This article was downloaded by: [University of California, San Diego] On: 28 December 2014, At: 08:56 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK # Phosphorus, Sulfur, and Silicon and the Related Elements Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/gpss20 ## NEW 2-HYDRAZONOPHENYLTHIOACETAMIDES INTERMEDIATES IN THE SYNTHESIS OF 6-ACYLAMINO-3,6- DIHYDRO-2H-1,3,4-THIADIAZINES M. J. Gil ^a , A. Reliquet ^a & J. C. Meslin ^a To cite this article: M. J. Gil , A. Reliquet & J. C. Meslin (1997) NEW 2-HYDRAZONOPHENYLTHIOACETAMIDES INTERMEDIATES IN THE SYNTHESIS OF 6-ACYLAMINO-3,6-DIHYDRO-2H-1,3,4-THIADIAZINES, Phosphorus, Sulfur, and Silicon and the Related Elements, 126:1, 39-52, DOI: <u>10.1080/10426509708043544</u> To link to this article: http://dx.doi.org/10.1080/10426509708043544 #### PLEASE SCROLL DOWN FOR ARTICLE Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content. This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions ^a Laboratoire de Synthése Organique, U. A. C.N.R.S. 475, 2, rue de la Houssiniére, 44072, Nantes Cedex, France Published online: 04 Oct 2006. ### NEW 2-HYDRAZONOPHENYLTHIOACETAMIDES INTERMEDIATES IN THE SYNTHESIS OF 6-ACYLAMINO-3,6-DIHYDRO-2H-1,3,4-THIADIAZINES M. J. GIL, A. RELIQUET and J. C. MESLIN Laboratoire de Synthèse Organique, U. A. C.N.R.S. 475, 2, rue de la Houssinière, 44072 Nantes Cedex (France) (Received 10 December, 1996) The three steps synthesis of new 2-hydrazonophenylthioacetamides having a N-monosubstitued thioamide group is described. The selective acylation of the thioamide nitrogen atom involves an intramolecular cyclisation affording 3,6-dihydro-2H-1,3,4-thiadiazines with good yields. *Keywords:* 2-hydrazonophenylacetamides; 2-hydrazonophenylthioacetamides; 3,6-dihydro-2H-1,3,4-thiadiazines #### INTRODUCTION We have recently reported the synthesis and some properties of 2-hydrazonophenylthioacetamides $^{1-3}$ (2,4-diamino-3-phenyl-1-thia-4-azabutadienes) the molecular structure of which presents an original heteroatomic chain. These compounds were obtained later than 2-hydrazonothioacetophenones which have been used in heterocyclic synthesis to build thiazoles, Δ^4 -thiazolines, Δ^4 -thiazines, Δ^4 -thiazines, Δ^4 -thiazines, Δ^4 -thiazines and 1,4-thiazines. The 2-hydrazonophenylthioacetamides present the advantage of a greater stability than the former compounds but their reactivity is quite different. Particularly, the dienic chain does not allow the [4 + 2] cycloaddition reaction. I. T. Barnish had already observed the same difference between α,β -ethylenic thioketones⁶⁻⁸ and thioamides analogs,⁹ the latter being inefficient as dienes in Diels-Alder cycloadditions. In 1989 this author has described the dihydrothiopyranes synthesis starting from α,β -ethylenic thioamides which react with dienophile reagents only if acetyl chloride and pyridine are added to the reaction mixture. ⁹ It is likely that the in-situ acylation of the nitrogen of the thioamide thus bearing an electron withdrawing group enhances the reactivity of the dienophile. $$\begin{array}{c|c} R \\ H \\ \hline \\ Ar \end{array} \begin{array}{c} CH_3COC1 \\ \hline \\ Pyridine \end{array} \begin{array}{c} R \\ \hline \\ CH_3CO \\ \hline \\ Ar \end{array} \begin{array}{c} X \\ \hline \\ Ar \end{array} \begin{array}{c} X \\ \hline \\ X - CH = CH - Y \\ \hline \\ Ar \end{array} \begin{array}{c} CH_3CO \\ \hline \\ Ar \end{array} \begin{array}{c} X \\ \hline \\ Ar \end{array}$$ In this paper we report firstly on the preparation of new 2-hydrazonophenyl-thioacetamides with a N-monosubstituted thioamide group and secondly the substitution of the nitrogen atom by electron withdrawing groups with the aim to get closer to the Barnish models. The synthetized molecules do not even react with dienophiles but they lead to 3,6-dihydro-2H-1,3,4-thiadiazines. The aim of this paper is to present this new way of synthesis of these compounds. #### RESULTS 2-Hydrazonophenylthioacetamides 2 are obtained in three steps starting from methylbenzoylformate which reacts with primary amines to give benzoylformamides. Condensation of substituted hydrazines leads to the 2-hydrazonophenyl- acetamides 1. Then the latter are thionated using Lawesson reagent affording compounds 2. The isolated compound 1f presents two diastereoisomeric forms. The determination of the corresponding geometries has been already discussed in a previous paper.