

A Short Enantioselective Access to 2,3,6-Trialkylpiperidines and 5,8-Dialkylindolizidines.

Yung-Sing Wong, Dino Gnecco,[†] Christian Marazano,* Angèle Chiaroni, Claude Riche, Annick Billion and Bhupesh C. Das.*

> Institut de Chimie des Substances Naturelles, C.N.R.S., 91198 Gif-sur-Yvette Cedex, France †Universidad Autonoma de Puebla, Institudo de Ciencias, Centro de Quimica, Puebla, Mexico. Received 4 March 1998; accepted 5 June 1998

Abstract: An enantioselective access to 2,3,6-trialkylpiperidines 5 is described. This sequence is illustrated by the four-step syntheses, from salts 1, of piperidine 6 and indolizidines 7 and 8. The overall yields are in the range 10–15 %. The stereochemistry of intermediates is discussed, supported by two X-ray studies, and comparison with analogs. Stereochemical properties of intermediate oxazolidine derivatives 4 were used to orient the syntheses towards different diastereoisomers such as 7 or 8. © 1998 Elsevier Science Ltd. All rights reserved.

We recently reported¹ that the sodium dithionite reduction of new chiral pyridinium salts such as 1 (Scheme 1) gave, after filtration of the intermediate 1,4-dihydropyridines over alumina, oxazolidines 2 in good yield. In a preliminary communication, ¹C we also demonstrated that treatment of these oxazolidines with Grignard reagents led to intermediates of type 3. These intermediates spontaneously cyclized upon hydrolysis, affording new derivatives 4, ready for further Grignard alkylation to give 2,3,6-trisubstituted piperidines 5. This sequence was illustrated by a short synthesis (four steps from readily available salt 1a) of the enantiomer of natural indolizidine (-)-209B.¹C In this paper we now describe experimental and stereochemical details of this reaction sequence (2-->5) exemplified in particular by the four-step syntheses from salts 1 of piperidine 6 and analogs 7,8 of indolizidine (-)-209B.

Scheme 1

e-mail: marazano@icsn.cnrs-gif.fr; fax: (33) 1-69-07-72-47

0040-4020/98/\$19.00 © 1998 Elsevier Science Ltd. All rights reserved. PII: S0040-4020(98)00566-3 Treatment of oxazolidine 2a (Scheme 2) with an excess of isopropylmagnesium bromide in ether at -78° C gave, after hydrolysis of the crude reaction product (9), a mixture of new oxazolidines in 92 % yield. In principle, eight diastereoisomers could be formed, but careful analysis (*vide infra*) showed that the mixture consisted essentially of oxazolidines 10a,b and 11 (undefined mixture of isomers) in a ratio of 80 : 20 (in favour of 10a,b). ¹H NMR analysis was especially valuable for the structural analysis of these oxazolidine intermediates. In the crude mixture, obtained immediately after the reaction, the isomer 10a, characterized by a H-8a proton appearing as a doublet (JH-8a, H-8 = 6.4 Hz) at 4.37 ppm, largely predominates. On the other hand, chromatography of this crude product over alumina resulted in the practically complete disappearance of this isomer with formation of a new major oxazolidine derivative 10b with a H-8a proton now shielded at 3.35 ppm (JH-8a, H-8 = 8.4 Hz).² This chromatographic process thus gave access to a new intermediate 10b and, in addition, allowed separation of oxazolidines 10a,b from isomers 11.

We attributed structures 10a and 10b to the primary (kinetic) product and the final (thermodynamic) product, respectively, on the basis of the following observations. The deshielding of the H-8a proton in derivative 10a suggests an oxazolidine ring in which the H-8 proton is *trans* to phenyl group and *syn* to the nitrogen doublet (for related stereochemical assignents see discussion in reference 1a). The thermodynamic product 10b presents H-8a characteristics which are in favour of an oxazolidine ring arranged as depicted in the

Scheme 2

scheme (see also reference 1a for related structures). A particular feature of the structure 10b is the strong shielding at 0.24 ppm of one of the two methyl groups of the isopropyl substituent, an effect very likely to be due to interactions with the phenyl ring. The absolute configuration of the methyl groups at position 8 was difficult to assign only on the basis of NMR spectroscopy, but could be unambiguously deduced from comparison with the compounds of a related series^{1a} and from the results of X-ray analysis of further derivatives (vide infra).

LiAlH4 reduction of oxazolidine 10b ("thermodynamic product" containing a small amount of 10a) gave, as expected, a mixture of two alcohols 12 and 13 whose proportions (19 : 81 respectively) were determined by GC analysis.³ LiAlH4 reduction of the "kinetic" mixture containing major oxazolidine 10a gave again the two alcohols 12 and 13 and two new products 14a,b (resulting from the reduction of isomers 11) in a ratio 12 : 13 : 14 (2 isomers) = 79 : 1 : 20 (16 + 4), respectively. Thus, reduction of the "kinetic product" gave preferentially isomer 12 with an excellent selectivity at C-3 (> 96 % d.e.) while the "thermodynamic product" gave preferentially isomer 13 with modest selectivity at C-3 (61 % d.e.).

We next turned our attention to the syntheses of trisubstituted hindered piperidines depicted in Scheme 3. Thus, treatment of the above "kinetic" mixture (10a major) with isopropylmagnesium bromide in ether gave a mixture of three isomers in a 70: 15: 15 ratio. The structures of the two minor isomers were not established but the structure of the major piperidine 15, isolated in 32 % yield after chromatography on silica gel, was established with certainty. Indeed, hydrogenolysis of the phenylethanol auxiliary gave piperidine 6 whose corresponding HCl salt furnished crystals suitable for X-ray analysis.

Scheme 3

The X-ray structure of piperidine 6.HCl is depicted in Figure 1. The salt crystallized with four independent molecules (named A, B, C, D) in the asymmetric unit. The salient feature is the ability of the piperidine ring to adopt two different chair conformations with opposite torsion angles, resulting in two

conformers 6a and 6b. In conformer 6a, exhibited by three molecules (A, C and D), the substituents at C2, C3 and C6 are respectively in equatorial, equatorial and axial positions while in conformer 6b, adopted by the molecule B, these substituents are axial, axial and equatorial. Of course, these two conformations correspond to the same absolute configuration C2(S), C3(R), C6(R). The energy difference between the two conformers, estimated by the molecular mechanics calculations (Macromodel, MM2, force field)^{4,5} is 0.5 Kcal /mole. This value corresponds to a relative population of 70 % for 6a and 30 % for 6b at 293K, which correlates nicely with the observed crystal distribution of 75 : 25. In the crystal, these four molecules form two dimers. As seen in the Figure, each dimer results from the association of two molecules bridged by two chlorine ions by means of hydrogen bonds of type N⁺-H···Cl⁻, involving the nitrogen atoms and the chloride ions.

<u>X-ray analysis of piperidine 6.HCl</u>. The two dimers are represented : molecules A and B (conformers 6a and 6b), Cl1 and Cl2 ions for one dimer ; molecules C and D (conformer 6a only), Cl3 and Cl4 ions for the other. Geometric characteristics : N1A···Cl1 = 3.108(6), Cl1···N1B = 3.206(6) Å, angle N1A-Cl1·N1B = 95.2°, N1A···Cl2 = 3.143(7), Cl2···N1B = 3.131(6) Å, angle N1A-Cl2·N1B = 96.0°; N1C···Cl3 = 3.120(6), Cl3···N1D = 3.165(5) Å, angle N1C-Cl3·N1D = 94.1°, N1C···Cl4 = 3.134 (5), Cl4···N1D = 3.143(6) Å, angle N1C-Cl4··N1D = 94.3°, distances Cl1···Cl2 = 4.205 (3), N1A···N1B = 4.607(7), Cl3···Cl4 = 4.261(3), N1C···N1D = 4.663 (8) Å.

