Homo-Freidinger Lactams: Stereoselective Synthesis of 4-Aminopiperidin-2-one Derivatives from Aspartic Acid

Klaus Weber and Peter Gmeiner*

Institut für Pharmazie und Lebensmittelchemie der Universität Erlangen-Nürnberg, Schuhstraße 19, D-91052 Erlangen, Germany Fax: +49(9131)852585; E-mail: gmeiner@pharmazie.uni-erlangen.de

Received 20 April 1998-06-23

Abstract: Starting from aspartic acid a stereoselective synthesis of enantiomerically pure 4-aminopiperidin-2-ones which can serve as conformationally restrained β -amino acid equivalents in peptidomimetics is described. The synthesis is based on the regioselective functionalization of the 1,4-bis-electrophile **2b** and a diastereoselective introduction of various side chain equivalents into the lactam α -position of **4b,c**.

Conformationally locked peptide surrogates have been utilized extensively in the design and development of enzyme inhibitors or neuroreceptor ligands.¹⁻⁴ This strategy afforded valuable information regarding the elucidation of the biologically active conformation of peptides and led to drug candidates with remarkable affinity, selectivity and metabolic stability.⁵ Among the numerous developments in this field, incorporating the α -amino carboxamide moiety of a peptide backbone into a *Freidinger* lactam (I) has proven very successful.⁶⁻¹⁰ On the other hand, β -amino acid derived substructures and the investigation of β -peptides led to interesting peptidomimetics.¹¹⁻¹³ As far as we know, a combination of these two strategies was not reported yet.

As part of our efforts on the synthesis of enantiopure β -amino acid derivatives, ^{14,15} here we report the first stereoselective synthesis of 4-aminopiperidin-2-ones as lactam-bridged analogs with a β -amino carboxamide substructure (*Homo-Freidinger* lactams, II). Applying this approach, our initial results on lactam-constrained mimetics of the dopamine receptor modulating peptide Pro-Leu-Gly-NH₂¹⁶ are presented.

The synthesis of a N-protected 4-aminopiperidine in enantiomerically pure form was planned starting from natural aspartic acid (1). Taking advantage of our recently described methodology we were able to functionalize regioselectively the dibenzyl protected aminobutanediol 2a.¹⁷⁻²⁰ Thus, activation of 2a by MesCl gave the bis-electrophile 2b which could be transformed into the azido nitrile 3a by subsequent substitution with LiCN and NaN3. Due to an activating anchimeric participation of the dibenzylamino group the leaving group in position 1 is exclusively displaced by the nucleophile which is added first. The formation of regioisomers was not observed. Chemoselective reduction of the azide functionality in the presence of the nitrile group was accomplished under Staudinger conditions ²¹ giving the amino nitrile **3b** in 81 % yield. Alternatively, a more direct preparation of 3b is possible when liquid NH3 is used as the "second nucleophile" instead of NaN3.22 Lactamization of the amino nitrile 3b was induced by HCl/MeOH. The reaction sequence is highly practical and efficient providing the amino lactam 4a in 58 % overall yield, based on (S)-aspartic acid (1), as well as the (R)-configured enantiomer of 4a (ent-4a) when commercially available (R)-aspartic acid (ent-1) is used as the starting material.

Since 4a should serve as a versatile building block, introduction of substituents representing ß-amino acid side chains was envisioned. This should be done by N-protection, deprotonation of the lactam α -position and subsequent reaction with representing electrophiles. We evaluated Boc and, alternatively, benzyl as protecting groups for the lactam function. Thus, deprotonation of the lactam 4 followed by addition of Boc_2O or BnBr afforded 4b 23 and 4c, respectively. For the introduction of the Boc group reaction of 4a with Boc₂O in the presence of DMAP²⁴ turned out to be the more convenient and higher yielding alternative. Calkylation in position 3 was accomplished by deprotonation of 4b with LDA and subsequent trapping with MeI at -78°C. The reaction proceeded with high diastereoselectivity. Only the trans isomer 5a could be detected by NMR spectroscopy of the crude reaction product.²⁵ After purification by flash chromatography the methylation product 5a, which represents a conformatively restricted equivalent for B²-homoalanine,²⁶ was isolated in 75% yield. Analogously, deprotonation and methylation of the N-benzyl protected lactam 4c resulted in exclusive formation of trans configured isomer 5b. Since the methylation of 4b proceeded in higher yield and enabled the performance of a selective cleavage of either N-substituents we chose the orthogonally protected lactam 4b for further alkylation reactions. Thus, the lactam bridged β^2 homophenylalanine derivative 5c could be obtained from 4b in diastereomerically pure form when benzyl bromide was used as an

