Highly Diastereoselective Addition of Ketone Enolates to *N*-Sulfinyl Imines: Asymmetric Synthesis of *syn-* and *anti-*1,3-Amino Alcohol Derivatives

Andrew Kennedy,^a Adam Nelson,^{*b} Alexis Perry^b

^a GlaxoSmithKline, Old Powder Mills, Nr Leigh, Tonbridge, Kent, TN11 9AN, UK

^b School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK Fax +44(113)3436565; E-mail: adamn@chem.leeds.ac.uk

Received 12 February 2004

Abstract: Lithium enolates derived from ketones may be added to *N*-sulfinyl imines with high diastereoselectivity. Diastereoselective reduction gave either the *syn-* or *anti-*1,3-amino alcohol derivative.

Key words: asymmetric synthesis, chiral auxiliaries, amino alcohols, stereoselective synthesis

N-Sulfinyl chiral auxiliaries have been widely exploited in the asymmetric synthesis of amines.¹ In particular, the additions of organolithium and Grignard reagents to *N*sulfinyl imines are often highly diastereoselective and may be used to prepare α -branched primary amines.²

Previously, a convenient asymmetric synthesis of 1,3amino alcohols has also been developed (Scheme 1). Additions of azaenolates, derived from imines **1** (R = *t*-Bu), to aldehydes often yield β -hydroxy imines **2** with high diastereoselectivity; the imines **2** may be reduced in either sense to give ^{1,3}*syn*- or ^{1,3}*anti*-amino alcohol derivatives (**3a** or **3b**).³

In this paper, we describe an alternative approach in which a ketone enolate is added to an *N*-sulfinyl imine 4 $(\rightarrow 5)$;⁴ diastereoselective reduction yields the corresponding 1,3-amino alcohol derivatives (e.g. **3c** or **3d**). This approach is more direct than the addition of ester or Weinreb amide enolates⁵ to *N*-sulfinyl imine (e.g. $\rightarrow 6$), followed by reaction with an organometallic reagent, R²M $(\rightarrow 5)$ and reduction $(\rightarrow 3c,d)$.⁶

The *N*-sulfinyl imines **7a**–**e** were prepared by treatment of a mixture of an aldehyde R¹CHO and *p*-toluenesulfinamide with 1.5 equivalents of titanium(IV) ethoxide (Scheme 2).⁷ The imines **7** were reacted at -78 °C with 1.6 equivalents of lithium enolate, generated by treatment of a ketone (**8**, **10** or **12**) with lithium hexamethyldisilazide (LiHMDS) (Scheme 3 and Table 1). After quenching with methanolic ammonium chloride solution, work-up and purification, the β -amino ketone derivatives **9** and **11** were obtained as single diastereoisomers. Unfortunately, the reaction of the lithium enolate derived from cyclohexanone was less selective, and a mixture of all four possible diastereoisomers (**13**) was obtained (entry 8).

SYNLETT 2004, No. 6, pp 0967–0970 Advanced online publication: 25.03.2004 DOI: 10.1055/s-2004-820050; Art ID: D03904ST © Georg Thieme Verlag Stuttgart · New York

Scheme 1 Altenative strategies for the asymmetric synthesis of 1,3amino alcohols using *N*-sulfinyl imines

Scheme 2 Preparation of the N-sulfinyl imines 7

The yield of the addition reaction $7 + 8 \rightarrow 9$ was dependent on the substituents R^1 and R^2 . Excellent yields of the β -sulfinamino ketones **9a** and **9c** were obtained when 1.6

Table 1 Asymmetric Addition of Ketone Enolates to N-Sulfinyl Imines^a

Entry	Imine	Ketone	R^1	\mathbb{R}^2	Method	Product	De ^b	Yield (%) ^c
1a	7a	8a	2-Furyl	2-Furyl	А	9a	>95:5	87
1b					\mathbf{B}^{d}	9a	>95:5	69
2	7b	8a	Ph	2-Furyl	С	9b	>95:5	59 (30 ^e)
3	7c	8a	<i>p</i> -O ₂ NC ₆ H ₄ -	2-Furyl	А	9c	>95:5	83
4	7d	8a	<i>p</i> -MeOC ₆ H ₄ -	2-Furyl	А	-	-	_
5	7e	8a	Cyclohexyl	2-Furyl	А	-	-	_
6	7a	8b	2-Furyl	Ph	С	9d	>95:5	81 (31°)
7	7a	10	-	-	А	11	>95:5	97
8	7a	12	_	-	А	13	25:20:10:1	82 ^f

