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Abstract: Indoles and azaindoles are among the most
important heterocycles because of their prevalence in nature
and their broad utility in pharmaceutical industry. Reported
herein is an unprecedented noble-metal- and oxidant-free
electrochemical method for the coupling of (hetero)arylamines
with tethered alkynes to synthesize highly functionalized
indoles, as well as the more challenging azaindoles.

Indoles and azaindoles are prevalent in pharmaceutical
agents and natural products.[1] Therefore, the development
of general, efficient, and sustainable methods for the con-
struction of these structures have long been pursued by
organic chemists. In this context, the noble-metal-catalyzed
coupling of anilides or anilines with internal alkynes by C�H/
N�H functionalization has emerged in recent years as
a modular and step-economical approach for the synthesis
of indoles (Scheme 1a).[2] This approach advantageously
eliminates the need for prefunctionalized substrates (e.g.,
ortho-haloanilines) which are commonly required in the

widely employed Larock indole synthesis.[3] Nonetheless, the
reported methods frequently suffer from one or more of the
following disadvantages, such as low regioselectivity when
applied to similarly substituted alkynes (e.g., diaryl[2h] or
dialkyl alkynes[2a]), as well as the requirement for noble-metal
reagents and terminal oxidants.[4] Therefore, it is highly
desirable to develop a more efficient and sustainable
method for constructing indoles from easily available building
blocks without relying on a noble-metal catalyst or oxidant.[5]

Azaindoles are indole bioisosteres and possess a variety of
beneficial biological properties.[6] However, access to struc-
turally diverse azaindoles remains challenging. Traditional
methods including the Fischer indole synthesis often fail[7] or
are inefficient when electron-deficient pyridine-derived sub-
strates are employed.[6] In contrast, preparation of azaindoles
by annulation of alkynes with aminopyridines has been
reported only once, in which a series of 7-azaindoles were
constructed using a rhodium-based catalyst and a stoichio-
metric amount of silver oxidant.[8]

Organic electrosynthesis,[9] which employs electrons as
reagents, has been demonstrated to be a versatile and
environmentally friendly synthetic tool and attracted
renewed interests.[10] We[11] have recently developed an
electrochemical method for generating amidyl radicals and
demonstrated in one example that they could participate in
cascade cyclization reactions to afford indolines.[12] Inspired
by this work and that of Nevado and co-workers on cascade
radical reactions,[13] we report herein an unprecedented
electrochemical synthesis of highly functionalized indoles
and azaindoles by C�H/N�H functionalization of (hetero)-
arylamines using tethered alkynes (Scheme 1b). The noble-
metal reagent- and oxidant-free reaction employs inexpensive
ferrocene ([Cp2Fe]) [14] as the redox catalyst, is compatible
with a broad range of sensitive functional groups, and
produces valuable H2 as the only theoretical byproduct.[15]

The easily available urea 1a (see Scheme 2, R1 = R3 = H,
R2 = Ph, R4 = Me) was chosen as a model substrate and
electrolyzed in a round-bottom flask under the reaction
conditions we recently developed for the electrochemical
olefin hydroamidation reaction but without addition of the
reducing reagent 1,4-cyclohexadiene.[11] Regiospecific forma-
tion of the unsymmetrical 2,3-diarylsubstituted indole 2a was
achieved in 85% yield with 5 mol% of [Cp2Fe] as the redox
catalyst. The structure of 2a was confirmed by single-crystal
X-ray diffraction studies.[16] The ferric catalyst and electricity
were indispensable for the success of the transformation (see
Table S1 in the Supporting Information). Importantly, con-
ducting the electrolysis under air exerted no significant
impact on reaction efficiency (see Table S1).