Treatment of 10b ("thermodynamic" mixture) with isopropylmagnesium bromide in ether (Scheme 3) gave again a mixture of three isomers in a 50:30:20 ratio. The structure of the isomer representing 30 % of the mixture was not determined while the minor isomer was assigned the structure 15 by comparison with an authentic sample obtained from 10a. The major isomer 16 could not be separated from 15 but crystallization gave a pure sample of this product whose structure was thus established by X-Ray analysis. The molecule is shown in Figure 2, with the absolute configuration deduced from the known C7(R) sterochemistry. The X-ray analysis showed that in both molecules of the asymmetric unit, the piperidine ring exhibits the same chair conformation with isopropyl substituents at C2 and C6, respectively, in axial and equatorial positions, and methyl group at C3, equatorial.

X-ray analysis of piperidine 16.

These results in the isopropyl series not only illustrate the usefulness of our short enantioselective approach to chiral trisubstituted piperidines but, in addition, they complete our knowledge of the essential stereochemical features of the synthetic sequence depicted in Scheme 1 which is now secured by X-ray analyses.

With these informations in hands, we next fixed our attention to the syntheses of 5,8-disubstituted indolizidines in order to complete our previous work on the synthesis of indolizidine (-)-209B.¹c, 6 For this purpose, we targeted the enantioselective synthesis of indolizidine 7 as a model. Treatment of oxazolidine 2b (Scheme 4) with *n*-propylmagnesium bromide gave oxazolidine derivatives 17,18 under the conditions very similar to those reported in the isopropyl series (cf Scheme 2), as shown in particular by ¹H NMR spectroscopy. The crude product of the reaction ("kinetic" mixture) contained oxazolidine 17a as the major

component (characteristic H-8a at 4.39 ppm, J_{H-8a} , H-8 = 5.5 Hz), and chromatography over alumina provided pure oxazolidine 17b ("thermodynamic" product, characteristic H-8a at 3.44 ppm, J_{H-8a} , H-8 = 8.7 Hz). GC analysis of the alcohols obtained after LiAlH4 reduction gave results very similar to those depicted in Scheme 2 for the isopropyl species, allowing an evaluation of the d. e. of the Grignard attack on 2b which was 50 %. This d.e. has been raised to 70 % using the manganese complex *n*-propyl-Mn/ LiCl (prepared from the corresponding Grignard and MnCl4Li2) in THF without affecting the reaction yield.

Scheme 4

Treatment of the "kinetic" mixture (17a major, Scheme 5) with Grignard reagent 19⁷ gave predominantly the expected isomer 20. This product was accompanied by isomers 21 and 22 in a ratio 66 : 20 : 14, respectively. In the same conditions, pure "thermodynamic" oxazolidine 17b gave piperidine 22 as the major adduct along with isomer 20 in a 85 : 15 ratio. Noteworthy is the fact that the stereochemical outcome of the second Grignard addition is similar for oxazolidines 10a and 17a, giving piperidines 15 and 20 with the same arrangement of alkyl groups, and different in the case of oxazolidines 10b and 17b, giving the piperidine 2,6-*trans* 16 from 10b and the piperidine 2,6-*cis* 22 from 17b. It is very likely that the presence of a bulky isopropyl group at C-6 in oxazolidine 10a-b hindered the otherwise favoured *cis* attack, but this difference can also be attributed to different reactivity of the Grignard reagents, a factor which can modify stereochemical interactions at the transition state.⁸

Scheme 5

The structures of products 20, 21, 22 were further confirmed after hydrogenolysis in acidic medium which gave in one step indolizidines (+)-7, (-)-23 and (+)-8 respectively.⁹ The stereochemistry of indolizidine

(+)-8 was easily elucidated by comparison of its NMR data and rotatory power with those of natural and synthetic indolizidine 209B.^{1b, 6} The 5,8a-*trans* relationship of indolizidine (+)-7 was evident from characteristic NMR data which are very different from those of *cis* derivatives. The configuration of the ethyl group at position 8 was further confirmed after comparison of 13 C NMR data with those of an analog 24.¹⁰ It is also in agreement with the predicted stereochemistry arising from the arrangement of the starting oxazolidine 17a. These last assignments allowed us to revise the structure of an indolizidine 209B isomer which was originally formulated as 25 in our preliminary communication^{1c} and must now be reassigned to 26 accordingly. Structure of indolizidine 23 was finally deduced from NMR data comparison with the analog 27¹⁰ and the sign of its rotatory power. This last compound possesses a clear *cis* relationship between the substituents at C-5 and C-8a and is a diastereoisomer (not an enantiomer) of indolizidine (+)-8 as shown by GC analysis.

In conclusion, we have shown that the present approach offers a practical access to 2,3,6trialkylpiperidines and 5,8-dialkylindolizidines. The overall process in each case requires four steps and one chromatographic separation of diastereoisomers. In particular, this synthetic approach takes advantages of the selective manipulation of oxazolidine stereochemistry ("kinetic" or "thermodynamic") to orient the synthesis towards different diastereoisomers.

EXPERIMENTAL

Syntheses of substituted piperidines 6 and 12-15:

(3R, 5R, 8R, 8aS)-5-Isopropyl-8-methyl-3-phenyl-hexahydro-oxazolo[3,2-a]pyridine (10a). To a stirred suspension of magnesium (820 g, 35 mmol, 5.3 equiv.) in dry Et2O (5 ml) was added dropwise 2bromopropane (1.98 g, 15.8 mmol, 2.5 equiv.) in dry Et2O (15 ml) over a period of 0.5 h. After further stirring for 30 min at room temperature, oxazolidine 2a (1.39 g, 6.46 mmol), in dry Et₂O (15 mL), was added dropwise at -78° C over a period of 1 h. The reaction was stirred at 0°C for 1 h followed by another 3 h at room temperature. The excess reagent was eliminated with saturated aqueous NH4Cl. The residue was extracted with Et2O (3x50 ml) and the combined organic phases were dried (MgSO4), filtered through celite, and concentrated. Oxazolidine 10a, accompanied by a small amount of 10b (less than 10 %) and 11 [undeterminated mixture of diastereoisomers, estimated ratio 10/11: 80/20 (vide infra)], was obtained as a pale yellow oil (1.54 g, 5.94 mmol, 90 % yield). The crude mixture can be stored at - 20 °C without change in the isomer ratio, but in CDCl3, a slow equilibration of 10a in favour of 10b was observed. Crude mixture: MS (EI) m/z [relative intensity (r.i.)] 259 (M⁺, 3), 258 (6), 216 (100), 104 (45); MS (CI) (isobutane) m/z(r.i.)260 ([M+H]+, 100), 216 (6); HRMS (EI): Calcd. for C17H25NO (M+.) 259.1936, found 259.1932.; oxazolidine 10a: ¹H NMR (300 MHz, CDCl₃) δ (ppm) 0.82 (d, J=6.7Hz, 3H, CH₃CHCH₃), 0.93 (d, J=6.7Hz, 3H, CH3CHCH3), 1.04 (d, J=6.7Hz, 3H, CH3), 1.33 (m, 1H, H-7), 1.48-1.71 (m, 3H, 2xH-6, H-7), 1.86 (m, 1H, H-8), 1.88 (septuplet-doublet, J=7.2, 6.8Hz, 1H, CH₃CHCH₃), 2.34 (ddd, J=7.2, 7.0, 5.2Hz, 1H, H-5), 3.67 (dd, J=5.0, 4.8Hz, 1H, H-2), 4.28 (dd, J=5.2, 5.0Hz, 1H, H-2), 4.32 (dd, J=5.2, 4.8Hz, 1H, H-3), 4.37 (d, J=6.4Hz, 1H, H-8a), 7.24-7.42 (m, 5H, 5xHarom); ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 17.8 (CH3), 18.4 (CH3CHCH3), 18.8 (C-6), 20.5 (CH3CHCH3), 25.7 (C-7), 28.5 (CH3CHCH3), 31.0 (C-8), 60.0 (C-5), 63.6 (C-3), 72.1 (C-2), 94.4 (C-8a), 127.2 (Carom), 127.6 (2xCarom), 128.3 (2xCarom), 141.8 (Cq).