^a Methods: **A**: 1. 1.6 equiv lithium enolate, -78 °C, THF; 2. NH₄Cl, MeOH, -78 °C; **B**: 1. 1.6 equiv lithium enolate, -50 °C, THF; 2. HOAc, -50 °C; **C**: 1. 3.0 equiv lithium enolate, -78 °C, THF; 2. NH₄Cl, MeOH.

^b Detemined by ¹H NMR (500 MHz) spectroscopy of the crude reaction mixture.

^c Yield of single diastereoisomer.

^d Final concentration: 0.25 M in 7a (442 mmol scale).

^e By method **A**.

^f Yield of mixture of inseparable isomers.

equivalents of the lithium enolate derived from 2-acetyl furan (**8a**; $R^2 = 2$ -furyl) were added to the imines **7a** and **7c** ($R^1 = 2$ -furyl and p-O₂NC₆H₄-; $R^2 = 2$ -furyl; entries 1 and 3, Table 1). However, low yields of the β -sulfinamino ketones **9b** and **9d** were obtained under these conditions; these reactions could be optimised by reacting 3 equivalents of lithium enolate with the required imine (entries 2 and 6, Table 1). Attempted addition of the lithium enolate derived from **8a** to the imines **7d** and **7e** ($R^1 = p$ -MeOC₆H₄- and cyclohexyl) was, however, unsuccessful.

Scheme 3 Asymmetric addition of ketone enolates to *N*-sulfinyl imines

Synlett 2004, No. 6, 967-970 © Thieme Stuttgart · New York

The preparation of the β -amino ketone **9a** on a large (442 mmol) scale (entry 1b, Table 1) required considerable optimisation since the product was susceptible to β -elimination under the concentrated reaction conditions (final concentration: 0.25 M in the sulfinamide **7a**). The elimination of the product could be suppressed by quenching the reaction with acetic acid (in place of methanolic ammonium chloride solution) after 30 minutes below –40 °C. Lower yields of the β -sulfinamino ketone **9a** were obtained when LDA, rather than LiHMDS, was used as the base.

The configurations of the β -amino ketone derivatives **9a–d** were assigned by analogy with that of **11** which was determined by X-ray crystallography (Figure 1). The sense of induction observed in the synthesis of **11** is consistent with attack of the Z-configured⁸ lithium enolate on the *N*-sulfinyl imine via a fused transition state **14** in which the *S*-(*p*-tolyl) substituent occupies an 'outside' position. The transition state **15**, which would lead to the β -amino ketone derivatives **9a–d**, is similar to a model which has been proposed to explain the diastereoselective attack of ester enolates on *N*-sulfinyl imines (Figure 2).^{5b}

Figure 1 X-ray crystal structure of the β-sulfinamino ketone 11

Figure 2 Proposed transition states for the addition reaction

A range of reaction conditions was screened for the reduction of the ketone **9a** (Scheme 4 and Table 2); the diastereoselectivity of each process was determined by analytical HPLC and/or by ¹H NMR (500 MHz) spectroscopy. The reduction of **9a** with NaBH₄ was unselective (entries 1 and 2) and, in THF, competing β -elimination and subsequent reduction (\rightarrow **17**) was observed. We have, however, been able to identify conditions under which the ketone **9a** may be selectively converted into either of the diastereoisomeric 1,3-amino alcohols ^{1,3}*syn-* or ^{1,3}*anti-***16**. The reductions with Superhydride (entry 3), K-selectride (entry 4) and DIBALH (entries 5a,b) were selective in favour of the alcohol ^{1,3}*syn-***16**. In contrast, the use of LiAlH₄ (entry 6) gave a 71:29 mixture in favour of ^{1,3}*anti-***16**.

