (70 mg, 53.0%), m.p. 82–84°, [α] $_{\rm D}^{26}$ +47.5° (c 2.8, chloroform); ¹H-n.m.r. (CDCl₃): δ 8.16–7.95 (m, 6 H, arom.), 7.60–7.24 (m, 9 H arom.), and 2.12–1.92 (24 H, 8 COCH₃).

Anal. Calc. for C₆₁H₇₀O₃₁: C, 56.42; H, 5.43. Found: C, 56.83; H, 5.74.

Methyl 6"-O- α -L-arabinofuranosyl- β -D-maltotrioside (7). — Compound 6 (50 mg, 0.039 mmol) was O-deacylated with triethylamine (0.5 mL) in 50% aqueous methanol (4 mL). The mixture was kept overnight at room temperature, and then evaporated *in vacuo* to give a white powder (25 mg, 98%), $[\alpha]_D^{21}$ +45° (*c* 0.78, water); t.l.c. (13:7:2, lower phase, v/v, chloroform-methanol-water) R_F 0.11; ¹H-n.m.r. (D₂O): δ 5.34 (d, J 4 Hz, H-1',1"), 5.00 (s, H-1""), 4.34 (d, J 8 Hz, H-1), and 3.53 (3 H, OCH₃).

Anal. Calc. for C₂₄H₄₂O₂₀: C, 44.34; H, 6.51. Found: C, 44.62; H, 6.71.

Methyl 2,3,6,2',3',6',2",3",6'',2"'',3"'-undeca-O-acetyl-4"',6"'-O-benzylidene- β -D-maltotetraoside (9). — To a solution of methyl β -D-maltotetraoside (8; 2 g, 2.94 mmol) in benzaldehyde (5 mL) was added anhydrous ZnCl₂ (3 g). The mixture was stirred overnight, and then acetylated with pyridine (5 mL) and acetic anhydride (4

mL), and the solution was kept overnight. After a work-up similar to that described for the preparation of **3**, compound **9** crystallized from methanol (299 mg, 8.3%), m.p. 115–116°, $[\alpha]_D^{18} + 83^\circ$ (*c* 3.1, chloroform); ¹H-n.m.r. (CDCl₃): δ 7.60–7.20 (m, 5 H, CHC₆H₅), 5.44 (s, 1 H, CHC₆H₅), 3.46 (s, 3 H, CH₃) and 2.16–1.96 (33 H, 11 COCH₃).

Anal. Calc. for C₅₄H₇₀O₃₂: C, 52.68; H, 5.73. Found: C, 52.01; H, 5.33.

Methyl 2,3,6,2',3',6',2",3",6",2"',3"'-undeca-O-acetyl- β -D-maltotetraoside (10). — A solution of 9 (215 mg, 0.17 mmol) in 60% acetic acid (10 mL) was stirred for 4 h at 40° and worked up in a manner similar to that described for the preparation of 4 to give a solid (128.9 mg, 64.5%), m.p. 108–109°, $[\alpha]_{D}^{1.8}$ +95° (c 0.61, chloroform); ¹H-n.m.r. (CDCl₃): δ 3.48 (s, 3 H, OCH₃) and 2.16–2.01 (33 H, 11 COCH₃).

Anal. Calc. for C₄₇H₆₆O₃₂: C, 49.39; H, 5.82. Found: C, 49.46; H, 5.52.

Methyl 2,3,6,2',3',6',2",3",6",2"',3"'-undeca-O-acetyl-6"'-O-(2,3,5-tri-O-benzoyl- α -L-arabinofuranosyl)- β -D-maltotetraoside (**11**). — A solution of 2,3,5-tri-Obenzoyl- α -L-arabinofuranosyl bromide (**5**; 157.5 mg, 0.3 mmol) in nitromethane (3 mL) was added to a mixture of **10** (128.9 mg, 0.11 mmol), Hg(CN)₂ (1 g), and molecular sieve 4A (0.3 g) in the same solvent (3 mL), as described for the preparation of **6**. The product, eluted with 4:1 (v/v) benzene-acetone, crystallized from ethanol (51.2 mg, 28.6%), m.p. 112–113°, $[\alpha]_D^{18}$ +85° (c 0.4, chloroform); ¹Hn.m.r. (CDCl₃): δ 7.96–8.20 (m, 6 H, arom.), 7.19–7.66 (m, 9 H, arom.), 3.48 (s, 3 H, OCH₃) and 2.17–1.93 (33 H, 11 COCH₃).

Anal. Calc. for C₇₃H₈₆O₃₉: C, 55.23; H, 5.46. Found: C, 55.42; H, 5.61.

Methyl 6^{'''}-O- α -L-arabinofuranosyl- β -D-maltotetraoside (12). — Compound 11 (50 mg, 0.03 mmol) was O-deacylated with triethylamine (0.5 mL) in 50% aqueous methanol (4 mL), overnight at room temperature. The solution was evaporated to give a white powder (25.0 mg, 97.7%), $[\alpha]_D^{21}$ +67° (c 1.4, water), t.l.c. (13:7:2, lower phase, v/v, chloroform-methanol-water) R_F 0.09; ¹H-n.m.r. (D₂O): δ 5.37 (d, J 3 Hz, H-1', 1", 1"'), 5.04 (s, H-1"''), 4.38 (d, J 8 Hz, H-1), and 3.56 (3 H, OCH₃).

Anal. Calc. for C₃₀H₅₂O₂₅·H₂O: C, 43.37; H, 6.55. Found: C, 43.25; H, 6.79.