electrophile (yield: 85 %). Furthermore, highly diastereoselective introduction of an allyl, propynyl or TMS-propynyl substituent could be accomplished. Thus, deprotonation of **4b** and subsequent reaction with allyl iodide, propynyl bromide as well as TMS-propynyl bromide resulted in formation of the products **5d**, **5e** and **5f**, respectively.²⁷ Electrophilic fluorination employing NFSI (*N*-fluorobenzene sulfonimide)²⁸ afforded the α -fluoro lactam **5g**. In all cases, the electrophilic attack at the enolate occurs exclusively from the bottom side (*re*).²⁹ Obviously, the *si*-face is strongly shielded by the sterically demanding dibenzylamine substituent. Structural analysis of the alkylation products was performed by ¹H NMR spectroscopy when diagnostic coupling constants and NOEs indicate a half-chair conformation and an equatorial disposition for both the dibenzylamine and the introduced substituents.

The incorporation of the described *Homo-Freidinger* lactams into conformationally restricted mimetics of the dopamine receptor modulating peptide Pro-Leu-Gly-NH₂^{16, 30} and their investigation for biological activity are currently investigated in our laboratories. Using the (*S*)-configured building block **4a** as an representative example the preparation of such a tripeptide surrogate is reported. Thus, *N*-deprotonation of the aminopiperidinone **4a** by KH and subsequent reaction with ethyl bromoacetate led to formation of the amino function with Pro was accomplished by hydrogenolytic *N*-debenzylation and subsequent DCC/HOBT induced acylation of the primary amine **6b** with Cbz-Pro. Finally, aminolysis of the ester functionality of the coupling product **7a** afforded **7b** which could be readily *N*-deprotected to give the lactam-restricted Pro-Leu-Gly-NH₂ analog **7c** in good overall yield.

In conclusion, an efficient and practical approach to enantiomerically pure 4-aminopiperidin-2-ones including 3-substituted derivatives and their application as peptidomimetics with *Homo-Freidinger* lactam substructure is presented. Further investigations on structure activity

Table 1. Diastereoselective introduction of β -amino acid side chain equivalents into position 3 of the lactams **4b**,c

Entry	Educt	Electrophile	Product	Yield [%]
1	4b	H₃C—I	Bn ₂ N 5a CH ₃	75
2	4c	H₃C—I	Bn ₂ N 5b CH ₃	53
3	4b	Bn—Br	Bn ₂ N 5c Bn	85
4	4b		Bn ₂ N O 5d	81
5	4b	≡_⁄ ^{Br}	Bn ₂ N O O Se	55
6	4b	TMS-Br	Bn ₂ N 5f TMS	32
7	4b	SO ₂ N-F SO ₂	Bn ₂ N Boc 5g F	78

relationship studies of conformationally restrained dopamine receptor modulating peptide mimetics will be reported shortly.

Acknowledgments: This work was supported by the *Deutsche Forschungsgemeinschaft* and the *Fonds der Chemischen Industrie*. Dr. R. Waibel is acknowledged for NMR studies and helpful discussions. Tanks are also due to Mrs. E. Tigla for skillful technical assistance.

References and Notes

- (1) Giannis, A.; Kolter, T. Angew. Chem. 1993, 105, 1303.
- (2) Beck-Sickinger, A.G. In *Methods in Molecular Biology*, *Neuropeptide Protocols*; Irvine, G.B.; Williams, C.H., Ed.; Humana Press: Totowa, NJ, 1997; p 61.
- (3) Vacca, J.P.; Condra, J.H. Drug Discovery Today 1997, 2, 261.

