A Convenient Annelation of Imines to α-Substituted β-Lactams¹

D. R. SHRIDHAR*, Bhagat RAM, V. Lakshmi NARAYANA

Chemistry Division, IDPL Research Centre, Indian Drugs & Pharmaceuticals Limited, Hyderabad - 500037 (A.P.), India

It is well known that multi-substituted β -lactams exhibit high chemical reactivity and are prone to molecular rearrangements. Therefore, attempts have been made to explore new methods for β -lactam synthesis that operate under milder conditions. Several methods²⁻⁵ are available for the synthesis of β -lactams. In recent years, various phosphorus agents have been used for activating the carboxy group to achieve the amide bond formation. Manhas et al. have utilised such compounds for the formation of β -lactam ring systems. These authors found that phosphorylating agents like diethyl phosphorochloridate, diphenyl phosphorochloridate, or α -phenylene phosphorochloridate led to the formation of β -lactams whereas diphenylphosphoryl azide, diethyl cyanophosphate, and diphenyl phosphite-pyridine failed to do so.

Palomo et al.⁷ have recently described a new reagent N.N-bis[2-oxo-3-oxazolidinyl]phosphorodiamidic chloride (1) to activate the carboxy group for the synthesis of amides and esters. During our studies directed towards the semi-synthetic β -lactam antibiotics, we became interested in this reagent. In the present communication, we report on the use of this reagent in a new facile method for the conversion of imines to α -substituted β -lactams.

A mixture of imine 4 and an appropriately substituted acetic acid 2 in the presence of triethylamine was reacted with N,N-bis[2-oxo-3-oxazolidinyl]phosphorodiamidic chloride (1) at $10-20\,^{\circ}$ C for 7-8 h to give the β -lactam 6 in 40-80% yield. The structure of the β -lactam 6 was confirmed by microanalyses, I.R., and ¹H-N.M.R. spectrometry. A possible reaction pathway is shown in Scheme A.

0039-7881/82/0132-0063 \$ 03.00

© 1982 Georg Thieme Verlag · Stuttgart · New York

Scheme A

B).

A variety of monocyclic β -lactams (Table) were prepared by this method. The stereochemistry was derived from their ¹H-N.M.R. spectra. The configuration of C-3 and C-4 protons in all these monocyclic β -lactams was observed to be cis ($J \approx 5$ Hz) except in case of the α -phthalimido- β -lactam which had trans disposition ($J \approx 2$ Hz). The reaction works equally well for the synthesis of polycyclic β -lactams 8a and 8b (Scheme

The new method works under mild conditions and gives yields comparable to the earlier known methods for the synthesis of β -lactams.

Scheme B

Melting points were determined in open glass capillaries on a Gallenkamp melting point apparatus and are uncorrected. I.R. spectra were taken on Perkin Elmer 237 or 577 spectrophotometer. ¹H-N.M.R. spectra were recorded on Varian A-60 and Jeol FX-100 instruments using TMS as internal standard. Microanalyses were performed using a Hösli microcombustion apparatus MK 101.