(3*R*, 5*R*, 8*S*, 8*aR*)-(-)-5-Isopropyl-8-methyl-3-phenyl-hexahydro-oxazolo[3,2-a]pyridine (10b). The above mixture of crude oxazolidine 10a (570 mg, 2.2 mmol) was chromatographied over neutral alumina (30g), using CH₂Cl₂-pentane as eluent, to give pure oxazolidine 10b (273 mg, 1.05 mmol, 44 % yield) as colourless oil: $[\alpha]D - 69$ (*c* 2.2, CHCl₃); MS (EI) *m/z* (r.i.) 259 (M⁺·, 1), 216 (100), 104 (25); MS (CI) (isobutane) *m/z* (r.i.) 260 ([M+H]⁺, 100), 216 (8); ¹H NMR (250 MHz, CDCl₃) δ (ppm) 0.24 (d, *J*=6.7Hz, 3H, CH₃CHCH₃), 0.73 (d, *J*=6.7Hz, 3H, CH₃CHCH₃), 1.00 (m, 1H, H-7), 1.03 (d, *J*=6.1Hz, 3H, CH₃), 1.20-1.55 (m, 2H, 2xH-6), 1.65-1.92 (m, 3H, H-8, H-3, H-7), 2.23 (dt, *J*=10.5, 2.4Hz, 1H, H-5), 3.35 (d, *J*=8.4Hz, 1H, H-8a), 3.63 (m, 1H, H-3), 3.67 (m, 1H, H-2), 4.10 (t, *J*=8.0Hz, 1H, H-2), 7.13-7.42 (m, 5H, 5xH_{arom}); ¹³C NMR (62.5 MHz, CDCl₃) δ (ppm) 15.2 (CH₃CHCH₃), 17.2 (CH₃CHCH₃), 20.6 (CH₃), 24.1 (C-6), 28.9 (CH₃CHCH₃), 31.6 (C-7), 35.6 (C-8), 66.0 (C-3), 68.1 (C-5), 75.0 (C-2), 102.0 (C-8a), 126.8 (C_{arom}), 127.6 (2xC_{arom}), 128.1 (2xC_{arom}), 144.8 (Cq); HRMS (EI): Calcd. for C₁₇H₂₅NO (M⁺) 259.1936, found 259.1916. (2R, 5R)-(-)-2-Isopropyl-5-methyl-1-[(1R)-1-phenyl-2-hydroxyethyl]piperidine (12). The crude mixture (1.54 g, 5.95 mmol), resulting from treatment of oxazolidine 2a with isopropylmagnesium bromide and containing oxazolidine 10a as the major component, was reduced with LiAlH4 (340 mg, 8.9 mmol, 1.5 equiv.) in dry THF (100 mL) at reflux during 1 h. Usual work-up gave a mixture (1.48 g) of four diastereoisomers 12:13:14 (2 isomers) in a ratio of 77:1.3:21.7 (17.5 + 4.2) respectively, as determined by GC analysis (t-butyldimethylsilyl derivatives). Chromatography over alumina [120 g, gradient heptane-AcOEt from 100/0 to 90/10] allowed isolation of piperidine 12 (431 mg, 28 % yield) as a colourless oil: [a]D -53 (c 1.3, CHCl3); MS (EI) m/z (r.i.) 261 (M⁺·, 1.5), 260 (3), 230 (97), 218 (100), 98 (98); MS (CI) (isobutane) m/z (r.i.) 318 ([M+C4H9]⁺, 24), 262 ([M+H]⁺, 100), 244 (36); ¹H NMR (250 MHz, CDCl₃) δ (ppm) 0.72 (d, J=6.0Hz, 3H, CH3CHCH3), 0.78 (d, J=6.0Hz, 3H, CH3), 0.93 (d, J=6.0Hz, 3H, CH3CHCH3), 1.17 (m, J=11.5Hz, 1H, H-4), 1.38 (m, 2H, 2xH-3), 1.46 (m, 1H, H-4), 1.78 (m, 1H, H-5), 2.05 (m, 1H, CH₃CHCH₃), 2.08 (m, 1H, H-2), 2.54 (dd, J=14.4, 11.5Hz, 1H, H-6), 2.83 (m, J=14.4Hz, 1H, H-6), 3.72 (dd, J=10.7, 4.2Hz, 1H, CHAHBOH), 3.87 (dd, J=10.7, 5.4Hz, 1H, CHAHBOH), 4.03 (dd, J=5.4, 4.2Hz, 1H, NCHCH₂OH), 7.24-7.43 (m, 5H, $5xH_{arom}$); ¹³C NMR (62.5 MHz, CDCl₃) δ (ppm) 19.8 (CH3), 20.6 (CH3CHCH3), 20.8 (CH3CHCH3), 20.9 (C-3), 25.6 (C-5), 26.4 (CH3CHCH3), 29.0 (C-4), 51.3 (C-6), 59.3 (C-2), 63.7 (CH2OH), 65.8 (NCHCH2OH), 127.5 (Carom), 128.4 (2xCarom), 128.9 (2xCarom), 141.9 (Cq); HRMS (CI): Calcd. for C17H28NO (MH+) 262.2171, found 262.2196. A small amount of isomers 14a and 14b were isolated for characterization. Piperidine 14a: MS (EI) m/z (r.i.) 261 (M+, 8), 260 (43), 230 (37), 218 (100), 98 (37); MS (CI) (isobutane) m/z (r.i.) 318 ([M+C4H9]+, 18), 262 ([M+H]⁺, 100), 244 (32); ¹H NMR (300 MHz, CDCl₃) δ (ppm) 0.87 (d, J=6.8Hz, 3H, CH₃), 0.97 (d, J=6.7Hz, 3H, CH3CHCH3), 1.02 (d, J=6.7Hz, 3H, CH3CHCH3), 1.06-1.12 (m, 4H, 2xH-4, 2xH-3), 1.13 (m, 1H, H-5), 2.16 (dd, J=12.7, 3.4Hz, 1H, H-6), 2.32 (m, 1H, H-2), 2.40-2.60 (m, 2H, CH3CHCH3, H-6), 3.65 (dd, J=10.4, 5.2Hz, 1H, CHAHBOH), 3.93 (dd, J=10.4, 8.3Hz, 1H, CHAHBOH), 4.23 (dd, J=8.3, 5.2Hz, 1H, NCHCH2OH), 7.15-7.40 (m, 5H, 5xHarom); ¹³C (75 MHz, CDCl3) δ (ppm) 17.8 (CH3CHCH3), 18.5 (CH3CHCH3), 20.4 (CH3), 20.6 (C-3), 26.8 (2C, CH3CHCH3, C-5), 29.3 (C-4), 50.3 (C-6), 61.6 (CH2OH), 62.7 (NCHCH2OH), 62.9 (C-2), 127.7 (Carom), 128.4 (2xCarom), 128.9 (2xCarom), 138,8 (Cq). Piperidine 14b: MS (EI) m/z (r.i.) 261 (M+, 1), 260 (6), 230 (24), 218 (100), 98 (34); MS (CI) (isobutane) m/z (r.i.) 318 ([M+C4H9]⁺, 35), 262 ([M+H]⁺, 100), 244 (30); ¹H NMR (300 MHz, CDCl₃) δ (ppm) 0.79 (d, J=6.5Hz, 3H, CH₃), 0.96 (d, J=6.5Hz, 3H, CH₃CHCH₃), 0.98 (d, J=6.5Hz, 3H, CH3CHCH3), 1.21-1.26 (m, 2H, 2xH-3), 1.38 (t, J=10.9Hz, 1H, H-6), 1.56 (m, 1H, H-4), 1.65 (m, 1H, H-5), 2.13 (m, 1H, H-2), 2.63 (m, 1H, CH3CHCH3), 2.90 (m, J=10.9Hz, 1H, H-6), 3.57 (dd, J=10.4, 5.4Hz, 1H, CHAHBOH), 4.07 (t, J=5.4Hz, 1H, NCHCH2OH), 4.43 (dd, J=10.4, 5.4Hz, 1H, CHAHBOH), 7.17 (dd, J=8.0, 2.0Hz, 2H, 2xHarom), 7.20-7.42 (m, 3H, 3xHarom); ¹³C NMR (62.5 MHz, CDCl3) & (ppm) 14.7 (CH3), 19.8 (CH3CHCH3), 20.4 (CH3CHCH3), 24.5 (C-3), 26.7 (C-5), 32.1 (CH3CHCH3), 33.4 (C-4), 53.6 (C-6), 58.8 (C-2), 59.5 (CH2OH), 62.5 (NCHCH2OH), 127.7 (Carom), 128.3 (2xCarom), 129.1 (2xCarom), 135.1 (Cq).