³ Deprotonation of compounds 2 by sodium hydride followed by substitution of the anion using acid chlorides, methylchloroformate or mesyl chloride yields the corresponding N-substituted compounds 3. In most of the cases compounds 3 are not isolated. In fact the substitution reaction is spontaneously followed by an intramolecular cyclisation to give 6-acylamino-3,6-dihydro-2H-1,3,4-thiadiazines 4. This annelation proceeds probably through the zwitterionic form of compound 3 which isomerises to a tautomer. In the latter the thiolate is added to the iminium carbon. NMR spectra of the compounds 4 allow to observe only one diastereomer signal. The relative configuration of both carbons in the 2 and 6 position can be determinated observing $4m^{-1}H$ spectrum. This compound bears a methylen group in the 2 position and only one of the two hydrogens is coupled (J = 1.0 Hz) with the proton in 6 position. According to Karplus, it is reasonable to think that both coupled protons are on the same side of the ring. In all the other cases, hydrogens at the 2 and 6 positions are not coupled. Thus, relative configuration of the corresponding carbons is probably 2RS, 6RS. Compounds 3 which can be isolated give easily the corresponding dihydrothiadiazines 4 in quantitative yields when they are heated in benzene. The proposed mecanism needs an hydrogen atom in the α position of the nitrogen of the hydrazono group. Compounds 3 bearing a diphenylhydrazono group are quite stable. Surprisingly, such stable compounds 3 treated with dienophile reagents do not react as thiazadienes and we have never obtained the desired 1,4-thiazines. #### CONCLUSION The mode of synthesis of the 1,3,4-thiadiazine ring system described in this work is quite different relatively to the methods already described in the litterature. However Hojo^{11} has obtained 1,3,4-thiadiazines by sulfuration of C-trifluoroalkylketones α -dialkylhydrazones using Lawesson reagent. $$\begin{array}{c|c} CF_3 & O & R^2 & R \cdot L \cdot \\ R^1 & N & N & R^3 \end{array}$$ $$\begin{array}{c|c} R^2 & R \cdot L \cdot \\ R^1 & N & N & R^3 \end{array}$$ $$\begin{array}{c|c} CF_3 & S & R^3 \\ R^1 & N & N & R^3 \end{array}$$ This author supposes thiocarbonyl compounds as intermediates but never isolates them. This result shows like in our case that an electron withdrawing group α to the β -group is an important factor in the cyclisation process. Many 1,3,4-thiadiazines are used particularly in therapeutic area. ¹² Thus a new way to synthetise this ring system is interesting. #### **EXPERIMENTAL** Melting points were measured using a Reichert microscope and are uncorrected. Kieselgel 60 (70-230 mesh) from Merck was used for silica gel chromatography. TLC was done on Merck silica gel 60 F_{254} precoated plates. ¹H and ¹³C NMR spectra were recorded on Bruker AC 200 NMR spectrometer operating at 200 MHz and 50.3 MHz respectively. Chemical shifts were reported as δ value in part per million relative to tetramethylsilane as an internal standard. All samples were dissolved in CDCl₃. Mass spectra were measured on a Hewlett Packard 5989A at an ionizing voltage of 70 eV. Microanalysis were performed by the analyses central service of CNRS. 2-Hydrazonophenylacetamides 1 general procedure: substituted hydrazine (3.10⁻² mol) (or the corresponding chlorhydrate (10⁻² mol) for 1a and 1g) was added to an ethanolic solution (20mL) of benzoylformamide (10⁻² mol) and acetic acid (4.10⁻² mol) (or sodium acetate (10⁻² mol) for 1a and 1g). After refluxing (7 h for 1a, i, j, 24 h for 1c, e-h, k) the solvent was removed and the residue, diluted with CH₂Cl₂, was chromatographed. After elution by CH₂Cl₂/AcOEt (19/1 for 1a and F₁ of 1f, 9/1 for 1c, e, i, k and 7/3 for F₂ of 1f, 1g, h, j) compounds 1 were crystallised from Et₂O. Compound 1a: yield 70%; mp 149°C; ¹H NMR δ 1.63-1.82 (4H, m, 2CH₂), 2.88 (3H, d, J = 5.1 Hz, CH₃), 2.98-3.11 (4H, m, 2NCH₂), 7.00 (1H, br.s, NH), 7.30 (5H, br.s, C_6H_5); ^{13}C NMR δ 23.9 (t, 2CH₂), 25.6 (q, CH₃N), 54.9 (t, 2NCH₂), 126.8, 127.3, 129.8 (3d, CH_{arom}), 133.8 (s, C_{arom}), 134.4 (s, C=N), 166.0 (s, C=O); MS $C_{13}H_{17}N_3O$ 231 (M⁺). Anal. calcd: C, 67.50; H,7.41, N,18.17. Found: C, 67.41; H, 7.52; N, 18.09. Compound 1c: yield 70%; mp 112°C; ${}^{1}H$ NMR δ 1.43-1.51 (6H, m, 3CH₂), 2.88 (3H, d, J = 5.1 Hz, CH₃), 2.92-3.00 (4H, m, 2NCH₂), 7.13 (1H, br.s, NH), 7.37 (5H, br.s, C₆H₅); ${}^{13}C$ NMR δ 23.8 (t, CH₂), 24.8 (t, 2CH₂), 25.9 (q, CH₃N), 54.8 (t, 2NCH₂), 127.8, 128.3, 128.7 (3d, CH_{arom}), 134.1 (s, C_{arom}), 139.7 (s, C=N). 