Scheme 1. (Aza)indole synthesis by C�H/N�H functionalization.
Cp = cyclopentadiene.
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With the optimal reaction conditions defined, we con-
ducted substrate scope analysis by varying the peripheral
substituents (R1, R2, R3, and R4) of the scaffold 1 (Scheme 2).
The electrolysis reaction exhibited excellent compatibility
with a variety of electron-donating and electron-withdrawing
groups at different positions of the reacting aryl ring (2 aa–ai,
2b, 59–94 % yields), among which meta substitution was
found to generate two separable regioisomeric indole prod-
ucts (2c/2 c’= 1.7:1). Substrates with a multisubstituted N-aryl
ring could also be used for constructing densely decorated
indoles, most notably the fully substituted 2 f, with good
efficiency (2d–f, 64–87 % yields). In contrast, a wide range of
substituents including aryl groups with different electronic
properties (2g–j), a furan ring (2k), an alkenyl group (2 l), and
alkyl groups (2 m, 2n) were well tolerated on the alkyne
moiety. 3-Unsubstituted indoles (2o), which are difficult for
noble-metal-based methods,[2] could be prepared from either
a terminal alkyne or, more efficiently, a trimethylsilyl-sub-
stituted alkyne through cyclization and in situ desilylation.
Indoles bearing functionalized 2-aryl substituents could be
conveniently synthesized in high yields (2p–s, 80–86%
yields).

The broad functional-group tolerance of our electro-
chemical method was evidenced by the preparation of indoles
bearing diverse substituents (Scheme 2), including the full-

spectrum of halogens (2ac–af), a ketone (2ai), redox-sensitive
aldehyde (2j), N-aryl carbamate (2t),[11] N-H sulfonamide
(2u)[17] and free alcohol (2v), and acid/base-sensitive chiral
Boc-amino ester (2w), dipeptide (2x), orthoester (see 4 h ;
Scheme 3), and acetal (see Scheme 4). Note that indole 2y
(Scheme 2) bearing a pivalate ester group did not undergo
methanolysis and the current method can be applied for the
late-stage modification of ethinyl estradiol, an active ingre-
dient in oral contraceptives, to give the indole-functionalized
estradiol 2z. Further investigation revealed that the tether
between the alkyne and the reactive nitrogen atom should
ensure the formation of a six-membered ring in the first step
of the cascade cyclization reactions. Substrates that form
a relatively strained five-membered ring yielded no desired
product, such as in the case of 2za.[18]

With the success of the indole synthesis, we next applied
the electrochemical method to the more challenging task of
constructing complex azaindoles (Scheme 3). Gratifyingly,
4- and 3-aminopyridine-derived substrates reacted efficiently
under the standard reaction conditions, thus providing an
unprecedented route to 5-, 4-, and 6-azaindoles. Similar to
that observed earlier in the indole synthesis, the cyclization
was largely unaffected by the electronic or steric properties of
the pyridine ring and the alkyne substituent. As a result,
a wide range of azaindole products bearing diverse substitu-

Scheme 2. Scope of indole synthesis. Reaction conditions: Reticulated vitreous carbon (RVC) anode, Pt cathode, constant current= 5 mA (ca.
0.05 mAcm�2), 1 (0.3 mmol), THF (7.5 mL), MeOH (1.5 mL), nBu4NBF4 (0.9 mmol), reflux, argon, 4 h (2.5 F). [a] Yield of isolated product.
[b] Two separable isomers were obtained. [c] A terminal alkyne (R2 = H) was used as the starting material. [d] A trimethylsilyl-terminated alkyne
(R2 = TMS) was used as the starting material. [e] The reaction time was 5 h (3.1 F). [f ] The substrate decomposed into unidentifiable material.
Boc= tert-butoxycarbonyl, THF = tetrahydrofuran, TMS= trimethylsilyl, Ts = 4-toluenesulfonyl.
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ents at peripheral positions could be achieved. The use of
unsubstituted 3-aminopyridine as the coupling partner
afforded a separable mixture of 6-/4-azaindole (4q/4q’) in
a ratio of 1.4:1. Finally, an aminopyrimidine-derived substrate
bearing two basic nitrogen atoms reacted to afford the
pyrrolo[3,2-d]pyrimidine 4r in 78 % yield. Taken together, the
experimental results demonstrate the general applicability of
the electrochemical protocol for constructing pyrrole-fused
N-heterocycles.