(2R, 5S)-(+)-2-Isopropyl-5-methyl-1-[(1R)-1-phenyl-2-hydroxyethyl]piperidine (13). Pure oxazolidine 10b (546 mg, 2.1 mmol) was treated with an excess of LiAlH4 under the conditions used for the preparation of piperidine 12. Work-up gave a mixture (528 mg) of two diastereoisomers 12 : 13 in a ratio 32 : 68 as determined by GC analysis (trimethylsilyl derivatives). Chromatography over alumina (see purification of

12 for conditions) gave pure piperidine 13 as an oil (235 mg, 0.9 mmol, 43 % yield): $[\alpha]_D + 45$ (c 1.6, CHCl3); MS (EI) *m*/z (r.i.) 261 (M⁺·, 3.5), 260 (3), 230 (65), 218 (100), 98 (10); MS (CI) (isobutane) *m*/z (r.i.) (318 ([M+C4H9]⁺, 22), 262 ([M+H]⁺, 100), 244 (30); ¹H NMR (300 MHz, CDCl3) δ (ppm) 0.72 (d, *J*=6.6Hz, 3H, CH3), 0.84 (m, 1H, H-4), 0.89 (d, *J*=6.8Hz, 3H, CH3CHCH3), 0.91 (d, *J*=6.8Hz, 3H, CH3CHCH3), 1.27 (m, 1H, H-3), 1.34 (m, 1H, H-5), 1.59 (m, 1H, H-3), 1.73 (dt, *J*=12.5, 2.6Hz, 1H, H-4), 1.92 (t, *J*=11.0Hz, 1H, H-6), 2.32 (m, 1H, CH3CHCH3), 2.45 (dt, *J*=10.8, 2.6Hz, 1H, H-2), 2.72 (ddd, *J*=11.0, 3.6, 2.0Hz, 1H, H-6), 4.06-4.17 (m, 2H, CHAHBOH), 4.25 (t, *J*=6.5Hz, 1H, NCHCH2OH), 7.23-7.28 (m, 1H, H_{arom}), 7.37 (t, *J*=7.5Hz, 2H, 2xH_{arom}), 7.50 (d, *J*=7.5Hz, 2H, 2xH_{arom}); ¹³C NMR (75 MHz, CDCl3) δ (ppm) 15.4 (CH3CHCH3), 19.7 (CH3), 20.6 (CH3CHCH3), 24.8 (C-3), 27.3 (CH3CHCH3), 31.8 (C-5), 33.9 (C-4), 56.4 (C-6), 59.5 (CH2OH), 60.5 (NCHCH2OH), 63.8 (C-2), 126.8 (C_{arom}), 128.4 (4xC_{arom}), 141.1 (Cq); HRMS (CI): Calcd. for C17H28NO ([M+H]⁺) 262.2171, found 262.2147.

(2S, 3R, 6R)-(+)-2,6-Diisopropyl-3-methyl-1-[(1R)-1-phenyl-2-hydroxyethyl]piperidine (15). The crude mixture resulting from the treatment of oxazolidine 2a with an excess of isopropylmagnesium bromide (798 mg, 3.1 mmol, "kinetic" mixture containing major oxazolidine 10a) was further treated with an excess of isopropylmagnesium bromide in Et2O at 0°C, using the same procedure and workup, to give a mixture of three isomers (900 mg, ratio by GC analysis: 70 : 15 : 15). Chromatography over silica gel using a gradient of heptane-AcOEt afforded the major diastereoisomer 15 (372 mg, 32 % yield) which crystallized as colourless crystals in a mixture of CH₂Cl₂-pentane: mp 47°C; $[\alpha]D + 12$ (c 1.7, CHCl₃); MS (EI) m/z (r.i.) 272 (9), 260 (100), 140 (25); MS (CI) (isobutane) m/z (r.i.) 304 ([M+H]⁺, 100), 286 (99); ¹H NMR (300 MHz, CDCl₃)δ (ppm) 0.35 (m, 1H, H-4), 0.74 (d, J=6.3Hz, 3H, CH₃); 0.90 (d, J=6.5Hz, 3H, CH3CHCH3); 1.04 (m, 1H, H-4); 1.06 (d, J=6.5Hz, 3H, CH3CHCH3), 1.09 (m, 2H, 2xH-5), 1.13 (d, J=7.1Hz, 3H, CH3CHCH3), 1.17 (d, J=7.1Hz, 3H, CH3CHCH3), 1.46 (m, 1H, CH3CHCH3), 1.95 (m, 1H, H-3), 2.03 (m, J=9.5, 6.5Hz, 1H, CH3CHCH3), 2.49 (m, J=9.8, 6.5Hz, 1H, H-6), 2.56 (dd, J=9.8, 3.6Hz, 1H, H-2), 3.55 (dd, J=10.0, 6.0Hz, 1H, CHAHBOH), 3.86 (t, J=10.0Hz, 1H, CHAHBOH), 4.15 (dd, J=10.0, 6.0Hz, 1H, NCHCH₂OH), 7.22-7.41 (m, 5H, 5xH_{arom}); ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 20.5 (CH3CHCH3), 21.1 (2C, CH3CHCH3, CH3CHCH3), 21.4 (CH3CHCH3), 21.7 (CH3), 24.4 (C-5), 28.9 (C-4), 29.3 (CH3CHCH3), 29.9 (C-3), 32.2 (CH3CHCH3), 59.5 (C-6), 60.8 (NCHCH2OH), 62.9 (CH2OH), 64.8 (C-2), 127.7 (Carom), 128.4 (2xCarom), 129,64 (2xCarom), 142.1 (Cq); HRMS (CI): Calcd. for C20H34NO ([M+H]+) 304.2640, found 304.2630.

(2S, 3R, 6R)-(-)-2,6-Diisopropyl-3-methylpiperidine (6). Piperidine 15 (974 mg, 3.2 mmol) was dissolved in a mixture of EtOAc (30 mL), ethanol (30 mL) and aqueous 20 % HCl solution (15 mL). A catalytic amount of 10 % Pd/C was added and the mixture was stirred under an hydrogen atmosphere overnight. After filtration over celite, water (50 mL) was added and the resulting solution was washed twice with CH₂Cl₂ (2x50 ml). The aqueous phase was alkalinized with 30 % NH4OH in water and then extracted with AcOEt (3x50 mL). The combined AcOEt phases were dried (MgSO4), acidified with a HCl-MeOH solution, and evaporated. Flash chromatography of the residue on silica gel using CH₂Cl₂-10 % MeOH as eluent gave piperidine 6.HCl (489 mg, 70 %). Colourless crystals, suitable for X-ray analysis were obtained from CH₂Cl₂- pentane: mp 205-210°C. Analytical data for the free base: $[\alpha]_D - 17$ (c 1.7, CHCl₃); ; MS (EI) m/z (r.i.) 140 (100); MS (CI)

(isobutane) 184 ([M+H]⁺, 100), 140 (11); ¹H NMR (300 MHz, CDCl₃) δ (ppm) 0.86 (d, *J*=6.7Hz, 3H, CH₃CHCH₃, CH₃CHCH₃), 0.89 (d, *J*=6.7Hz, 3H, CH₃CHCH₃), 0.92 (d, *J*=6.7Hz, 3H, CH₃CHCH₃), 0.94 (d, *J*=6.8Hz, 3H, CH₃), 1.27 (m, 1H, H-4), 1.55 (m, 2H, 2xH-5), 1.58 (m, 1H, H-4), 1.60 (m, 1H, H-3), 1.82 (m, *J*=6.6, 2.0Hz, 1H, CH₃CHCH₃), 1.98 (m, *J*=6.7Hz, 1H, CH₃CHCH₃), 2.15 (t, *J*=6.0Hz, 1H, H-6), 2.37 (dd, *J*=8.7, 4.9Hz, 1H, H-2); ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 16.6 (CH₃CHCH₃), 18.9 (CH₃), 19.4 (CH₃CHCH₃), 20.0 (CH₃CHCH₃), 20.7 (CH₃CHCH₃), 25.8 (C-5), 27.5 (CH₃CHCH₃), 28.3 (C-4), 28.7 (CH₃CHCH₃), 31.3 (C-3), 57.8 (C-2), 62.37 (C-6).