Table 2Diastereoselective Reduction of the β -Sulfinamido Ketone9a

Entry	Conditions	De ^{1,3} syn: ^{1,3} anti
1	NaBH ₄ , THF, 25 °C	40:60 ^{a,b}
2	NaBH ₄ , EtOH, 25 °C	48:52 ^{c,d}
3	Li BHEt ₃ , THF, –78 °C	92:8°
4	K BH ^s Bu ₃ , THF, –78 °C	79:21°
5a	<i>i</i> -Bu ₂ AlH, THF, –78 °C	86:14 ^{c,e}
5b	<i>i</i> -Bu ₂ AlH, THF, 25 °C	72:28 ^{c,f}
6	LiAlH ₄ , THF, –78 °C	29:71°
7	Li AlH(Ot-Bu) ₃	48:52 ^c

 $^{\rm a}$ Determined by $^{\rm l}{\rm H}$ NMR (500 MHz) spectroscopy of the crude reaction mixture.

^b Flash column chromatography gave ^{1,3}*syn***-16** (12%), ^{1,3}*anti***-16** (24%), **17** (51%) and *p*-toluenesulfinamide (63%).

^c Determined by analytical HPLC.

^d A >98% yield of a 48:52 mixture of diastereoisomers was obtained; flash column chromatography gave ^{1,3}syn-**16** (44%) and ^{1,3}anti-**16** (46%).

^e Flash column chromatography gave ^{1,3}syn-**16** (68%).

^f Flash column chromatography gave ^{1,3}syn-**16** (58%).

In conclusion, we have developed an approach to the synthesis of 1,3-amino alcohols with relies on the diastereoselective addition of a ketone enolate to a *N*-sulfinyl imine. The methods have been optimised to avoid competing β -elimination, and have been exploited on a large scale. Complementary reaction conditions have been

Scheme 4 Diastereoselective reduction of the β -sulfinamino ketone 9a

17

identified for the stereoselective reduction of 9a to give the ^{1,3}*syn*- or the ^{1,3}*anti*- 1,3-amino alcohol derivatives **16**.

Diastereoselective Addition of Ketone Enolates to *N*-Sulfinyl Imines

Synthesis of 9a: A solution of acetyl furan (151 mg, 1.37 mmol) in THF (3 mL) was added dropwise to a stirred solution of LiHMDS (1.37 mL of a 1 M solution in THF, 1.37 mmol) in THF (5 mL) at -78 °C. After 0.5 h, a solution of the imine 7a (200 mg, 0.859 mmol) in THF (5 mL) was added dropwise and the resulting reaction mixture stirred at -78 °C for 1 h. The reaction was quenched at -78 °C by addition of a sat. methanolic NH₄Cl solution (4 mL), warmed to r.t. and poured onto H₂O (10 mL) and EtOAc (10 mL). The layers were separated and the aqueous phase was extracted with EtOAc (3×10 mL). The combined organic extracts were dried (MgSO₄) and evaporated under reduced pressure to give a crude product which was purified by flash chromatography, eluting with 3:7 EtOAc-petrol ether, to give the ketosulfinamide 9a (256 mg, 87%) as a colourless oil; $R_{\rm F}$ 0.7 (EtOAc); $[\alpha]_{\rm D}^{20}$ +103.7 (c 1.1 in CHCl₃). IR (thin film): $v_{max} = 3148, 2922, 1671, 1467$ and 1089 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 7.57 (2 H, d, J = 8.2 Hz, 2'and 6'-H), 7.55 (1 H, dd, J = 1.4 and 0.8 Hz, 3-furyl 5-H), 7.35 (1 H, dd, J = 1.9 and 0.9 Hz, 1-furyl 5-H), 7.27 (2 H, d, J = 8.2 Hz, 3'and 5'-H), 7.15 (1 H, dd, J = 3.5 and 0.8 Hz, 3-furyl 3-H), 6.51 (1 H, dd, J = 3.5 and 1.4 Hz, 3-furyl 4-H), 6.36 (1 H, dd, J = 3.2 and 0.9 Hz, 1-furyl 3-H), 6.32 (1 H, dd, J = 3.2 and 1.9 Hz, 1-furyl 4-H), 5.07 (2-H, m, NH and 1-H), 3.49 (1 H, dd, J = 17.1 and 5.9 Hz, 2-H), 3.37 (1 H, dd, J = 17.1 and 5.2 Hz, 2-H) and 2.39 (3 H, s, Me). ¹³C NMR (75 MHz, CDCl₃): δ = 186.6, 153.7, 152.6, 147.1, 142.7, 142.2, 141.8, 130.0, 126.0, 118.2, 112.8, 110.9, 108.3, 49.1, 43.5 and 21.8. MS (ES): *m*/*z* (%) = 344 (85%) [MH⁺] and 190 (100) [M - C7H7SON]. Found: MNa+, 366.0760. C18H17NO4S requires MNa, 366.0776.