- (5) Hruby, V.J. Drug Discovery Today 1997, 2, 165.
- (6) Freidinger, R.M. J. Org. Chem. 1985, 50, 3631.
- (7) Wolf, J.-P.; Rapoport, H. J. Org. Chem. 1989, 54, 3164.
- (8) Robl, J.A.; Cimarusti, M.P.; Simpkins, L.M.; Weller, H.N.; Pan, Y.Y.; Malley, M.; DiMarco, J.D. J. Am. Chem. Soc. 1994, 116, 2348.
- (9) Acton III, J.J.; Jones, A.B. Tetrahedron Lett. 1996, 37, 4319.
- (10) Wolfe, M.S.; Dutta, D.; Aubé, J. J. Org. Chem. **1997**, *62*, 654; and references cited therein.
- (11) Enantioselective Synthesis of β-Amino Acids; Juaristi, E., Ed.; Wiley-VCH: New York, 1997.
- (12) Karle, I.L.; Pramanik, A.; Banerjee, A; Bhattacharjya, S.; Balaram, P. J. Am. Chem. Soc. **1997**, *39*, 9087.
- (13) Seebach, D.; Overhand, M.; Kühnle, F.N.M.; Martinoni, B.; Oberer, L.; Hommel, U.; Widmer, H. *Helv. Chim. Acta* **1996**, *79*, 913.
- (14) Gmeiner, P. Tetrahedron Lett. 1990, 31, 5717.
- (15) Gmeiner, P. Liebigs Ann. Chem. 1991, 501.
- (16) Johnson, R.L.; Rajakumar, G.; Mishra, R.K. J. Med. Chem. 1986, 29, 2100.
- (17) Gmeiner, P.; Kärtner, A.; Junge, D. *Tetrahedron Lett.* 1993, 34, 4325.
- (18) Gmeiner, P.; Junge, D.; Kärtner, A. J. Org. Chem. 1994, 59, 6766.
- (19) Gmeiner, P.; Kärtner, A. Synthesis 1995, 83.
- (20) Gmeiner, P.; Orecher, F.; Thomas, C.; Weber, K. *Tetrahedron Lett.* 1995, *36*, 381.
- (21) Gololobov, Y.G.; Zhmurova, I.N.; Kasukhin, L.F. *Tetrahedron* **1981**, *37*, 437.
- (22) Preparation of **3b** from **2a**: To a solution of **2a** (5.76 g, 20.2 mmol) in THF (100 ml) was added Et_3N (6.13 g, 60.6 mmol) and MesCl (4.74 g, 41.4 mmol) at -23°C. After stirring for 30 min the cooled mixture was filtered into a precooled solution of LiCN (48 ml, 0.5 M in DMF). Then stirring was continued for further 3 h at RT. After addition of sat. aq. NaHCO₃ and Et_2O the org. layer was dried (MgSO₄) and evaporated. The residue was dissolved in MeOH (200 ml) and cooled to -30°C. After addition of liquid NH₃ (100 ml) the mixture was stirred for 4 d at RT. Then sat. aq. NaHCO₃ and Et_2O was added and the org. layer was dried (MgSO₄) and evaporated. The residue was purified by flash chromatography (petroleum ether - acetone 1:4) to give pure **3b**.

$$\begin{split} & [\alpha]_{D}{}^{21} = -31.3^{\circ}, \ (c = 0.9, \ CHCl_{3}); \ ^{1}H \ NMR \ (CDCl_{3}); \ \delta(ppm) = \\ & 1.46 - 1.63 \ (m, 1H, 4-H_{a}), \ 1.83 - 2.01 \ (m, 1H, 4-H_{b}), \ 2.41 \ (dd, \ J = \\ & 16.8, \ 6.8 \ Hz, \ 1H, \ 2-H_{a}), \ 2.58 \ (dd, \ J = 16.8, \ 6.3 \ Hz, \ 1H \ 2-H_{b}), \ 2.74 \\ & - 2.81 \ (m, \ 2H, \ 5-H), \ 3.07 - 3.20 \ (m, \ 1H, \ 3-H), \ 3.47 \ (d, \ J = 13.6 \ Hz, \\ & 2H, \ NCH_{2}Ph), \ 3.77 \ (d, \ J = 13.6 \ Hz, \ 2H, \ NCH_{2}Ph), \ 7.24 - 7.38 \ (m, \ 10H, \ Ar). \end{split}$$