Crystal data of 6.HCl. A small colourless crystal (0.30 x 0.40 x 0.40 mm) grown of CH₂Cl₂- pentane was used.C₁₂ H₂₆ N⁺ Cl⁻, M_w = 219.80, monoclinic, space group P 2₁, Z = 8 (four molecules in the asymmetric unit), a = 9.409 (3), b = 13.457 (2), c = 22.375 (7) Å, β = 96.65 (2)°, V = 2814 Å³, d_c = 1.04 g cm⁻³, F(000) = 976, λ (Cu K α) = 1.5418 Å, μ = 2.16 mm⁻¹; 4346 data measured (Nonius CAD-4 diffractometer), 4224 unique (R int = 0.073) of which 2883 were considered as observed with I ≥ 3.0 σ (I); absorption ignored.

The structure was solved by direct methods using SHELXS86 ^{11a} and refined by full-matrix least-squares with SHELX76 ^{11b} minimizing the function Σw (Fo-IFcl)¹². The hydrogen atoms located in difference Fourier maps were fitted at theoretical positions (d C-H or N-H = 1.00 Å), and assigned an isotropic displacement parameter equivalent to that of the bonded atom, plus 10 %. Convergence was reached at R = 0.054 and R_w = 0.070 with $R_w = [\Sigma w (Fo-IFcl)^2 / \Sigma w Fo^2]^{1/2}$ and $w = 1/[\sigma^2(Fo) + 0.0028 Fo^2]$. The absolute configuration has been confirmed by calculations with the inverse configuration giving R = 0.056 and Rw = 0.073. The residual electronic density was comprise between -0.23 and 0.38 e Å⁻³ in the final difference map. Lists of the fractional atomic coordinates, thermal parameters, distances, bond and torsion angles have been deposited at the Cambridge Crystallographic Data Centre, U.K., as Supplementary Material (CIF file).

(2S, 3S, 6R)-2,6-Diisopropyl-3-methyl-1-[(1R)-1-phenyl-2-hydroxyethyl]piperidine (16). Treatment of oxazolidine 10b (650 mg, 2.5 mmol, "thermodynamic product" containing a small amount of 10a) with an excess of isopropylmagnesium bromide under the above conditions, gave a mixture of three piperidines in a 20 (15): 50 (16): 30 ratio. Chromatography on silica gel gave an inseparable mixture of diastereoisomers 16 and 15 (285 mg, GC analysis 16 : 15 = 70 : 30). Crystallization from CH₂Cl₂-pentane gave a small amount of pure major piperidine 16 as colourless crystals suitable for X-ray analysis: $[\alpha]_D + 11$ (c 1.3, CHCl3); MS (EI) m/z (r.i.) 272 (19), 260 (100), 140 (62); MS (CI) (isobutane) m/z (r.i.) 304 ([M+H]⁺, 100), 286 (99); ¹H NMR (400 MHz, CDCl₃, at 53°C) δ (ppm) 0.38 (m, 1H, H-4), 0.55 (d, J=6.3Hz, 3H, CH3CHCH3), 0.97 (d, J=6.3Hz, 6H, CH3CHCH3, CH3), 1,05 (m, 1H, H-4), 1,06 (d, J=6.5Hz, 3H, CH3CHCH3), 1,08 (d, J=6.5Hz, 3H, CH3CHCH3), 1.09 (m, 2H, 2xH-5), 1.39 (m, 1H, H-3), 1.99 (m, J=6.3, 3.0Hz, 1H, CH3CHCH3), 2.14 (m, J=6.5, 2.3Hz, 1H, CH3CHCH3), 2.58 (m, 1H, H-6), 2.65 (dd, J=8.9, 4.1Hz, 1H, H-2), 3.63 (dd, J=10.8, 6.9Hz, 1H, CHAHBOH), 3.94 (dd, J=10.8, 8.6Hz, 1H, CHAHBOH), 4.14 (dd, J=8.6, 6.9Hz, 1H, NCHCH₂OH), 7.20-7.38 (m, 5H, 5xHarom); ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 20.4 (CH₃CHCH₃), 21.1(2C, CH₃CHCH₃, CH₃CHCH₃), 21.4 (CH₃CHCH₃), 21.7 (CH3), 24.4 (C-5), 28.9 (C-4), 29.2 (CH3CHCH3), 29.9 (C-3), 32.1 (CH3CHCH3), 59.3 (C-6), 60.6 (NCHCH2OH), 62.8 (CH2OH), 64.7 (C-2), 127.6 (Carom), 128.3 (2xCarom), 129.6 (2xCarom), 142.1 (Cq).

<u>Crystal data</u>. A small colourless crystal (0.33 x 0.66 x 0.66 mm) grown of CH₂Cl₂-pentane was used. C₂₀H₃₃NO, $M_w = 303.49$, monoclinic, space group P 2₁, Z = 4 (two molecules in the asymmetric unit,

named A and B), a = 14.323 (8), b = 9.859 (6), c = 15.037 (8) Å, β = 113.86 (2) °, V = 1942 Å³, d_c = 1.04 g cm⁻³, F(000) = 672, λ (Mo K α) = 0.7107 Å, μ = 0.05 mm⁻¹; 3760 data measured (Philips PW1100 diffractometer), 3629 unique (R int = 0.140) of which 1723 were considered as observed with I ≥ 3.0 σ (I); absorption ignored.

The structure was solved by direct methods using SHELXS86 ^{11a} and refined by full-matrix leastsquares with SHELX76 ^{11b} minimizing the function Σw (Fo-IFcl)². In both molecules of the asymmetric unit, most of atoms showed large anisotropic displacement parameters, particularly those of the methyl and isopropyl groups. In molecule B, the isopropyl group at C6 was found disordered with two positions of equal occupancy, deduced by rotation about the C6-C20 bond. So this group was refined isotropically only. Except that one of the hydroxyl group O9-H, not located, all the hydrogen atoms were calculated at theoretical positions (d C-H= 1.00 Å), and assigned an isotropic displacement parameter equivalent to that of the bonded atom, plus 10 %. Convergence was reached at R = 0.078 and R_w = 0.104 with R_w = $[\Sigma w(Fo-IFcl)^2 / \Sigma wFo^2]^{1/2}$ and w = $1/[\sigma^2(Fo)+ 0.00557 Fo^2]$. The residual electronic density was comprise between -0.23 and 0.25 e Å⁻³ in the final difference map. Given the short O···O intermolecular distances, in the crystal the molecules are linked in infinite chains according to the scheme: O9B-H (x,y,z-1) ···O9A-H (x,y,z)···O9B (1-x,0.5+y,1-z) with the respective distances O9B-H····O9A = 2.882 and O9A-H···O9B = 2.850 Å. Lists of fractional atomic coordinates, displacement parameters, distances, bond and torsion angles have been deposited at the Cambridge Crystallographic Data Centre, U.K., as Supplementary Material (CIF file).