Compound **9b**: $R_{\rm f} = 0.1$ (3:7 EtOAc–petrol ether); $[\alpha]_{\rm D}^{20}$ +84.5 (*c* 1.51 in CHCl₃). IR (thin film): $v_{\rm max} = 3209, 2922, 1671, 1467, 1089$ and 1062 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): $\delta = 7.58$ (2 H, d, J = 8.1 Hz, 2′- and 6′-H), 7.52 (1 H, dd, J = 1.4 and 0.8 Hz, furyl 5-H), 7.46 (2 H, d, J = 7.4 Hz, Ph 2- and Ph 6-H), 7.37 (2 H, t, J = 7.4 Hz, Ph 3-H and 5-H), 7.30 (1 H, t, J = 7.4 Hz, Ph 4-H), 7.27 (2 H, d, J = 8.1 Hz, 3′- and 5′-H), 7.11 (1 H, dd, J = 3.4 and 0.8 Hz, furyl 3-H), 6.48 (1 H, dd, J = 3.4 and 1.4 Hz, furyl 4-H), 5.13 (1 H, dd, J = 4.8 Hz, NH), 5.03 (1 H, app. q, J = 5.2 Hz, 1-H) 3.39 (1 H, dd, J = 16.7

Synlett 2004, No. 6, 967-970 © Thieme Stuttgart · New York

and 5.2 Hz, 2-H_A), 3.33 (1 H, dd, J = 16.7 and 7.5 Hz, 2-H_B) and 2.39 (3 H, s, Me). ¹³C NMR (75 MHz, CDCl₃): $\delta = 187.1$, 152.7, 147.2, 142.7, 141.8, 141.0, 130.0, 129.2, 128.4, 127.9, 125.8, 118.2, 112.9, 55.0, 46.2 and 21.8. MS (ES): m/z (%) = 707 (100) [M₂H⁺] and 354 (42) [MH⁺]. Found: MNa⁺, 376.0966. C₂₀H₁₉NO₃S requires MNa, 376.0983.

Compound **9c**: mp 138.4–139.1 °C (CHCl₃–Et₂O); $R_f = 0.2$ (colourless needles from 3:7 EtOAc–petrol ether). $C_{20}H_{18}N_2SO_5$ requires: C, 60.3; H, 4.55; N, 7.0; S, 8.1%. Found: C, 60.0; H, 4.70; N, 7.0; S, 8.0; $[\alpha]_D^{20}$ +84.3 (*c* 0.56 in CHCl₃). IR (thin film): $v_{max} = 3206$, 2923, 1671, 1520, 1347 and 1088 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 8.23$ (2 H, d, J = 8.7 Hz, Ar 2- and 6-H), 7.65 (2 H, d, J = 8.7 Hz, Ar 3- and 5-H), 7.58 (2 H, d, J = 8.1 Hz, 2'- and 6'-H), 7.55 (1 H, dd, J = 1.6 and 0.8 Hz, furyl 5-H), 7.32 (2 H, d, J = 8.1 Hz, 3'- and 5'-H), 7.15 (1 H, dd, J = 3.4 and 0.8 Hz, furyl 3-H), 6.53 (1 H, dd, J = 3.4 and 1.6 Hz, furyl 4-H), 5.24 (1 H, d, J = 6.1 Hz, NH), 5.08 (1 H, app. q, J = 6.1 Hz, 1-H), 3.42 (1 H, d, J = 6.0 Hz, 2-H₂) and 2.39 (3 H, s, Me). ¹³C NMR (75 MHz, CDCl₃): $\delta = 186.4$, 152.5, 148.8, 147.8, 147.4, 142.3, 141.8, 130.2, 128.7, 125.8, 142.4, 118.4, 113.1, 54.3, 45.6 and 21.8. MS (ES): m/z (%) = 797 (100) [M₂H⁺] and 399 (63) [MH⁺].