165,7 (s, C=O); MS C₁₄H₁₉N₃O 245 (M⁺). Compound 1e: yield 88%; mp 71°C; ¹H NMR δ 1.44-1.53 (8H, m, 4CH₂), 2.87 (3H, d, J = 5.0 Hz, CH₃), 3.12-3.23 (4H, m, 2NCH₂), 7.01 (1H, br.s, NH), 7.28 (5H, br.s, C₆H₅); ¹³C NMR δ 25.9 (q, CH₃N), 27.2 (t, 2CH₂), 27.4 (t, 2CH₂), 56.5 (t, 2NCH₂), 127.1, 127.6, 129.8 (3d, CH_{arom}), 131.4 (s, C_{arom}), 135.3 (s, C=N), 166.5 (s, C=O); MS C₁₅H₂₁N₃O 259 (M⁺). Compound 1f: yield 88% F_1 : mp 105°C; ¹H NMR δ 2.92 (3H, d, J = 5.0 Hz, CH₃NH), 3.42 (3H, s, N(CH₃)C₆H₅), 6.11 (1H, br.s, NH), 6.97-7.68 (10H, m, 2C₆H₅); ¹³C NMR δ 26.2 (q, CH₃NH), 41.0 (q, N(CH₃)C₆H₅), 115.9, 121.9, 127.7, 128.5, 128.9, 129.6 (6d, CH_{arom}), 134.2, 138.9 (2s, C_{arom}), 148.6 (s, C=N), 165.9 (s, C=O). F_2 : mp 150°C; ¹H NMR δ 2.94 (3H, d, J = 5.0 Hz, CH₃NH), 2.95 (3H, s, N(CH₃)C₆H₅), 6.03 (1H, br.s, NH), 7.21-7.42 (10H, m, 2C₆H₅); ¹³C NMR δ 25.8 (q, CH₃NH), 39.3 (q, N(CH₃)C₆H₅), 115.5, 120.8, 126.3, 128.3, 128.8, 129.2 (6d, CH_{arom}), 136.1, 142.6 (2s, C_{arom}), 149.5 (s, C=N), 168.1 (s, C=O) MS $C_{16}H_{17}N_{3}O$ 267 (M⁺). Compound 1g: yield 82%; mp 140°C; ¹H NMR δ 2.42 (3H, d, J = 4.8 Hz, CH₃), 5.38 (1H, br.s, NH), 7.06-7.82 (15H, m, 3C₆H₅); ¹³C NMR δ 25.3 (q, CH₃N), 122.9, 124.5, 126.5, 128.4, 129.0 (9d, CH_{arom}), 129.1, 135.7, 145.9 (3s, C_{arom}), 147.0 (s, C=N), 165.7 (s, C=O); MS C₂₁H₁₉N₃O 329 (M⁺). Anal. calcd: C, 76.57; H, 5.81; N, 12.76. Found: C, 76.63; H, 5.96; N, 12.59. Compound 1h: 73%; mp 146°C; ${}^{1}H$ NMR δ 1.27 (6H, d, J = 6.6 Hz, (CH₃)₂CH), 3.01-3.06 (4H, m, 2NCH₂), 3.78-3.83 (4H, m, 2OCH₂), 4.31 (1H, h.d, J = 6.6 Hz and J = 8.2 Hz, (CH₃)₂CH), 6.14 (1H, d, J = 8.2 Hz, NH), 7.32-7.41 and 7.70-7.77 (5H, 2m, C₆H₅); ${}^{13}C$ NMR δ 22.5 (q, (CH₃)₂CH), 41.3 (d, (CH₃)₂CH), 55.7 (t, 2NCH₂), 66,2 (t, 2OCH₂), 127.1, 128.4, 130.3 (3d, CH_{arom}), 133.9 (s, C_{arom}), 158.2 (s, C=N), 164.7 (s, C=O); MS C₁₅H₂₁N₃O₂ 275 (M⁺). Compound 1i: yield 86%: mp 83°C; 1 H NMR δ 1.19 (6H, d, J = 6.6 Hz, (CH₃)₂CH), 1.34-1.53 (6H, m, 3CH₂), 2.91-2.99 (4H, m, 2NCH₂), 4.08 (1H, h.d, J = 6.6 Hz and J = 8.2 Hz, (CH₃)₂CH), 7.01 (1H, d, J = 8.2 Hz, NH), 7.26-7.72 (5H, m, C₆H₅); 13 C NMR δ 22.9 (q, (CH₃)₂CH), 23.9 and 25,0 (2t, 3CH₂), 41.3 (d, (CH₃)₂CH), 54.9 (t, 2NCH₂), 127.9, 128.4, 128.9 (3d, CH_{arom}), 134.2 (s, C_{arom}), 139.6 (s, C=N), 164.2 (s, C=O); MS $C_{16}H_{23}N_{3}O$ 273 (M⁺). Compound 1j: yield 80%; mp 158°C; 1 H NMR δ 2.92-2.97 (4H, m, 2NCH₂), 3.59-3.64 (4H, m, 2OCH₂), 4.62 (2H, d, J = 6.0 Hz, C₆H₅CH₂), 6.71 (1H, br.s, NH), 7.29-7.81 (10H, m, 2C₆H₅); 13 C NMR δ 43.2 (t, C₆H₅CH₂), 55.8 (t, 2NCH₂), 66.0 (t, 2OCH₂), 127.3, 127.8, 128.2, 128.5, 128.8, 130.5 (6d, CH_{arom}), 133.8, 137.7 (2s, C_{arom}), 158.2 (s, C=N), 165.4 (s, C=O); MS C₁₉H₂₁N₃O₂323 (M⁺). Compound 1k: yield 62%; mp 80°C; ${}^{1}H$ NMR δ 1.42-1.47 (6H, m, 3CH₂), 2.90-3.01 (4H, m, 2NCH₂), 4.53 (2H, d, J = 6.1 Hz, C₆H₅CH₂), 7.32-7.53 (11H, m, 2C₆H₅ and NH buried); ${}^{13}C$ NMR δ 23.9 and 24.9 (2t, 3CH₂), 43.4 (t, C₆H₅CH₂), 54.9 (t, 2NCH₂), 127.2, 127.7, 127.9, 128.4, 128.5, 128.9 (6d, CH_{arom}), 134.2, 138.6 (2s, C_{arom}), 139.1 (s, C=N), 165.1 (s, C=O); MS C₂₀H₂₃N₃O 321 (M⁺). **2-Hydrazonophenylthioacetamides 2** general procedure: Lawesson reagent (2.6 10⁻³ mol) was added to a benzenic solution (5mL) of 2-hydrazonophenylacetamide **1** (4 10⁻³mol) under a N₂ atmosphere. After refluxing (5 h for **2a, e-h,** 18 h for **2i-k**) the solvent was removed and the residue diluted with CH₂Cl₂ and chromatographed. After elution by CH₂Cl₂ (for **2c, f, g, i, j**) or by CH₂Cl₂/AcOEt (19/1) (for **2a, e, h, k**) compounds **2** were crystallised from Et₂O or isolated as a yellow oil (**2i, j**). Compound **2a**: yield 67%; mp 108°C; ¹H NMR δ 1.61-1.82 (4H, m, 2CH₂), 2.94-3.16 (4H, m, 2NCH₂), 3.25 (3H, d, J = 5.0 Hz, CH₃), 7.28 (5H, br.s, C₆H₅), 8.86 (1H, br.s, NH); ¹³C NMR δ 23,8 (t, 2CH₂), 32.0 (q, CH₃), 54.4 (t, 2NCH₂), 126.5, 127.4, 130.9 (3d, CH_{arom}), 136.3 (s, C_{arom}), 136.5 (s, C=N), 193.0 (s, C=S); MS C₁₃H₁₇N₃S 247 (M⁺). Compound 2c: yield 65%; mp 85°C; 1 H NMR δ 1.42-1.59 (6H, m, 3CH₂), 2.86-3.03 (4H, m, 2NCH₂), 3.26 (3H, d, J = 5.0 Hz, CH₃), 7.33 (5H, br.s, C₆H₅), 9.06 (1H, br.s, NH); 13 C NMR δ 23.8 and 25.0 (2t, 3CH₂), 32.8 (q, CH₃N), 54.8 (t, 2NCH₂), 127.6, 128.2, 129.4 (3d, CH_{arom}), 136.4 (s, C_{arom}), 140.7 (s, C=N), 193.3 (s, C=S); MS C₁₄H₁₉N₃S 261 (M⁺). Anal. calcd: C, 67.33; H, 7.33; N, 16.08; S, 12.27. Found: C, 67.15; H, 7.45; N, 15.97; S; 12.35. Compound **2e**: yield 62%; mp 90°C; 1 H NMR δ 1.29-1.61 (8H, m, 4CH₂), 3.11-3.27 (4H, m, 2NCH₂), 3.23 (3H, d, J = 5.0 Hz, CH₃), 7.27 (5H, br.s, C₆H₅), 8.91 (1H, br.s, NH); 13 C NMR δ 27.2 and 27.6 (2t, 4CH₂), 32.3 (q, CH₃N), 56.4 (t, 2NCH₂), 127.0, 127.6, 130.5 (3d, CH_{arom}), 134.1 (s, C_{arom}), 137.2 (s, C=N), 193.6 (s, C=S); MS C₁₅H₂₁N₃S 275 (M⁺). Compound 2f: yield 89%; mp 125°C; ¹H NMR δ 2.86 (3H, s, N(CH₃)C₆H₅), 3.22 (3H, d, J = 5.0 Hz, CH₃NH), 7.26 (10H, br.s, 2C₆H₅), 8.95 (1H, br.s, NH); ¹³C NMR δ 32.6 (q, CH₃NH), 40.5 (q, N(CH₃)C₆H₅), 116.3, 122.0, 127.3, 128.9, 130.2 (6d, CH_{arom}), 136.1, 142.2 (2s, C_{arom}), 148.5 (s, C=N), 193.4 (s, C=S); $MS C_{16}H_{17}N_3S$ 283 (M^+). Compound 2g: yield 80%; mp 134°C; ¹H NMR δ 3.33 (3H, d, J = 5.0 Hz, CH₃), 6.82-7.36 (15H, m, 3C₆H₅), 9.26 (1H, br.s, NH); ¹³C NMR δ 32.8 (q, CH₃N), 122.9, 124.7, 127.0, 129.0, 129.0, 129.6 (9d, CH_{arom}), 135.5, 138.9, 147.2 (3s, C_{arom}), 146.3 (s, C=N), 193.0 (s, C=S); MS C₂₁H₁₉N₃S 345 (M⁺). Anal. calcd: C, 73.01; H, 5.54; N, 12.16; S, 9.28. Found: C, 73.17; H, 5.63; N, 12.33; S, 9.45. Compound 2h: yield 78%; mp 100°C; ¹H NMR δ 1.33 (6H, d, J = 6.6 Hz, (CH₃)₂CH), 2.89-2.94 (4H, m, 2NCH₂), 3.57-3.62 (4H, m, 2OCH₂), 4.67 (1H, h.d, J = 6.6 Hz and J = 8.2 Hz, (CH₃)₂CH), 7.26-7.36 (5H, m, C₆H₅); ¹³C NMR δ 21.4 (q, (CH₃)₂CH), 46.8 (d, (CH₃)₂CH), 54.2 (t, 2NCH₂), 66.2 (t, 2OCH₂), 127.8, 128.6, 129.3 (3d, CH_{arom}), 135.6 (s, C_{arom}), 145.1 (s, C=N), 190.2 (s, C=S); MS C₁₅H₂₁N₃OS 291 (M⁺). Compound 2i: yield 88%; Rf (CH₂Cl₂) 0.75; ¹H NMR δ 1.24 (6H, d, J = 6.6 Hz, (CH₃)₂CH), 1.29-1.48 (6H, m, 3CH₂), 2.78-2.97 (4H, m, 2NCH₂), 4.61 (1H, h.d, J = 6.6 Hz and J = 8.1 Hz, (CH₃)₂CH), 7.14-7.39 (5H, m, C₆H₅), 8.77 (1H, br.s, NH); ¹³C NMR δ 21.6 (q, (CH₃)₂CH), 23.9 and 25.2 (2t, 3CH₂), 46.6 (d, (CH₃)₂CH), 54.9 (t, 2NCH₂), 127.7, 128.2, 129.5 (3d, CH_{arom}), 136.5 (s, C_{arom}), 140.5 (s, C=N), 190.7 (s, C=S); MS C₁₆H₂₃N₃S 289 (M⁺). Compound **2j**: yield 95%; Rf (CH₂Cl₂) 0.45; ¹H NMR δ 2.89-2.92 (4H, m, 2NCH₂), 3.54-3.59 (4H, m, 2OCH₂), 4.93 (2H, d, J = 5.5 Hz, C₆H₅CH₂), 7.27-7.50 (10H, m, 2C₆H₅), 9.17 (1H, br.s, NH); ¹³C NMR δ 49.5 (t, C₆H₅CH₂), 54.1 (t, 2NCH₂), 66.0 (t, 2OCH₂), 127.7, 127.8, 127.9, 128.6, 128.7, 129.3 (6d, CH_{arom}), 135.5, 136.8 (2s, C_{arom}), 144.1 (s, C=N), 192.0 (s, C=S); MS C₁₉H₂₁N₃OS 339 (M⁺). Compound **2k**: yield 78%; mp 127°C; ^{1}H NMR δ 1.44-1.62 (6H, m, 3CH₂), 2.92-2.97 (4H, m, 2NCH₂), 5.00 (2H, d, J = 6.1 Hz, C₆H₅CH₂), 7.35-7.70 (10H, m, 2C₆H₅), 8.46 (1H, br.s, NH); ^{13}C NMR δ 23.8 and 25.2 (2t, 3CH₂), 49.2 (t, C₆H₅CH₂), 56.2 (t, 2NCH₂), 127.9, 128.2, 128.3, 128.6, 129.0, 129.7 (6d, CH_{arom}), 136.0, 137.5 (2s, C_{arom}), 157.8 (s, C=N), 195.9 (s, C=S); MS C₂₀H₂₃N₃S 337 (M⁺). **2-Acyl (and 2-mesyl)amino-4-amino-1-thia-4-azabutadienes 3** general procedure: Sodium hydride (1.65 10^{-3} mol) was added to a solution of 2-hydrazonophenylthioacetamide **2** (1.5 10^{-3} mol) in THF (5mL) cooled at 0°C. After 1h at room temperature the mixture was cooled again and acylating reagent (acetyl chloride, benzoyl chloride methylchloroformate or mesyl chloride) (1.8 10^{-3} mol) was added. After 20 h stirring at room temperature the mixture was diluted in AcOEt, whashed with brine and dried. The solvent was removed and the residue, diluted with CH₂Cl₂, was chromatographed. After elution by CH₂Cl₂ (for **3b-h**) or by CH₂Cl₂/AcOEt (4/1) (for **3a**) compounds **3** were