Syntheses of substituted indolizidines 7 and 8:

(3R, 5S, 8R, 8aS)-8-Ethyl-3-phenyl-5-propyl-hexahydrooxazolo[3,2a]pyridine (17a). To a stirred suspension of magnesium (1.5 g, 63 mmol, 5.3 equiv.) in dry Et2O (10 ml) was added dropwise bromopropane (3.63 g, 29 mmol, 2.5 equiv.) in dry Et2O (30 ml) over a period of 0.5 h. After further stirring for 30 min at room temperature, oxazolidine 2b (2.71 g, 11.83 mmol), in dry Et2O (30 mL), was added dropwise at - 78°C over a period of 1 h. The reaction was warmed to 0°C for 1 h and to room temperature for 3 h. The excess reagent was eliminated with saturated aqueous NH4Cl. The residue was extracted with Et2O (3x50 ml) and the combined organic phases were dried (MgSO4), filtered through celite and concentrated. The crude clear yellow oil (2.94 g) so obtained consisted mainly of "kinetic" title adduct 17a; MS (EI) m/z (r.i.) 273 (M+, 5), 230 (100), 148 (25), 104 (34); MS (CI) (isobutane) m/z (r.i.) 330 ([M+C4H9]+, 2), 318 (11), 274 $([M+H]^+, 100); {}^{1}H$ NMR (250 MHz, CDCl₃) δ (ppm) 0.79 (t, J=7.2Hz, 3H, CH₂CH₂CH₃), 0.94 (t, J=7.3Hz, 3H, CH₂CH₃), 1.28 (m, 2H, CH₂CH₂CH₃), 1.30 (m, 1H, H-7), 1.31-1.45 (m, 2H, CHAHBCH3, H-6), 1.62 (m, 2H, CH2CH2CH3), 1.65-1.70 (m, 4H, H-3, H-7, CHAHBCH3, H-6), 2.64 (m, 1H, H-5), 3.64 (t, J=4.7Hz, 1H, H-2), 4.30-4.33 (m, 2H, H-2, H-3), 4.39 (d, J=5.5Hz, 1H, H-8a). 7.20-7.42 (m, 5H, 5xHarom); ¹³C NMR (62.5 MHz, CDCl₃) δ (ppm) 11.7 (CH₂CH₃), 14.3 (CH2CH2CH3), 19.4 (CH2CH2CH3), 22.6 (CH2CH3), 24.1 (C-6), 24.8 (CH2CH2CH3), 36.5 (C-7), 37.7 (C-8), 54.2 (C-5), 63.8 (C-3), 71.8 (C-2), 93.3 (C-8a), 127.2 (Carom), 127.4 (2xCarom), 128.4 (2xCarom), 142.1 (Cq).

(3*R*, 5*S*, 8*s*, 8*aR*)-8-Ethyl-3-phenyl-5-propyl-hexahydrooxazolo[3,2a]pyridine (17b). The above crude "kinetic" mixture (1.55 g) was chromatographied over neutral alumina using CH₂Cl₂-pentane (5 : 95) as eluent. Oxazolidine 17b (705 mg, 41 % from 2b) was isolated as pale yellow oil; $[\alpha]_D - 6 (c \ 1.6, CHCl_3)$; MS (EI) *m/z* (r.i.) 273 (M⁺·, 5), 230 (100), 148 (25), 104 (34); MS (CI) (isobutane) *m/z* (r.i.) 330 ([M+C4H9]⁺, 2), 318 (11), 274 ([M+H]⁺, 100); ¹H NMR (300 MHz, CDCl₃) δ (ppm) 0.50 (t, *J*=7.1Hz, 3H, CH₂CH₂CH₃), 0.88 (m, 1H, H-7), 0.90 (m, 1H, CH_AH_BCH₂CH₃), 0.97 (t, *J*=7.5Hz, 3H, CH₂CH₃), 1.10 (m, 2H, CH₂CH₂CH₃), 1.18 (m, 1H, CH_AH_BCH₃), 1.19 (m, 1H, H-7), 1.45 (m, 1H, H-6), 1.66 (m, 1H, H-8), 1.75 (m, 1H, CH_AH_BCH₃), 1.82 (m, 1H, H-6), 1.93 (m, 1H, CH_AH_BCH₂CH₃), 2.30 (m, 1H, H-5), 3.44 (d, *J*=8.7Hz, 1H, H-8a), 3.62 (t, *J*=7.6Hz, 1H, H-2), 3.70 (t, *J*=7.6Hz, 1H, H-3), 4.13 (t, *J*=7.6Hz, 1H, H-2), 7.15-7.45 (m, 5H, 5xH_{arom}); ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 11.1 (CH₂CH₃), 13.9 (CH₂CH₂CH₃), 18.7 (CH₂CH₂CH₃), 24.7 (CH₂CH₃), 28.4 (CH₂CH₂CH₃), 31.4 (C-6), 37.0 (C-7), 42.4 (C-8), 62.0 (C-5), 65.9 (C-3), 74.8 (C-2), 100.4 (C-8a), 126.9 (C_{arom}), 127.2 (2xC_{arom}), 128.3 (2xC_{arom}), 145.1 (Cq); HRMS (EI): Calcd. for C1₈H₂7NO (M⁺·) 273.2084, found 273.2088.

(2S, 3R, 6S)-(-)-2-[2-(1,3)-Dioxolan-2-yl-ethyl]-3-ethyl-1-[(1R)-1-phenyl-2-hydroxyethyl] -6-propylpiperidine (20). To a stirred suspension of magnesium turnings (200 mg, 8.24 mmol, 1.5 equiv.) in dry THF (1 ml) was added dropwise 2-(2-bromoethyl)-1,3-dioxolane (995 mg, 5.49 mmol) in THF (15 ml). The reaction was initiated by adding a few drops of 1,2-dibromoethane. The mixture was maintained below 40°C by periodic cooling with ice. After complete addition and further stirring for 15 min at room temperature, the resulting solution of Grignard reagent 19 was ready for use. To this solution was then added dropwise at ambient temperature, during 0.5 h, the crude mixture resulting from the treatment of oxazolidine 2b with an excess of n-propylmagnesium bromide (591 mg, 2.16 mmol,"kinetic" mixture containing major oxazolidine 17a) in THF (10 mL). The resulting mixture was further stirred for 3 h. The excess reagent was eliminated with saturated aqueous NH4Cl. The residue was extracted with Et2O (3x50 ml) and the combined organic phases were dried (MgSO4), filtered through celite and concentrated to give an oil consisting of a mixture of piperidines 20, 21, 22 in a 66 : 20 : 14 ratio (GC analysis). Chromatography over silica gel (40 g), using a gradient of AcOEt-heptane, gave pure isomer 20 as an oil (195 mg, 0.52 mmol, 24 % yield): $[\alpha]_D - 21$ (c 1.7, CHCl3); MS (EI) m/z (r.i.) 344 (98), 332 (100), 274 (55); MS (CI) (isobutane) m/z (r.i.) 422 ([M+C4H9]⁺, 25), 376 ([M+H]⁺, 100), 358 (31), 256 (48), 254 (16); ¹H NMR (300 MHz, CDCl₃) δ (ppm) 0.67 (t, J=7.3Hz, 3H, CH2CH3), 0.93 (t, J=7.1Hz, 3H, CH2CH2CH3), 0.94 (m, 1H, H-5), 0.95 (m, 1H, CHAHBCH3), 1.07 (m, 1H, H-3), 1.09 (m, 2H, 2xH-4), 1.24 (m, 1H, H-5), 1.28 (m, 1H, CHAHBCH3), 1.31 (m, 2H, CH₂CH₂CH₃), 1.38 (m, 1H, CH_AH_BCH₂CH₃), 1.65 (m, 1H, CH₂CHHCHO₂), 1.68 (m, 1H, CHAHBCH2CH3), 1.70 (m, 1H, CHAHBCH2CHO2), 1.85 (m, 1H, CHAHBCH2CHO2), 1.90 (m, 1H, CH2CHHCHO2), 2.72 (m, 1H, H-2), 3.10 (m, 1H, H-6), 3.62 (dd, J=10.0, 6.2Hz, 1H, CHAHBOH), 3.85 (m, 1H, OCH2CH2O), 3.89 (m, 1H, CHAHBOH), 3.97 (m, 1H, OCH2CH2O), 4.17 (dd, J=10.0, 6.2Hz, 1H, NCHCH2OH), 4.92 (t, J=4.2Hz, 1H, CH2CH2CHO2), 7.18-7.36 (m, 5H, 5xHarom); ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 10.8 (CH₂CH₃), 14.3 (CH₂CH₂CH₃), 20.0 (CH₂CH₂CH₃), 24.1 (CH₂CH₂CHO₂), 24.8 (C-5), 25.5 (CH2CH3), 26.2 (C-4), 31.0 (CH2CH2CHO2), 35.6 (CH2CH2CH3), 38.2 (C-3), 51.0 (C-6), 57.9 (C-2), 59.5 (NCHCH2OH), 61.1 (CH2OH), 64.7 (2C, OCH2CH2O), 104.5 (CH2CH2CHO2), 127.2 (Carom), 128.1 (2xCarom), 129.2 (2xCarom), 141.3 (Cq); HRMS (CI): Calcd. for C28H38NO3 $([M+H]^+)$ 276.2851, found 279.2822. Pure piperidine 21 (45 mg) was also isolated as an oil: $[\alpha]_D - 22$ (c