SYNLETT

- (23) **4b**: $[\alpha]_D^{20} = -25.7^\circ$, (c = 1, CHCl₃); ¹H NMR (CDCl₃): δ (ppm) = 1.5 (s, 9H, Boc-CH₃), 1.79 (dddd, J = 15.8, 11.1, 10.7, 4.8 Hz, 1H 5-H_{ax}), 2.10 (m, 1H, 5-H_{eq}), 2.63 (dd, J = 16.4, 9.8 Hz, 1H, 3-H_{ax}), 2.70 (ddd, J = 16.4, 6.3, 1.3 Hz, 1H 3-H_{eq}), 3.14 (m, 1H, 4-H), 3.35 (ddd, J = 13.0, 10.7, 4.3 Hz, 1H, 6-H_{ax}), 3.60 (d, J = 13.8 Hz, 2H, NCH₂Ph), 3.65 (d, J = 13.8 Hz, 2H, NCH₂Ph), 3.85 (ddd, J = 13.0, 10.4, 8, 4.3 Hz, 1H, 6-H_{eq}), 7.20 7.40 (m, 10H, Ar).
- (24) Höfle, G.; Steglich, W.; Vorbrüggen, H. Angew. Chem. 1978, 90, 602.
- (25) **5a**: $[\alpha]_D^{20} = +37.1$, (c = 5.5, CHCl₃) ¹H NMR (CDCl₃): δ (ppm) = 1.31 (d, J = 6.5 Hz, 3H, CH₃), 1.50 (s, 9H, Boc-CH₃), 1.82 (dddd, J = 14.3, 9.6, 9.5, 4.8 Hz, 1H, 5-H_{ax}), 2.08 (m, 1H, 5-H_{eq}), 2.59 (m, 1H, 3-H), 2.65 (m, 1H, 4-H), 3.38 (d, J = 13.8 Hz, 2H, NCH₂Ph), 3.53 (ddd, J = 13.0, 9.6, 4.7 Hz, 1H, 6-H_{ax}), 3.72 (ddd, J = 13.0, 5.3, 4.8 Hz, 1H, 6-H_{eq}), 3.83 (d, J = 13.8 Hz, 2H, NCH₂Ph), 7.24 7.38 (m, 10H, Ar).
- (26) For an explanation of the term β², see: Seebach, D.; Hintermann, T. Synlett 1997, 437.
- (27) General Procedure for the Reaction of 4b,c with Electrophiles to give 5a-g: To a solution of 4a,b (1 mmol) in THF (30 ml) was added LDA (2 ml, 1M in THF) at -78°C. After being stirred for 1 h at -78°C the electrophile (2.5 mmol) was added slowly. The reaction was kept at -78°C for 1 h. Then, it was allowed to warm up to RT. After 12 h, the mixture was treated with saturated aqueous NaHCO₃ and extracted with ether. The organic layer was dried (MgSO₄) and evaporated and the residue purified by flash chromatography (petroleum ether / ethyl acetate 4:1) to give 5a-g in analytically pure form.
- (28) Differding, E.; Duthaler, R.O.; Krieger, A.; Rüegg, G.M.; Schmit, C. Synlett 1991, 395.
- (29) The diastereomeric purity was determined by ¹H NMR spectroscopy (360 MHz) of the crude material. At a signal to noise ratio > 4:1 for the ¹³C satellites of the *N*-benzyl resonances, no signal of any impurity exceeded the intensity of the ¹³C satellites, indicating a diastereoselectivity > 99 %.
- (30) For recent examples of conformationally restrained Pro-Leu-Gly-NH₂ analogs, see: Baures, P.W.; Ojala, W.H.; Costain, W.J.; Ott, M.C.; Pradhan, A.; Gleason, W.B.; Mishra, R.K.; Johnson, R.L. J. *Med. Chem.* **1997**, *40*, 3594 and references cited therein.