crystallised from Et₂O (**3c-e**, **g**) or isolated as a red oil (**3a**, **b**, **f**, **h**). Compound **3a**: yield 65%; Rf (CH₂Cl₂/AcOEt: 4/1) 0.66; 1 H NMR δ 2.54-2.64 and 2.79-2.89 (4H, 2m, 2NCH₂), 3.61-3.79 (4H, m, 2OCH₂), 3.73 (3H, s, CH₃N), 3.74 (3H, s, CH₃O), 7.24-7.41 and 7.70-7.81 (5H, 2m, C₆H₅); 13 C NMR δ 36.2 (q, CH₃N), 54.2 (q, CH₃O), 54.5 (t, 2NCH₂), 65.8 (t, 2OCH₂), 127.6, 127.9, 130.0 (3d, CH_{arom})(134.3 (s, C_{arom}), 152.8 (s, C=N), 166.5 (s, C=O), 203.8 (s, C=S); MS C₁₅H₁₉N₃O₃S 321 (M⁺). Compound **3b**: yield 70%; Rf (CH₂Cl₂) 0.63; ¹H NMR δ 2.62 (3H, s, CH₃SO₂), 3.24 (3H, s, N(CH₃)C₆H₅), 3.60 (3H, s, CH₃N), 6.84-7.78 (10H, m, 2C₆H₅); ¹³C NMR δ 38.5 (q, CH₃N), 39.7 (q, CH₃SO₂), 42.0 (q, N(CH₃)C₆H₅), 116.3, 121.54, 127.6, 128.2, 129.0, 129.4 (6d, CH_{arom}), 136.4, 150.0 (2s, C_{arom}), 153.2 (s, C=N), 201.9 (s, C=S); MS C₁₇H₁₉N₃O₂S₂ 361 (M⁺). Compound 3c: yield 65%; mp 88°C; 1 H NMR δ 3.16 (3H, s, N(CH₃)C₆H₅), 3.58 (3H, s, CH₃N), 3.65 (3H, s, CH₃O), 6.89-7.71 (10H, m, 2C₆H₅); 13 C NMR δ 36.9 (q, CH₃N), 42.4 (q, N(CH₃)C₆H₅), 54.6 (q, CH₃O), 116.5, 120.9, 127.4, 128.3, 128.6, 129.6 (6d, CH_{arom}), 135.7, 150.7 (2s, C_{arom}), 153.0 (s, C=N), 158.7 (s, C=O), 203.7 (s, C=S); MS C₁₈H₁₉N₃O₂S 341 (M⁺). Compound **3d**: yield 57%; mp 145°C; 1 H NMR δ 3.26 (3H, s, N(C**H**₃)C₆H₅), 3.94 (3H, s, CH₃N), 6.89-7.64 (15H, m, 3C₆H₅); 13 C NMR δ 40.6 (q, CH₃N), 42.0 (q, N(CH₃)C₆H₅), 115.6, 122.7, 126.9, 127.1, 127.5, 128.1, 128.5, 128.7, 129.0 (9d, CH_{arom}), 131.0, 136.7, 138.1 (3s, C_{arom}), 149.3 (s, C=N), 173.8 (s, C=O), 201.6 (s, C=S); MS C₂₃H₂₁N₃OS 387 (M⁺). Compound **3e**: yield 59%; mp 137°C; 1 H NMR δ 2.79 (3H, s, CH₃SO₂), 3.18 (3H, s, CH₃N), 7.02-7.45 and 7.61-7.79 (15H, 2m, 3C₆H₅); 13 C NMR δ 38.2 (q, CH₃N), 40.2 (q, CH₃SO₂), 123.3, 123.5, 123.6, 127.3, 129.2, 129.3 (9d, CH_{arom}), 128.6, 129.0, 129.5 (3s, C_{arom}), 146.7 (s, C=N), 198.8 (s, C=S); MS C₂₂H₂₁N₃O₂S₂ 423 (M⁺). Compound **3f**: yield 67%; Rf (CH₂Cl₂/ligroin: 9/1) 0.60; 1 H NMR δ 1.92 (3H, s, CH₃CO), 3.29 (3H, s, CH₃N), 6.81-7.40 and 7.68-7.80 (15H, 2m, 3C₆H₅); 13 C NMR δ 24.1 (q, CH₃CO), 37.0 (q, CH₃N), 122.7, 122.8, 122.9, 123.8, 124.8, 127.0 ,128.2, 128.8, 128.9 (9d, CH_{arom}), 129.1, 129.5, 129.6 (3s, C_{arom}),146.8 (s, C=N), 166.1 (s, C=O), 202.1 (s, C=S); MS C₂₃H₂₁N₃OS 387 (M⁺). Compound 3g: yield 81%; mp 112°C; 1 H NMR δ 3.29 (3H, s, CH₃N), 3.47 (3H, s, CH₃O), 6.91-7.42 and 7.67-7.81 (15H, 2m, 3C₆H₅); 13 C NMR δ 36.3 (q, CH₃N), 54.3 (q, CH₃O), 122.7, 122.8, 123.9, 126.7, 128.1, 128.5, 128.7 (9d, CH_{arom}), 129.3, 136.2, 151.7 (3s, C_{arom}), 146.9 (s, C=N), 159.0 (s, C=O), 201.9 (s, C=S); MS C₂₃H₂₁N₃O₂S 403 (M⁺). Anal. calcd: C, 68.46; H, 5.25; N, 10.41. Found: C, 68.59; H, 5.12; N, 10.28. Compound **3h**: yield 73%; Rf (CH₂Cl₂/AcOEt: 9/1) 0.52; ¹H NMR δ 2.57-2.67 and 2.85-2.95 (4H, 2m, 2NCH₂), 3.62-3.66 (4H, m, 2OCH₂), 3.70 (3H, s, CH₃), 5.44 and 5.86 (2H, 2d, J = 15.1 Hz, C₆H₅C**H**₂), 7.33-7.76 (10H, m, 2C₆H₅); ¹³C NMR δ 51.4 (t, C₆H₅CH₂), 54.8 (q, CH₃O), 54.9 (t, 2NCH₂), 65.9 (t, 2NCH₂), 127.8, 127.9, 128.0, 128.1, 128.4, 128.6 (6d, CH_{arom}), 130.6, 135.7 (2s, C_{arom}), 153.0 (s, C=N), 167.5 (s, C=O), 204.1 (s, C=S); MS C₂₁H₂₃N₃O₃S 397 (M⁺). 6-Acyl (and 6-mesyl)amino-3,6-dihydro-2H-1,3,4-thiadiazines 4: In most of the cases the compounds 3 were not isolated and compounds 4 were obtained using the same procedure starting from 2-hydrazonophenylthioacetamides 2. After removal of the solvent and chromatography, elution by CH₂Cl₂ (for 4a, b, e, f, i, l, s), by CH₂Cl₂/AcOEt (9/1) (for 4d, g, h, j, k, m, n, r) or by CH₂Cl₂/AcOEt (4/1) (for 4c, o-q) affords compounds 4 which were crystallised from Et₂O (4a-g, i-m, o, p, r, s) or isolated as a colorless oil (4h, n, q). Compound 4f is obtained using trifluoroacetyl anhydride as acylating reagent. When compounds 2 were isolated, they gave easily the corresponding compounds 4 after heating 20 h in benzenic solution (4g, m, r from 3a, d, h). The yields were in all the cases calculated using compounds 2 as starting products. Compound 4a: yield 31%; mp 153°C; 1 H NMR δ 2.77 (3H, s, CH₃SO₂), 2.88 (3H, s, CH₃N) 3.12-4.18 (7H, m, (3CH₂ and CH, 2-H buried), 6.25 (1H, s, CH, 6-H), 7.24-7.41 and 7.61-7.75 (5H, 