The synthetic utility of the current method was further
demonstrated by the construction of isocryptolepine (8),
a bioactive natural product (Scheme 4).[19] The synthesis
began with converting N-methyl-2-iodoaniline (5) into the
electrolysis substrate 6 by urea formation followed by alkyne
installation. The gram-scale electrolysis of 6 and subsequent
acid-promoted hydrolysis of the acetal moiety resulted in the
formation of the formyl-substituted indole 7 in 63 % yield.
The compound 7 was then converted into isocryptolepine (8)
in one step by base-promoted hydrolysis of the urea linkage
followed by spontaneous intramolecular condensation of the
formyl group with the resultant secondary amino group.

A plausible mechanism for the electrochemical formation
of (aza)indoles was proposed based on the results from both
this and our previous studies (Scheme 5).[11] The process

begins with the anodic oxidation of [Cp2Fe] to [Cp2Fe]+ and
concomitant cathodic reduction of methanol solvent to form
methoxide (MeO�) and H2. MeO� then deprotonates sub-
strate 1a to furnish the anion A, which is a much better
electron-donor than its neutral precursor. Single-electron
transfer (SET) between A and [Cp2Fe]+ affords the electron-
deficient nitrogen-centered radical[20] B and regenerates
[Cp2Fe].[21] This efficient SET competes well with the cathodic
reduction of [Cp2Fe]+, thus allowing the electrolysis to be
carried out in an undivided cell rather than the relatively
complicated and costly divided cell. Subsequently, B partic-
ipates in a rare 6-exo-dig cyclization[22] to give the vinyl radical
C, which then undergoes a second cyclization with the aryl
ring to afford the delocalized radical D. Finally, the rear-
omatization of D by electron and proton eliminations
generates the final product 2a.[23]

To verify the mechanism proposed above, we first
recorded cyclic voltammograms of [Cp2Fe] in the absence
and presence of 1a (see Figure S1). Results from these
experiments suggested that efficient SET occurred between
[Cp2Fe]+ and the conjugate base of 1a (e.g., A, Scheme 5),
and is consistent with our previous observations.[11] Density
functional theory (DFT) calculations were then conducted to
obtain the energetics for the bis(cyclization) of B to form D.
The cascade cyclization was calculated to be a descending and

Scheme 3. Scope of azaindole synthesis. Reaction conditions were the
same as those of Scheme 2. [a] Yield of isolated product. [b] The
reaction time was 8 h (5 F). [c] Two separable isomers were obtained.

Scheme 4. Synthesis of the natural product isocryptolepine (8).

Scheme 5. Mechanistic proposal and computational studies. The
values are DFT-derived energetics for the cyclization of the radical
intermediate B. The energies (kcalmol�1), shown within parentheses,
are those relative to B and were calculated at the level of B3LYP/6-
31G*.
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overall energetically favorable process with reasonable acti-
vation energies.[24] Together, the experimental and computa-
tional results offer strong support for the proposed mecha-
nism.

In summary, we have developed an electrochemical
method which achieved efficient coupling of aryl- and
heteroarylamines with tethered alkynes for the highly
chemo- and regioselective synthesis of indoles and azaindoles.
Our method employs the inexpensive [Cp2Fe] as the redox-
relay reagent and proceeds through H2 liberation and thus
obviates the need for noble-metal catalysts and external
oxidants.
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Electrochemical C�H/N�H
Functionalization for the Synthesis of
Highly Functionalized (Aza)indoles It’s electric : An electrochemical coupling

of (hetero)arylamines with tethered
alkynes has been developed and provides
highly chemo- and regioselective access
to densely functionalized indoles and

azaindoles. The electrochemical reaction
employs ferrocene ([Cp2Fe]), an inexpen-
sive organometallic reagent, as the redox
catalyst and produces H2 as the only
theoretical byproduct.
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