Methyl 2,3,6,2',3',6',2",3",6",2"'',3"',6"',2"''',3"''-tetradeca-O-acetyl-4"'',6"''-Obenzylidene- β -D-maltopentaoside (14). — To a solution of methyl β -D-maltopentaoside (13; 1.81 g, 2.15 mmol) in N,N-dimethylformamide (30 mL) was added α,α -dimethoxytoluene (1.96 g) and p-toluenesulfonic acid (42 mg). The mixture was stirred overnight at room temperature, and then acetylated overnight with pyridine (15 mL) and acetic anhydride (15 mL). The mixture was poured into icewater, the precipitate washed with petroleum ether, and then chromatographed on a column of silica gel. The product, eluted with 4:1 (v/v) benzene-acetone, crystallized from methanol (312 mg, 9.6%), m.p. 123–124°, $[\alpha]_D^{24}$ +84° (c 0.49, chloroform); ¹H-n.m.r. (CDCl₃): δ 7.46–7.27 (m, 5 H, CHC₆H₅), 5.47 (s, 1 H, CHC₆H₅), 3.49 (s, 3 H, OCH₃), and 2.19–1.85 (42 H, 14 COCH₃).

Anal. Calc. for C₆₆H₈₆O₄₀: C, 52.17; H, 5.70. Found: C, 52.43; H, 5.81.

Methyl 2,3,6,2',3',6',2"',3",6'',2''',3"',6''',2'''',3"''-tetradeca-O-acetyl-β-D-maltopentaoside (15). — A solution of 14 (261 mg, 0.17 mmol) in 60% acetic acid (15 mL) was stirred for 4 h at 40°. The usual work-up gave a solid (81 mg, 32.9%), m.p. 119–121°, $[\alpha]_{D}^{2^2}$ +88° (c 0.47, chloroform); ¹H-n.m.r. (CDCl₃): δ 3.49 (s, 3 H, OCH₃), and 2.19–1.98 (42 H, 14 COCH₃).

Anal. Calc. for C₅₉H₈₂O₄₀: C, 49.51; H, 5.77. Found: C, 49.67; H, 5.93.

Methyl 2,3,6,2',3',6',2",3",6'',2"'',3"'',6''',2"''',3"''',6''',2"''',3"'''-tetradeca-O-acetyl-6'''-O-(2,3,5tri-O-benzoyl- α -L-arabinofuranosyl)- β -D-maltopentaoside (16). — A solution of the bromide 5 (308 mg, 0.59 mmol) in nitromethane (10 mL) was added to a mixture of 15 (54 mg, 0.04 mmol), Hg(CN)₂ (782 mg), and molecular sieve 4A (304 mg) in the same solvent (3 mL). In coupling the donor to acceptor, the same conditions were used as those described for the preparation of 6. The product was eluted with 4:1 (v/v) benzene-acetone and crystallized from ethanol (46 mg, 52%), m.p. 110–111°, $[\alpha]_{D}^{20}$ +126° (c 0.14, chloroform); ¹H-n.m.r. (CDCl₃): δ 8.14–7.90 (m, 6 H, arom.), 7.74–7.20 (m, 9 H, arom.), 3.49 (s, 3 H, OCH₃) and 2.19–1.98 (42 H, 14 COCH₃).

Anal. Calc. for C₈₅H₁₀₂O₄₇: C, 54.43; H, 5.48. Found: C, 54.02; H, 5.47.

Methyl 6^{'''}-O- α -L-arabinofuranosyl- β -D-maltopentaoside (17). — Compound 16 (33 mg, 0.02 mmol) was O-deacylated with triethylamine (1 mL) in 50% aqueous methanol (4 mL), and the solution evaporated to give a white powder (17 mg, 97%), m.p. 120–123°, $[\alpha]_D^{20}$ +80° (c 0.23, water); ¹H-n.m.r. (D₂O): δ 5.37 (d, J 4 Hz, H-1',1",1"''), 5.04 (s, H-1""), and 4.36 (d, J 8 Hz, H-1).

Anal. Calc. for $C_{36}H_{62}O_{30} \cdot 3 H_2O$: C, 42.02; H, 6.66. Found: C, 41.52; H, 6.21.

ACKNOWLEDGMENTS

The authors thank Miss S. Kato for recording the n.m.r. spectra and Miss T. Naito for performing the microanalyses.

REFERENCES

- 1 T. FUJIWARA, T. TAKEDA, Y. OGIHARA, M. SHIMIZU, T. NOMURA, AND Y. TOMITA, *Chem. Pharm.* Bull., 30 (1982) 4025-4030.
- 2 T. FUJIWARA, T. TAKEDA, Y. OGIHARA, M. SHIMIZU, T. NOMURA, AND Y. TOMITA, *Chem. Pharm. Bull.*, 32 (1984) 1385-1391.
- 3 T. FUJIWARA, T. TAKEDA, AND Y. OGIHARA, Carbohydr. Res., 141 (1985) 168-171.
- 4 H. G. FLETCHER, JR., Methods Carbohydr. Chem., 2 (1963) 228-230.
- 5 J. HIRSCH, E. PETRAKOVA, AND J. SCHRAML, Carbohydr. Res., 131 (1984) 219-226.
- 6 P. A. J. GORIN AND M. MAZUREK, Can. J. Chem., 53 (1975) 1212-1223.
- 7 M. E. EVANS, Methods Carbohydr. Chem., 8 (1980) 313-315.