Compound 9d: mp 91.0-92.7 °C (colourless needles from EtOAcpetrol ether). $R_{\rm f} = 0.2$ (3:7 EtOAc-petrol ether). $C_{20}H_{19}NSO_3$ requires: C, 68.0; H, 5.40; N, 4.0; S, 9.1%. Found: C, 67.8; H, 5.55; N, 3.9; S, 8.9; $[\alpha]_D^{20}$ +87.5 (*c* 0.64 in CH₂Cl₂). IR (thin film): v_{max} = 3189, 2920, 1683, 1448, 1090 and 1066 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 7.86 (2 H, d, *J* = 7.4 Hz, Ph 2- and Ph 6-H), 7.59 (2 H, d, J = 8.1 Hz, 2'- and 6'-H), 7.56 (1 H, t, J = 7.4 Hz, Ph 4-H), 7.43 (2 H, t, J = 7.4 Hz, Ph 3- and Ph 5-H), 7.35 (1 H, dd, J = 1.8 and 0.8 Hz, furyl 5-H), 7.27 (2 H, d, J = 8.1 Hz, 3'- and 5'-H), 6.38 (1 H, dd, J=3.2 and 0.8 Hz, furyl 3-H), 6.33 (1 H, dd, J=3.2 and 1.8 Hz, furyl 4-H), 5.11 (2 H, m, NH and 1-H), 3.66 (1 H, dd, J = 17.1 and 5.5 Hz, 2-H_A), 3.52 (1 H, dd, J = 17.1 and 5.0 Hz, 2-H_B) and 2.39 (3 H, s, Me). ¹³C NMR (75 MHz, CDCl₃): δ = 198.6, 153.8, 142.6, 142.3, 141.8, 136.8, 133.9, 130.0, 129.1, 128.5, 126.0, 111.0, 108.4, 49.3, 43.7 and 21.8. MS (ES): m/z (%) = 707 (100) [M₂H⁺] and 354 (35) [MH⁺].

Compound 11: mp 120.8-121.5 °C (colourless plates from MeOH-H₂O); $R_f = 0.3$ (3:7 EtOAc-petrol ether); $C_{21}H_{21}NSO_3$ requires: C, 68.6; H, 5.75; N, 3.8; S, 8.7%. Found: C, 68.5; H, 5.70; N, 3.7; S, 8.8; $[\alpha]_D^{20}$ +160 (c 0.76 in CH₂Cl₂). IR (thin film): $v_{max} = 3194$, 2976, 1679, 1448, 1090 and 1066 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 7.83 (2 H, d, J = 7.3 Hz, Ph 2- and Ph 6-H), 7.54 (2 H, d, J = 8.1 Hz, 2'- and 6'-H), 7.54 (1 H, t, J = 7.3 Hz, Ph 4-H), 7.41 (2 H, t, J = 7.4 Hz, Ph 3- and Ph 5-H), 7.34 (1 H, dd, J = 1.7 and 0.8 Hz, furyl 5-H), 7.23 (2 H, d, J = 8.1 Hz, 3'- and 5'-H), 6.33 (1 H, dd, J = 3.1 and 0.8 Hz, furyl 3-H), 6.29 (1 H, dd, J = 3.1 and 1.7 Hz, furyl 4-H), 4.89 (1 H, dd, J = 6.9 and 6.9 Hz, 1-H), 4.77 (1 H, d, J = 6.9 Hz, NH), 3.98 (1 H, app. qn, *J* = 6.9 Hz, 2-H), 2.38 (3 H, s, Me) and 1.22 (3 H, d, J = 6.9 Hz, 2-Me). ¹³C NMR (75 MHz, CDCl₂): δ = 201.6, 153.2, 142.1, 141.7, 141.4, 135.7, 133.3, 129.5, 128.6, 128.3, 125.6, 110.5, 108.5, 53.1, 44.6, 21.4 and 13.7. MS(ES+): m/z (%) = 735 (100) [M₂H⁺] and 368 (73) [MH⁺].