1.8, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ (ppm) 0.63 (m, 1H, H-4), 0.68 (t, *J*=6.0Hz, 3H, CH₃CH₂CH₂), 0.81 (t, *J*=7.3Hz, 3H, CH₂CH₃), 1.10 (m, 1H, H-4), 1.20 (m, 1H, CH_AH_BCH₃), 1.24 (m, 1H, H-5), 1.29 (m, 2H, CH₂CH₂CH₃), 1.40 (m, 1H, H-3), 1.48 (m, 1H, CH_AH_BCH₂CHO₂), 1.54 (m, 1H, H-2), 1.58 (m, 2H, CH₂CH₂CH₃), 1.61 (m, 1H, CH_AH_BCH₂CHO₂), 1.63 (m, 1H, CH_AH_BCH₃), 1.70 (m, 1H, H-5), 1.74 (m, 1H, CH₂CHHCHO₂), 2.56 (m, 1H, H-6), 2.80 (m, *J*=10.0Hz, 1H, H-2), 3.77 (m, 2H, CH₂OH), 3.88 (m, 2H, OCH₂CH₂OH), 3.96 (m, 1H, NCHCH2OH), 4.88 (t, *J*=4.5Hz, 1H, CH₂CH₂CHO₂), 7.18-7.40 (m, 5H, 5xH_{arom}). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 12.7 (CH₃CH₂), 14.3 (CH₃CH₂CH₂), 19.4 (C-5), 21.2 (C-4), 23.1 (CH₂CH₃), 25.9 (CH₂CH₂CH₃), 26.1 (CH₂CH₂CHO₂), 32.2 (CH₂CH₂CH₃), 32.8 (CH₂CH₂CHO), 37.8 (C-3), 53.8 (C-6), 57.7 (C-2), 63.9 (CH₂OH), 65.0 (3C, OCH₂CH₂O, NCHCH₂OH), 104.7 (CH₂CH₂CHO₂), 127.5 (C_{arom}), 128.5 (2xC_{arom}), 128.6 (2xC_{arom}), 141.9 (C_q).

(1R, 2R, 3S, 6S)-(-)-2-[2-[1,3]Dioxolan-2-yl-ethyl]-3-ethyl-1-(1-phenyl-2-hydroxyethyl)-6-propylpiperidine (22). Treatment of oxazolidine 17b (500 mg, 1.83 mmol) with an excess of Grignard reagent 19, using the conditions used for the preparation of piperidine 20, gave a mixture of two products 20 and 22 in a ratio of 15:85 (GC analysis). The major product 22 was isolated as an oil (422 mg, 1.13 mmol, 62 % yield) after chromatography over silica gel using a gradient of AcOEt-heptane: $[\alpha]_D - 56$ (c 1.6, CHCl3); MS (EI) m/z (r.i.) 344 (90), 332 (100), 274 (64); MS (CI) (isobutane) m/z (r.i.) 376 ([M+H]⁺, 100), 358 (18), 256 (54), 254 (8); ¹H NMR (300 MHz, CDCl₃) δ (ppm) 0.72 (t, J=7.4Hz, 3H, CH₂CH₃), 0.95 (t, J=7.1Hz, 3H, CH₂CH₂CH₃), 0.98 (m, 1H, CH_AH_BCH₂CHO₂), 1.02 (m, 1H, H-4), 1.17 (m, 1H, H-5), 1.20 (m, 1H, CHAHBCH2CHO2), 1.30 (m, 3H, CH2CH2CHO2, H-3), 1.35 (m, 1H, H-4), 1.40 (m, 2H, CHAHBCH2CH3, CHAHBCH3), 1.70 (m, 2H, CHAHBCH2CH3, CHAHBCH3), 1.71 (m, 2H, CH2CH2CH3), 1.73 (m, 1H, H-5), 2.27 (m, J=9.7Hz, 1H, H-2), 2.97 (m, J=8.9Hz, 1H, H-6), 3.70-3.97 (m, 7H, CH2OH, OCH2CH20, NCHCH2OH), 4.61 (t, J=4.8Hz, 1H, CH2CH2CHO2), 7.22-7.40 (m, 5H, 5xHarom); ¹³C NMR (75 MHz, CDCl3) δ (ppm) 12.2 (CH₂CH₃), 14.4 (CH₂CH₂CH₃), 19.5 (C-5), 21.4 (C-4), 22.9 (CH₂CH₃), 24.9 (2C, CH₂CH₂CH₃, CH₂CH₂CHO₂), 32.2 (2C, CH₂CH₂CH₃, CH2CH2CHO2), 37.5 (C-3), 53.5 (C-6), 56.7 (C-2), 63.6 (CH2OH), 64.6 (2C, OCH2CH2O), 64.6 (NCHCH2OH), 104.4 (CH2CH2CHO2), 127.3 (Carom), 128.2 (2xCarom), 128.7 (2xCarom), 141.4 (Cq); HRMS (CI): Calcd. for C23H38NO3 ([M+H]+) 276.2852, found 279.2868.

(5S, 8R, 8aS)-(-)-8-Ethyl-5-propyl-octahydroindolizidine (7). Piperidine 20 (280 mg, 0.75 mmol) was dissolved in a mixture of EtOAc (20 ml), ethanol (20 ml) and a aqueous 20 % HCl solution (10 ml). A catalytic amount of 10 % Pd/C was added and the mixture was stirred under hydrogen atmosphere for 3 days. The aqueous phase was alkalinized with 30 % NH4OH in water and then extracted with AcOEt (3x50 mL). The combined AcOEt phases were dried (MgSO4), acidified with a HCl-MeOH solution, and evaporated. Flash chromatography of the residue on silica gel using CH₂Cl₂-8 % MeOH as eluent gave indolizidine 7.HCl (117 mg, 0.5 mmol, 67 % yield). Analytical data for the free base: $[\alpha]_D - 18 (c \ 0.8, CHCl_3)$; MS (EI) *m/z* (r.i.) 195 (M⁺·, 10), 152 (100); MS (CI) (isobutane) *m/z* (r.i.) 196 ([M+H]⁺, 100); ¹H NMR (300 MHz, CDCl₃) δ (ppm) 0.88 (t, *J*=7.0Hz, 3H, CH₂CH₃), 0.93 (t, *J*=7.0Hz, 3H, CH₂CH₂CH₃), 1.05 (m, 1H, CH_AH_BCH₃), 1.08 (m, 1H, H-6), 1.10 (m, 1H, H-8), 1.30 (m, 1H, CH_AH_BCH₂CH₃), 1.60 (m, 1H, H-2), 1.65 (m, 1H, CH_AH_BCH₂CH₃), 1.50 (m, 1H, CH_AH_BCH₃), 1.60 (m, 1H, H-2), 1.65 (m,

1H, H-6), 1.73 (m, 2H, 2xH-7), 1.80 (m, H, H-2), 1.92 (m, 1H, H-1), 2.18 (m, 1H, H-8a), 2.68 (q, J=8.8Hz, 1H, H-3), 2.87 (dt, J=8.8, 3.2Hz, 1H, H-3), 3.03 (m, 1H, H-5); ¹³C NMR (75 MHz, CDCl3) δ (ppm) 11.2 (CH₂CH₃), 14.5 (CH₂CH₂CH₃), 20.7 (C-2), 20.9 (CH₂CH₂CH₃), 24.2 (C-6), 24.8 (CH₂CH₂CH₃), 26.1 (CH₂CH₃), 27.6 (C-7), 29.5 (C-1), 43.6 (C-8), 49.0 (C-3), 55.3 (C-5), 60.6 (C-8a); HRMS (EI): Calcd. for C1₃H₂₅N (M⁺·) 195.1987, found 195.2001.