2m, C₆H₅); 13 C NMR δ 31.0 (q, CH₃N), 39.0 (q, CH₃SO₂), 50.7 (d, CH, 6-C), 53.3 (d, CH, 2-C), 55.8 (t, NCH₂), 67.6, 68.8 (2t, 2CH₂O), 126.5, 128.4, 128.9 (3d, CH_{arom}), 136.6 (s, C_{arom}), 138,4 (s, C=N); MS C₁₄H₁₉N₃O₃S₂ 341 (M⁺). Compound **4b**: yield 33%; mp 120°C; 1 H NMR δ 1.38-2.21, 2.82-3.13 and 3.69-3.96 (9H, 3m, 4CH₂ and CH, 2-H buried), 2.76 (3H, s, CH₃SO₂), 2.89 (3H, s, CH₃N), 6.17 (1H, s, CH, 6-H), 7.21-7.43 and 7.60-7.82 (5H, 2m, C₆H₅); 13 C NMR δ 23.3 (t, NCH₂CH₂CH₂CH₂), 25.5 (t, NCH₂CH₂CH₂CH₂), 31.0 (q, CH₃N), 31.3 (t, NCH₂CH₂CH₂CH₂), 38.9 (q, CH₃SO₂), 51.7 (d, CH, 6-C), 54.2 (d, CH, 2-C), 57.1 (t, NCH₂CH₂CH₂CH₂), 126.3, 126.5, 128.3 (3d, CH_{arom}), 136.5 (s, C_{arom}), 137.0 (s, C=N); MS C₁₅H₂₁N₃O₂S₂ 339 (M⁺). Compound 4c: yield 42%; mp 140°C; 1 H NMR δ 1.75-2.08, 2.31-2.83 and 3.46-4.00 (6H, 3m, 3CH₂), 2.10 (3H, s, CH₃CO), 2.86 (3H, s, CH₃N), 4.49-4.68 (1H, m, CH, 2-H), 6.62 (1H, s, CH, 6-H), 7.21-7.42 and 7.51-7.70 (5H, 2m, C₆H₅); 13 C NMR δ 21.4 (t, NCH₂CH₂CH₂), 22.3 (q, CH₃CO), 32.0 (t, NCH₂CH₂CH₂), 34.6 (q, CH₃N), 48.4 (d, CH, 6-C), 53.0 (d, CH, 2-C), 53.8 (t, NCH₂CH₂CH₂), 124.2, 127.4, 128.4 (3d, CH_{arom}), 133.6 (s, C_{arom}), 137.4 (s, C=N), 170.4 (s, C=O); MS C₁₅H₁₉N₃OS 289 (M⁺). *Compound* **4d**: yield 51%; mp 206; 1 H NMR δ 2.04 (3H, s, CH₃CO), 2.87 (3H, s, CH₃N), 3.19-4.09 (7H, m, 3CH₂and CH, 2-H buried), 6.80 (1H, s, CH, 6-H), 7.30-7.34 and 7.52-7.57 (5H, 2m, C₆H₅); 13 C NMR δ 22.1 (q, CH₃CO), 32.7 (q, CH₃N), 45.8 (d, CH, 6-C), 53.3 (d, CH, 2-C), 55.7 (t, NCH₂), 67.5, 68.8 (2t, 2CH₂O), 125.6, 128.4, 128.8 (3d, CH_{arom}), 136.7 (s, C_{arom}), 139.6 (s, C=N), 170.7 (s, C=O); MS C₁₅H₁₉N₃O₂S 305 (M⁺). Anal. calcd: C, 58.99; H, 6.27; N, 13.76; S, 10.50. Found: C, 58.76; H, 6.35; N, 13.91; S, 10.68. Compound 4e: yield 56%; mp 122°C; 1 H NMR δ 1.37-1.98, 2.72-3.10 and 3.73-3.98 (9H, 3m, 4CH₂ and CH, 2-H buried), 2.03 (3H, s, CH₃CO), 2.87 (3H, s, CH₃N), 6.72 (1H, s, CH, 6-H), 7.21-7.38 and 7.47-7.62 (5H, 2m, C₆H₅); 13 C NMR δ 22.0 (q, CH₃CO), 24,0 (t, NCH₂CH₂CH₂CH₂), 25,5 (t, NCH₂CH₂CH₂CH₂), 31,2 (t, NCH₂CH₂CH₂CH₂), 32.7 (q, CH₃N), 46,7 (d, CH, 6-C), 54.0 (d, CH, 2-C), 57.0 (t, NCH₂CH₂CH₂CH₂), 125.3, 128.1, 128.2 (3d, CH_{arom}), 137.1 (s, C_{arom}), 137.8 (s, C=N), 170.4 (s, C=O); MS C $_{16}$ H₂₁N₃OS 303 (M⁺). Compound 4f: yield 58%; mp 137°C; 1 H NMR δ 2.99 (3H, s, CH₃N), 3.23-4.09 (7H, m, 3CH₂ and CH, 2-H buried), 6.62 (1H, s, CH, 6-H), 7.32-7.38 and 7.46-7.51 (5H, 2m, C₆H₅); 13 C NMR δ 31.6 (qq, CH₃N, 4 J_{CF} = 4.2 Hz), 47.7 (d, CH, 6-C), 53.0 (d, CH, 2-C), 55.7 (t, NCH₂, 67.6, 68.7 (2t, 2CH₂O), 116.0 (q, CF₃, 1 J_{CF} = 288.0 Hz), 125.4, 128.7 129.3 (3d, CH_{arom}), 136.0 (s, C_{arom}), 137.4 (s, C=N), 157.0 (q, C=O, 2 J_{CF}= 36.6 Hz); MS C₁₅H₁₆F₃N₃O₂S 359 (M⁺). Compound 4g: yield 52%; mp 143°C; 1 H NMR δ 2.79 (3H, s, CH₃N), 3.11-4.19 (7H, m, 3CH₂ and CH, 2-H buried), 3.73 (3H, CH₃O), 6.40 (1H, s, CH, 6-H), 7.22-7.43 and 7.49-7.61 (5H, 2m, C₆H₅); 13 C NMR δ 31.0 (q, CH₃N), 49.4 (d, CH, 6-C), 53.3 (q, CH₃O and d, CH, 2-C), 55.5 (t, NCH₂), 67.6, 68.9 (2t, 2CH₂O), 125.7, 128.5, 128.7 (3d, CH_{arom}), 137.0 (s, C_{arom}), 138.9 (s, C=N), 156.3 (s, C=O); MS C₁₅H₁₉N₃O₃S 321 (M⁺). Compound **4h**: yield 49%; Rf (CH₂Cl₂) 0.39; ¹H NMR δ 1.36-2.18, 2.77-3.15 and 3.31-3.85 (9H, 3m, 4CH₂ and CH, 2-H buried), 2.77 (3H, s, CH₃N), 3.70 (3H, s, CH₃O), 6.32 (1H, s, CH, 6-H), 7.19-7.38 and 7.50-7.71 (5H, 2m, C₆H₅); ¹³C NMR δ 23.8 (t, NCH₂CH₂CH₂CH₂), 25.4 (t, NCH₂CH₂CH₂CH₂), 31.0 (t, NCH₂CH₂CH₂CH₂), 31.1 (q, CH₃N), 50.0 (d, CH, 6-C), 52.9 (q, CH₃O), 53.8 (d, CH, 2-C), 56.6 (t, NCH₂CH₂CH₂CH₂), 125.2, 127.9, 128.1 (3d, CH_{arom}), 136.9 (s, C_{arom}), 137.2 (s, C=N), 156.0 (s, C=O); MS C₁₆H₂₁N₃O₂S 319 (M⁺). Compound 4i: yield 63%; mp 123°C; 1 H NMR δ 1.62-2.18, 2.41-2.63 and 3.50-3.97 (6H, 3m, 3CH₂), 2.82 (3H, s, CH₃), 4.46-4.75 (1H, m, CH, 2-H), 7.23-7.72 (10H, m, 2C₆H₅); 13 C NMR δ 21.3 (t, NCH₂CH₂CH₂), 31.9 (t, NCH₂CH₂CH₂), 35.4 (q, CH₃), 48.5 (d, CH, 6-C), 53.2 (d, CH, 2-C), 53.7 (t, NCH₂CH₂CH₂), 124.6, 126.7, 127.6, 128.4, 128.5, 129.8 (6d, CH_{arom}), 134.2, 135.8 (2s, C_{arom}), 137.6 (s, C=N), 171.3 (s, C=O); MS C₂₀H₂₁N₃OS 351 (M⁺). Compound **4j**: yield 49%; mp 198°C; 1 H NMR δ 2.81 (3H, s, CH₃), 3.09-4.18 (7H, m, 3CH₂ and CH, 2-H buried), 6.92 (1H, s, CH, 6-H), 7.01-7.68 (10H, m, 2C₆H₅); 13 C NMR δ 33.9 (q, CH₃), 46.4 (d, CH, 6-C), 54.0 (d, CH, 2-C), 56.0 (t, NCH₂), 67.7, 69.0 (2t, 2CH₂O), 126.2, 126.9, 128.6, 129.1, 130.2 (6d, CH_{arom}), 135.4, 137.0 (2s, C_{arom}), 140.7 (s, C=N), 171.6 (s, C=O); MS C₂₀H₂₁N₃O₂S 334 (M⁺ - SH). Anal. calcd: C, 65.37; H, 5.76, N; 11.43; S, 8.73. Found: C, 65.51; H, 5.61; N, 11.58; S, 8.88. Compound **4k**: yield 67%; mp 113°C; ¹H NMR δ 1.52-2.12, 2.81-3.17 and 3.73-3.99 (9H, 3m, 4CH₂ and CH, 2-H buried), 2.78 (3H, s, CH₃), 6.87 (1H, s, CH, 6-H), 7.12-7.70 (10H, m, 2C₆H₅); ¹³C NMR δ 24.1 (t, NCH₂CH₂CH₂CH₂C), 25.6 (t, NCH₂CH₂CH₂CH₂), 31.3 (t, NCH₂CH₂CH₂CH₂), 33.9 (q, CH₃), 47.1 (d, CH, 6-C), 54.7 (d, CH, 2-C), 57.3 (t, NCH₂CH₂CH₂CH₂), 125.9, 126.7, 128.3, 128.5, 129.9 (6d, CH_{arom}), 135.6, 137.4 (2s, C_{arom}), 138.7 (s, C=N), 171.6 (s, C=O); MS C₂₁H₂₃N₃OS 332 (M⁺ - SH). Compound 4I: yield 45%; mp 110°C; ¹H NMR δ 1.50-2.26, 3.70-3.91 and 4.49-4.68 (11H, 3m, 5CH₂ and CH, 2-H), 2.79 (3H, s, CH₃N), 6.90 (1H, s, CH, 6-H), 7.13-7.71 (10H, m, 2C₆H₅); ¹³C NMR δ 25.3 (t, NCH₂CH₂CH₂CH₂CH₂CH₂), 29.3, 29.8 (2t, NCH₂CH₂CH₂CH₂CH₂CH₂), 32.5 (t, NCH₂CH₂CH₂CH₂CH₂), 34.8 (q, CH₃), 49.7 (d, CH, 6-C), 57.0 (d, CH, 2-C), 58.3 (t, NCH₂CH₂CH₂CH₂CH₂CH₂), 125.2, 126.9, 127.6, 128.5, 128.6, 129.9 (6d, CH_{arom}), 133.0, 136.0 (2s, C_{arom}), 138.2 (s, C=N), 171.5 (s, C=O); MS C₂₂H₂₅N₃OS (M⁺). Compound 4m: yield 38%; mp 163°C; ${}^{1}H$ NMR δ 2.84 (3H, s, CH₃), 4.68 and 5,03 (2H, d and dd, J = 1.0 Hz and J = 12.7 Hz, CH₂), 6.88-7.80 (16H, m, 3C₆H₅ and CH, 6-H buried); ${}^{13}C$ NMR δ 34.9 (q, CH₃), 41.8 (t, CH₂), 46.4 (d, CH), 115.9, 122.3, 125.6, 126.9, 128.6, 129.3, 130.1 (9d, CH_{arom}), 135.5, 137.0, 146.5 (3s, C_{arom}), 137.5 (s, C=N), 171.6 (s, C=O); MS C₂₃H₂₁N₃OS 387 (M⁺). Compound 4n: yield 51%; Rf (CH₂Cl₂) 0.44; ¹H NMR δ 0.73 and 1.34 (6H, 2d, J = 6.6 Hz, (CH₃)₂CH), 1.45-2.07, 2.91-3.04 and 3.81-3.87 (9H, 3m, 4CH₂ and CH, 2-H buried), 3.51-3.65 (1H, m, (CH₃)₂CH), 3.76 (3H, s, CH₃O), 6.21 (1H, s, CH, 6-H), 7.22-7.39 and 7.51-7.69 (5H, 2m, C₆H₅); ¹³C NMR δ 20.9 (q, (CH₃)₂CH), 24.2 (t, NCH₂CH₂CH₂CH₂), 25.8 (t, NCH₂CH₂CH₂CH₂), 31.4 (t, NCH₂CH₂CH₂CH₂), 49.2 (d, (CH₃)₂CH), 51.1 (d, CH, 6-C), 52.5 (d, CH, 2-C), 53.6 (q, CH₃O), 57.0 (t, NCH₂CH₂CH₂CH₂), 126.0, 128.3 (3d, CH_{arom}), 136.3 (s, C_{arom}), 137.8 (s, C=N), 156.2 (s, C=O); MS C₁₈H₂₅N₃O₂S 347 (M⁺). Compound **4o**: yield 38%; mp 152°C; ${}^{1}H$ NMR δ 0.83-0.86 and 1.18-1.29 (6H, 2m, (CH₃)₂CH), 3.52-4.10 (7H, m, 3CH₂ and CH, 2-H buried), 3.24-3.50 (1H, m, (CH₃)₂CH), 6.97 (1H, s, CH, 6-H), 7.35 (10H, br.s, 2C₆H₅); ${}^{13}C$ NMR δ 20.8 (q, (CH₃)₂CH, 50.6 (d, (CH₃)₂CH), 51.3 (d, CH, 6-C), 53.8 (d, CH, 2-C), 55.9 (t, NCH₂), 67.8, 69.1 (2t, 2CH₂O), 126.2, 127.7, 128.3, 128.7, 129.8 (6d, CH_{arom}), 130.4, 137.0 (2s, C_{arom}), 138.3 (s, C=N), 171.9 (s, C=O); MS C₂₂H₂₅N₃O₂S 395 (M⁺). Compound **4p**: yield 53%; 135°C; ¹H NMR δ 0.83 and 1.56 (6H, 2d, J = 6.7 Hz, (CH₃)₂CH), 1.15-2.02, 2.93-3.07 and 3.73-3.81 (9H, 3m, 4CH₂ and CH, 2-H buried), 3.66-3.72 (1H, m, (CH₃)₂CH), 7.06 (1H, s, CH, 6-H), 7.37 (10H, br.s, $2C_6H_5$); ^{13}C NMR δ 20.6 (q, (CH₃)₂CH), 24.1 (t, NCH₂CH₂CH₂CH₂), 25.8 (t, NCH₂CH₂CH₂CH₂), 31.3 (t, NCH₂CH₂CH₂CH₂), 47.3 (d, (CH₃)₂CH), 51.0 (d, CH, 6-C), 54.4 (d, CH, 2-C), 57.1 (t, NCH₂CH₂CH₂CH₂), 126.0, 128.1, 128.3, 128.5, 129.5 (6d, CH_{arom}), 126.9, 128.6 (2s, C_{arom}), 137.2 (s, C=N), 171.6 (s, C=O); MS C₂₃H₂₇N₃OS 393 (M⁺). Compound 4q: yield 55%; Rf (CH₂Cl₂) 0.42; 1 H NMR δ 1.97 (3H, s, CH₃), 2.97-4.54 (7H, m, 3CH₂ and CH, 2-H buried), 4.37 and 4.48 (2H, 2d, J = 14.2 Hz, C₆H₅CH₂), 6.85 (1H, s, CH, 6-H), 7.21-7.53 (10H, m, 2C₆H₅); 13 C NMR δ 22.0 (q, CH₃), 46.8 (t, C₆H₅CH₂), 50.0 (d, CH, 6-C), 52.6 (d, CH, 2-C), 54.9 (t, NCH₂), 67.2, 68.2 (2t, 2CH₂O), 125.3, 126.1, 127.6, 128.1, 128.2 (6d, CH_{arom}), 133.2, 136.4 (2s, C_{arom}), 137.8 (s, C=N), 171.5 (s, C=O); MS C₂₁H₂₃N₃O₂S 381 M⁺). Compound **4r**: yield 48%; mp 155°C; 1 H NMR δ 3.02-4.12 (7H, m, 3CH₂ and CH, 2-H buried), 3.77 (3H, s, CH₃), 4.60 and 4.79 (2H, 2d, J = 14.1 Hz, C₆H₅CH₂), 6.28 (1H, s, CH, 6-H), 7.12-7.48 (10H, m, 2C₆H₅); 13 C NMR δ 49.0 (t, C₆H₅CH₂), 50.0 (d, CH, 6-C), 52.8 (d, CH, 2-C), 53.6 (q, CH₃), 55.1 (t, NCH₂), 67.7, 68.7 (2t, 2CH₂O), 125.7, 127.6, 128.0, 128.6, 128.7 (6d, CH_{arom}), 127.4, 128.9 (2s, C_{arom}), 137.7 (s, C=N), 156.7 (s, C=O); MS C₂₁H₂₃N₃O₃S 397 (M⁺). Compound 4s: yield 48%; Rf (CH₂Cl₂) 0.46; 1 H NMR δ 1.18-1.86, 2.57-2.94 and 3.66-3.83 (9H, 3m, 4CH₂ and CH, 2-H buried), 3.77 (3H, s, CH₃), 4.65 and 4.83 (2H, 2d, J = 14.3 Hz, C₆H₅CH₂), 6.19 (1H, s, CH, 6-H), 7.10-7.62 (10H, m, 2C₆H₅); 13 C NMR δ 21.1 (q, CH₃), 23.8 (t, NCH₂CH₂CH₂CH₂C), 25.6 (t, NCH₂CH₂CH₂CH₂), 30.6 (t, NCH₂CH₂CH₂CH₂), 48.7 (t, C₆H₅CH₂), 50.8 (d, CH, 6-C), 53.4 (d, CH, 2-C), 56.3 (t, NCH₂CH₂CH₂CH₂), 125.2, 127.5, 128.1, 128.3, 128.5 (6d, CH_{arom}), 128.7, 130.7 (2s, C_{arom}), 137.7 (s, C=N), 156.6 (s, C=O); MS C₂₂H₂₅N₃O₂S 395 (M⁺). #### References - [1] A. Reliquet, M. J. Gil, F. Reliquet and J. C. Meslin, Sulfur Lett., 16, 1, (1993). - [2] M. J. Gil, A. Reliquet, F. Reliquet and J. C. Meslin, Phosphorus, Sulfur and Silicon, 97, 89, (1994). - [3] M. J. Gil, A. Reliquet, F. Reliquet and J. C. Meslin, Phosphorus, Sulfur and Silicon, in press. - [4] A. Reliquet, R. Besbes, F. Reliquet and J.C. Meslin, Sulfur Lett., 14, 189, (1992). - [5] A. Reliquet, R. Besbes, F. Reliquet and J.C. Meslin, Synthesis, 7, 543, (1991). - [6] J. P. Pradère, G. Bouet and H. Quiniou, Tetrahedron Lett., 33, 3471, (1972). - [7] T. Karakasa and S. Motoki, J. Org. Chem., 43, 4147, (1978). - [8] J. P. Guémas, A. Reliquet, F. Reliquet and H. Quiniou, C. R. Acad. Sc. Paris, 288(C), 89, (1979). - [9] I. T. Barnish, C. W. G. Fishwick, D. R. Hill and C. Jr. Szantay, Tetrahedron Lett., 33, 4449, (1989). - [10] S. V. Usoltseva, G. P. Andronnikova and V. S. Mokrushin, Khimiya Geterotsiklicheskikh Soedinii, 4, 435, (1991), (Engl. Transl.: Chem. Heterocycl. Comp., (1991)); P. K. Bose, Quart. J. Indian Chem. Soc., 1, 51, (1924); H. Beyer, Quart. rep. Sulfur Chem., 5, 177, (1970); A. Neugebauer and H. Fischer, Chem. Ber., 107, 717, (1974); H. Beyer, Chem. Ber., 89, 107, (1956); Y. V. Zachinaev, M. L. Petrov, A. N. Frolkov, V. N. Chistokletov and A. A. Petrov, Zhurnal Organicheskoi Khimii, 16, 938, (1980), (Engl. Transl.: Jl of Organic Chem. of USSR, 818, (1980)); R. M. Mohareb, A. Habashi, E. A. Hafez and S. M. Sherif, Arch. Pharm. (Weinheim, Ger.), 320, 776, (1987); D. L. Trepanier, P. E. Krieger, J. H. Mennear and J. N. Eble, J. Med. Chem., 10, 1085, (1967); S. Tadashi and O. Masaki, Yakugaku Zasshi, 75, 1535, (1955), (Engl. Transl.: Jl of the pharmaceutical society of Japan, (1955)); A. E. Baydar, G. V. Boyd and P. F. Lindley, J. Chem. Soc., Chem. Commun., 1003, (1981); D. L. Trepanier, W. Reifschneider, W. Shumaker and D. S. Tharpe, J. Org. Chem., 30, 2228, (1965); H. Kristinsson, T. Winkler and M. Mollenkopf, Helv. Chim. Acta, 66, 2714, (1983); D. M. Evans, D. R. Taylor and M. Myers, J. Chem. Soc., Chem. Commun., 1444, (1984); K. Hirai and T. Ishiba, J. Chem. Soc., Chem. Commun., 1318, (1971); P. Molina, A. Arques, I. Cartagena and J. M. Olmos, Synthesis, 518, (1989); G. Seitz, R. Mohr, W. Overheu, R. Allmann and M. Nagel, Angew. Chem. Int. Ed. Engl., 11, 890, (1984); G. Hesse and I. Jorder, Chem. Ber., 85, 924, (1952). - [11] Y. Kamitori, M. Hojo, R. Masuda, Y. Kawamura and T. Numai, Synthesis, 491, (1990). - [12] A. P. Novikova, N. M. Perova and O. N. Chupakhin, Khimiya Geterotsiklicheskikh Soedinii, 11. 1443, (1991), (Engl. Transl.: Chem. Heterocycl. Comp., (1991)); D. Brown, R. B. Hargreaves, B. J. Mc Loughlin and S. D. Mills, Eur. Pat. 80,296, CA, 100, 22672, (1984); N. Yoshida, K. Tanaka, Y. Iizuka, K. Wachi, T. Nishimura and H. Yasuda, (Sankyo Co., Ltd), Jpn. Kokai Tokkyo Koho JP 7,488,889, CA, 82, 57744, (1975); J. Dizon and D. H. Robinson. (Fisons PLC), Brit. UK Pat. Appl. GB 2,179,655, CA, 108, 37839, (1988); W. Thorwart, U. Gebert, R. Schleyerbach and R. Bartlett, (Hoechst A.-G.), Ger. Offen. DE. 3,702,757, CA, 110, 8223, (1988); W. Thorwart, U. Gebert, R. Schleyerbach and R. Barlett, (Hoechst A.-G.), Ger. Offen. DE. 3,702,756, CA, 109, 170466, (1988); W. D. Jones and F. P. Miller, (Richardson-Merrell Inc.), Ger. Offen. DE. 3,031,703, CA, 95, 81033, (1981); F. P. Miller and W. D. Jones, (Richardson-Merrell Inc.), Belgian Pat. 884,990, CA, 95, 62276, (1981).