Synthesis of ^{1,3}*Syn-* **and** ^{1,3}*anti-***16**: Sodium borohydride (11 mg, 0.292 mmol) was added to a stirred solution of **9a** (50 mg, 0.146 mmol) in EtOH (8 mL). After 1.5 h, the reaction was quenched with H₂O (10 mL), the layers were separated and the aqueous portion was extracted with EtOAc (3 × 10 mL). The combined organic extracts were dried (MgSO₄) and the solvent was evaporated under reduced pressure to give a crude product. Purification by flash chromatography, eluting with 3:7 EtOAc–petrol ether, gave ^{1,3}*syn*-**16** (22 mg, 44%) as a colourless oil, $R_{\rm f} = 0.7$ (7:3 EtOAc–petrol ether); $[\alpha]_{\rm D}^{20}$ +75.6 (*c* 0.27 in CHCl₃). IR (thin film): $v_{\rm max} = 3306$, 2924, 1596, 1504, 1012 and 737 cm⁻¹. ¹H NMR (500 MHz, CDCl₃):

 δ = 7.53 (2 H, d, J = 8.2 Hz, 2'- and 6'-H), 7.37 (1 H, br s, 1-furyl 5-H), 7.29 (1 H, br s, 3-furyl 5-H), 7.23 (2 H, d, *J* = 8.2 Hz, 3'- and 5'-H), 6.31 (1 H, dd, J = 3.0 and 1.8 Hz, 1-furyl 4-H), 6.27 (1 H, dd, J = 3.0 and 1.9 Hz, 3-furyl 4-H), 6.24 (1 H, d, J = 3.0 Hz, 1-furyl 3-H), 6.19 (1 H, d, *J* = 3.0 Hz, 1-furyl 3-H), 4.90 (1 H, d, *J* = 8.5 Hz, NH), 4.84 (1 H, ddd, J = 9.6, 4.7 and 4.7 Hz, 3-H), 4.77 (1 H, td, J = 8.5 and 4.7 Hz, 1-H), 3.81 (1 H, d, J = 4.7 Hz, OH), 2.41 (1 H, ddd, J = 14.0, 9.6 and 4.7 Hz, 2-H), 2.38 (3 H, s, Me) and 2.21 (1 H, ddd, J = 14.0, 8.5 and 4.7 Hz, 2-H). ¹³C NMR (75 MHz, CDCl₃): δ = 156.4, 155.3, 142.7, 142.4, 142.2, 142.1, 130.1, 126.0, 110.7,110.6, 107.1, 106.4, 64.4, 50.9, 40.3 and 21.8. MS (ES+): m/z (%) $= 346 (15) [MH^+], 328 (30) [M - OH] and 234 (100) [M - OH]$ FuCHOHCH₂]. C₁₈H₁₉NO₄S requires MNa, 368.0932. Found: MNa⁺, 368.0938. Also isolated was ^{1,3}anti-16 (23 mg, 46%) as a colourless oil, $R_{\rm f}$ 0.6 (7:3 EtOAc–petrol ether); $[\alpha]_{\rm D}^{20}$ +53.3 (c 0.3 in CHCl₃). IR (thin film): $v_{max} = 3306, 2924, 1596, 1504, 1011$ and 736 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ = 7.55 (2 H, d, J = 8.1 Hz, 2'and 6'-H), 7.40 (1 H, br s, 1-furyl 5-H), 7.32 (1 H, br s, 3-furyl 5-H), 7.26 (2 H, d, J = 8.1 Hz, 3'- and 5'-H), 6.35 (1 H, dd, J = 3.2 and 1.7 Hz, 1-furyl 4-H), 6.33 (1 H, d, J = 3.2 Hz, 1-furyl 3-H), 6.28 (1 H, dd, J = 3.0 and 1.7 Hz, 3-furyl 4-H), 6.21 (1 H, d, J = 3.0 Hz, 3-furyl 3-H), 4.90 (1 H, d, J = 6.0 Hz, NH), 4.82 (2 H, m, 1-H and 3-H), 3.44 (1 H, d, J = 3.8 Hz, OH), 2.40 (4 H, m, 2-H and Me), and 2.31 (1 H, ddd, J = 14.3, 9.3 and 8.3 Hz, 2-H). ¹³C NMR (75 MHz, CDCl₃): δ = 156.4, 154.6, 142.8, 142.4, 142.2, 141.9, 130.0, 125.9, 110.7, 110.6, 107.8, 106.3, 66.4, 51.8, 41.0 and 21.8. MS (ES+): m/z (%) = 346 (15) [MH⁺], 328 (30) [M – OH] and 234 (100) [M – FuCHOHCH₂]. C₁₈H₁₉NO₄S requires MNa, 368.0932. Found: MNa⁺, 368.0938.