Table. β -Lactams 6 and 8 prepared

Produ No.		\mathbb{R}^2	\mathbb{R}^3	Yield ^a [%]	m.p. [°C]	Molecular formula ^b	I.R. (nujol) v [cm ¹]	1 H-N.M.R. (CDCl ₃ or CF ₃ COOH) δ [ppm]
6 a		<u></u>	CI —	50	156~158°	C ₂₂ H ₁₈ CINO ₂ (363.8)	1750	4.25 (br s, 2 H); 4.95 (d, 1 H, J=5 Hz); 5.15 (d, 1 H, J=5 Hz); 6.8-7.5 (m, 14 H)
6 b	o-	<u></u>	cı -{	55	269°	$C_{21}H_{16}CINO_2$ (349.8)	1730	insufficiently soluble
6 с		CH ₂ -0	cı———	50	137°	C ₂₉ H ₂₄ ClNO ₃ (470.0)	1735	4.32 (q, 2H); 5.0-5.2 (m, 4H); 6.9-7.5 (m, 18H)
6 d	CH₂-0-	C1-(н₃со-{_}}-	45	182°	C ₂₃ H ₂₀ CINO ₃ (393.9)	1730	3.75 (s, 3 H); 4.19 (d, 1 H, J = 10 Hz); 4.36 (d, 1 H, J = 10 Hz); 5.10 (d, 1 H, J = 5 Hz); 5.20 (d, 1 H, J = 5 Hz); 6.8-7.4 (m, 13 H)
6 е		cı-<	CI-	40	246°	$C_{21}H_{15}Cl_2NO_2$ (384.3)	1730	5.56 (d, 1H, J=5 Hz); 5.80 (d, 1H, J=5 Hz); 6.7-7.3 (m, 13 H)
6 f		H ² CO-()-	н₃с-∕	45	160°	Ref. ⁸ , m.p. 159–160°C	1740	2.24 (s, 3 H); 3.80 (s, 3 H); 4.40 (s, 2 H); 5.00 (d, 1 H, J=5 Hz); 5.20 (d, 1 H, J=5 Hz); 7.0-7.5 (m, 13 H)
6 g	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	_	cı-{_}-	65	219°	C ₂₃ H ₁₅ CIN ₂ O ₃ (402.8)	1770, 1750, 1710	5.20 (d, 1 H, $J = 2.5$ Hz); 5.28 (d, 1 H, $J = 2.5$ Hz); 6.9-7.8 (m, 13 H)
8a	_			60	128°	C ₂₄ H ₂₁ NO ₂ (355.4)	1750	2.7 (m, 2H); 3.6 (m, 2H); 4.50 (s, 2H); 5.02 (s, 1H); 7.0-7.6 (m, 14H)
8ь	_	_	_	80	273°	C ₂₅ H ₁₈ N ₂ O ₃ (394.4)	1770, 1750, 1710	2.7 (m, 2H); 3.7 (m, 2H); 5.50 (s, 1H); 6.9- 7.9 (m, 13 H)

^a Yield of pure, crystallised product based on 4.

^b Satisfactory microanalyses obtained: C ± 0.39 , H ± 0.34 , N ± 0.30 ; exceptions: 6c, e, 8a, C ± 0.50 ; 6c, d, H ± 0.50 .

B-Lactams 6 and 8; General Procedure:

A mixture of Schiff's base 4 or 1-phenyl-3,4-dihydroisoquinoline 7 (0.01 mol), triethylamine (0.04 mol), and substituted acetic acid 2 (0.01 mol) in dichloromethane (200 ml) is stirred under a nitrogen atmosphere at 10°C and N,N-bis[2-oxo-3-oxazolidinyl]phosphorodiamidic chloride (1; 0.01 mol) is added. The resulting mixture is stirred at 20°C for 7-8 h, washed with water (50 ml), followed by 5% sodium hydrogen carbonate solution (50 ml), and finally again with water (50 ml). The dichloromethane solution, on evaporation, gives crude 6 or 8, which is purified by column chromatography on florisil using hexane/dichloromethane (1:1) as eluent. The solvent is evaporated and the residue crystallised from chloroform/ethanol mixture to give pure 6 or 8 (Table).

Received: July 27, 1981

0039-7881/82/0132-0065 \$ 03.00

© 1982 Georg Thieme Verlag · Stuttgart · New York

¹ Communication No. 38 from IDPL Research Centre, Hyderabad, India.

² R. Graf, Justus Liebigs Ann. Chem. 661, 111 (1963).

³ A. K. Bose, M. S. Manhas, R. M. Ramer, *Tetrahedron* 21, 449 (1965).

⁴ B. G. Chatterjee, P. N. Moza, S. K. Roy, *J. Org. Chem.* **28**, 1418 (1963).

⁵ J. C. Sheehan, J. J. Ryan, J. Am. Chem. Soc. 73, 1204, 4367 (1951).

⁶ M. S. Manhas, Bansi Lal, S. G. Amin, A. K. Bose, Synth. Commun. 6, 435 (1976).

⁷ J. Diago-Meseguer, A. L. Palomo-Coll, Synthesis 1980, 547.

⁸ M. S. Manhas, S. G. Amin, B. Ram, A. K. Bose, Synthesis 1976, 689.