(55, 85, 8aR)-(+)-8-Ethyl-5-propyl-octahydroindolizidine (8). Piperidine 22 (371 mg, 1.9 mmol) was hydrogenated under the conditions used for the preparation of indolizidine 7 to give pure indolizidine 8, HCl (312 mg, 73 % yield) as colourless needles. Analytical data for the free base: $[\alpha]_D + 99$ (*c* 1.7, CHCl3); MS (EI) *m/z* (r.i.) 195 (M⁺, 5), 152 (100); MS (CI) *m/z* (r.i.) 196 ([M+H]⁺, 100); ¹H NMR (300 MHz, CDCl3) δ (ppm) 0.90 (t, *J*=7.3Hz, 3H, CH₂CH₃), 0.93 (t, *J*=7.0Hz, 3H, CH₂CH₂CH₃), 0.96 (m, 1H, H-1), 1.10 (m, 1H, H-7), 1.26 (m, 1H, CH₃CHHCH₂), 1.30 (m, 1H, CH_AH_BCH₂CH₃), 1.32 (m, 1H, H-8), 1.40 (m, 1H, H-6), 1.45 (m, 1H, CH₂CHHCH₃), 1.49 (m, 1H, H-7), 1.58 (m, 1H, CH_AH_BCH₃), 1.70 (m, 1H, H-6), 1.80 (m, 2H, 2xH-2), 1.88 (m, 1H, CH_AH_BCH₂CH₃), 1.90 (m, 1H, H-1), 1.91 (m, 1H, H-8a), 2.02 (m, 1H, CH_AH_BCH₃), 2.17 (m, 1H, H-5), 2.23 (q, *J*=9.3Hz, 1H, H-3), 3.40 (dt, *J*=9.3, 3.5Hz, 1H, H-3). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 10.8 (CH₂CH₃), 14.2 (CH₂CH₂CH₃), 18.8 (CH₂CH₂CH₃), 20.1 (C-2), 25.7 (C-7), 28.6 (CH₂CH₂CH₃), 29.3 (C-1), 30.4 (CH₂CH₃), 36.1 (C-6), 42.3 (C-8), 51.7 (C-3), 63.6 (C-5), 70.4 (C-8a); Anal. Calcd. for C1₃H₂6ClN: C, 67.29; H, 11.30; N, 6.04; Cl, 15.37; found: C, 67.33; H, 11.01; N, 5.87; Cl, 15.01.

(5*R*, 8*s*, 8*aS*)-(-)-8-Ethyl-5-propyl-octahydroindolizidine (23). Piperidine 21 (40 mg, 0.1 mmol) was hydrogenated under the conditions used for the preparation of indolizidine 7 to give pure indolizidine 23.HCl (13.5 mg, 54 %, colourless oil) as colourless needles. Analytical data for the free base: $[\alpha]D - 86$ (*c* 1.2, CHCl3); MS (EI) *m*/*z* (r.i.) 195 (M⁺·, 7), 152 (100); MS (CI) (isobutane) *m*/*z* (r.i.) 196 ([M+H]⁺, 100); ¹H NMR (300 MHz, CDCl3) δ (ppm) 0.87 (m, 1H, H-1), 0.88 (t, *J*=7.3Hz, 3H, CH₂CH₃), 0.92 (t, *J*=7.0Hz, 3H, CH₂CH₂CH₃), 1.05 (m, 1H, H-7), 1.17 (m, 1H, H-8), 1.21 (m, 1H, CH₂CHHCH3), 1.22 (m, 1H, CH₂HBCH₂CH₃), 1.33 (m, 1H, H-6), 1.43 (m, 1H, CH₂CHHCH₃), 1.47 (m, 1H, CH₄HBCH₃), 1.48 (m, 1H, H-7), 1.61 (m, 1H, H-8a), 1.62 (m, 1H, H-2), 1.64 (m, 1H, H-6), 1.78 (m, 1H, H-3), 3.27 (dt, *J*=8.7, 2.2Hz, 1H, H-3); ¹³C NMR (75 MHz, CDCl3) δ (ppm) 11.2 (CH₂CH₃), 14.6 (CH₂CH₂CH₃), 37.1 (C-6), 43.2 (C-8), 52.0 (C-3), 63.6 (C-5), 70.1 (C-8a); HRMS (EI): Calcd. for C1₃H₂5N (M⁺·) 195.1987, found 195.1993.

Acknowledgements

D. Gnecco. and C. Marazano gratefully acknowledge support from ECOS project #M95E01 (Mexico-France)

References and Notes

1. (a) Wong, Y-S.; Marazano, C.; Gnecco, D.; Génisson, Y.; Chiaroni, A.; Das, B. C. J. Org. Chem. 1997, 62, 729; (b) Wong, Y.-S.; Marazano, C.; Gnecco, D.; Das, B. C. Tetrahedron Lett. 1994, 35, 707; (c) Gnecco, D.; Marazano, C.; Das, B. C. J. Chem. Soc. Chem. Commun. 1991, 625; (d) For related examples of use of chiral 1,4-dihydropyridine equivalents obtained from (R)-(-)-phenylglycinol see: Royer, J.; Husson, H.-P. J. Org. Chem. 1985, 50, 670; Grierson, D. S.; Royer, J.; Guerrier, L.; Husson, H.-P. J. Org. Chem. 1986, 51, 4475.

2. Monitoring the reaction by ¹H-NMR in CDCl₃ also allowed us to observe the formation of a transient third intermediate characterized by a H-8a proton appearing as a doublet (J_{H-8a} , H-8 = 2.6 Hz) at 3.82 ppm. Accordingly, a 5R, 8S, 8aS configuration can be proposed for this unstable intermediate.

3. GC analyses were performed on a capillary column after derivatization of the alcoholic functions as *t*-butyldimethylsilyl groups.

4. Mohamadi, F.; Richards, N.J.G.; Guida, W.C.; Liskamp, R.; Lipton, M.C.; Caufield, M.; Chang, G.; Hendrickson, T.; Still, W.C. J. Comput. Chem. 1990, 11, 440.

5. Allinger, N.L. J. Am. Chem. Soc. 1977, 99, 8127.

6. This alkaloid belongs to a class of indolizidines which became the object of much synthetic efforts during the past years: (a) Comins, D. L.; LaMunyon, D. H.; Chen, X.J. Org. Chem. 1997, 62, 8182; (b) Toyooka, N.; Tanaka, K., Momose, T.; Daly, J. W.; Garraffo, M. Tetrahedron 1997, 28, 9553; (c) Michael, J. P.; Gravestock, D. Synlett 1996, 981 and references cited therein.

7. Stowell, J. C. Chem. Rev. 1984, 84, 409.

8. For a useful discussion of the stereoselectivity of nucleophilic attack on related iminium ions see: Stevens, R. V. Acc. Chem. Res. 1984, 17, 289.

9. In our hands these indolizidine derivatives were found to be sensitive to aerial degradation. We believe this instability to be due to formation of carbonate salts by atmospheric CO₂, and thus preferred to purify these compounds as HCl salts (see experimental).

10. Polniaszek, R. P.; Belmont S. E. J. Org. Chem. 1991, 56, 4868.

11. (a) Sheldrick, G.M. SHELXS86, Program for the Solution of Crystal Structures, University of Göttingen, Germany, 1985. (b) Sheldrick, G. M. SHELX76, Program for Crystal Structure Determination, University of Cambridge, England, 1976.