Acknowledgement

We thank EPSRC and GlaxoSmithKline for funding.

References

- (1) For a review, see: Ellman, J. A.; Owens, T. D.; Tang, T. P. *Acc. Chem. Res.* **2002**, *35*, 984.
- (2) (a) Cogan, D. A.; Ellman, J. A. J. Am. Chem. Soc. 1999, 121, 268. (b) Cogan, D. A.; Liu, G.; Ellman, J. Tetrahedron 1999, 55, 8883. (c) Plobeck, N.; Powell, D. Tetrahedron: Asymmetry 2002, 13, 303. (d) Han, Z.; Krishnamurthy, D.; Pflum, D.; Grover, D.; Wald, S. A.; Senanayake, C. H. Org. Lett. 2002, 4, 4025.
- (3) Kochi, T.; Tang, T. P.; Ellman, J. A. J. Am. Chem. Soc. 2002, 124, 6518.
- (4) See also: Davis, F. A.; Yang, B. Org. Lett. 2003, 5, 5011.
- (5) (a) Tang, T. P.; Ellman, J. A. J. Org. Chem. 2002, 67, 7819.
 (b) Koriyama, Y.; Nozawa, A.; Hayakawa, R.; Shimizu, M. Tetrahedron 2002, 58, 9621. (c) Huang, L.; Brinen, L. S.; Ellman, J. A. Bioorg. Med. Chem. 2003, 11, 21. (d) Davis, F. A.; Prasad, K. R.; Nolt, M. B.; Wu, Y. Org. Lett. 2003, 5, 925. (e) Jacobsen, M. F.; Skrydstrup, T. J. Org. Chem. 2003, 68, 7112.
- (6) Tandem ester enolate addition–Claisen ester condensation reactions, which also yield β-sulfinamino ketones, have been reported: (a) Davis, F. A.; Chao, B. *Org. Lett.* 2000, *2*, 17. (b) Davis, F. A.; Yang, B.; Deng, J. *J. Org. Chem.* 2003, *68*, 5147.
- (7) Liu, G.; Cogan, D. A.; Owens, T. D.; Tang, T. P.; Ellman, J. A. J. Org. Chem. 1999, 64, 1278.
- (8) (a) Kleschick, W. A.; Buse, C. T.; Heathcock, C. H. J. Am. Chem. Soc. 1977, 99, 247. (b) Lampe, J.; Heathcock, C. H. J. Org. Chem. 1983, 48, 4330.