59 **SYNTHESIS** January 1993

An Approach to 1-Aryl-1,2,4-triazoles

B.I. Buzykin,* Z.A. Bredikhina

A.E. Arbuzov Institute of Organic and Physical Chemistry, 420083, Kazan, Russia Received 6 April 1992

A series of different 1,3,5-trisubstituted 1,2,4-triazoles 9 have been readily prepared by simple oxidation of corresponding N-alkylamide arylhydrazones (amidrazones) 5 with hydrogen peroxide or potassium permanganate.

 N^2 , N^3 -Diarylamidrazones 1 are known to undergo oxidation rather readily producing N-[1-(arylazo)alkylidene]arylamines 2.1,2 Imines 2 are unstable compounds and are rapidly converted into substituted 1,4-dihydro-1,2,4benzotriazines 3.1-3 Newly synthesized N-[(4-nitrophenylazo)(diisopropoxyphosphoryl)methylene tert-butylamine (4) with a tertiary alkyl group at N^3 -atom, proved to be more stable (Scheme 1).

We did not succeed in isolating (arylazo)imines 6 with a N^3 -methylene group. 1-Aryl-1,2,4-triazoles 9a-i are formed by oxidation of N-alkylamide arylhydrazones 5a-j with different R¹ and R³ groups using hydrogen

peroxide (H₂O₂), potassium permanganate (KMnO₄), or silver(I) oxide (Ag₂O) as oxidizing agents. Transformation of amidrazones 5a-j into triazoles 9a-j may proceed through the initial formation not only of azoimines 6, as well as through their tautomerization into the N-alkylideneamide arylhydrazones 7. Besides the $6 \rightleftharpoons 7$ tautomerization they can undergo cyclization into 4.5-dihydro-1,2,4-triazoles 8, which in turn are oxidized to triazoles 9a-j (Table). It is a well known fact that attempts to obtain N-alkylideneamide arylhydrazones of type 7 and dihydrotriazoles of type 8 lead to the isolation of derivatives of 1,2,4-triazoles.^{4,5}

Chromatographic and spectrophotometric control of the oxidation of amidrazone 5j by KMnO4 in a diethyl ether water two-phase system made it possible to detect an intermediate product besides the initial product 5j and

Short Papers

Scheme 1

R3_NH2/Et3N

5-10	R ¹	R ²	R ³	
a	Ph	4-NO ₂	Н	
b	Ph	$4-NO_2$	Me	
c	Ph	H	Ph	
d	Ph	4-NO ₂	Ph	
e	Ph	Н	4-thiazolyl	
f	Ph	4-NO ₂	4-thiazolyl	
g h i j	Me $(MeO)_2P=O$ $(i-PrO)_2P=O$ $(i-PrO)_2P=O$	4-NO ₂ 4-NO ₂ 4-NO ₂ 4-NO ₂	4-thiazolyl Ph H Ph	

Scheme 2

the final product 9j. Its UV spectrum (ethanol, $\lambda_{\text{max}} = 420 \text{ nm}$) differs markedly from the spectrum of azoimine 4. There is a doublet at $\delta = 6.5 \, (^4J_{\rm PH} = 1.0 \, {\rm Hz})$ in the 1H NMR spectrum (CDCl₃), which makes it possible to state that the intermediate product has the structure of dihydrotriazole 8j [R¹ = $(i-PrO)_2P=O$, $R^2 = 4-NO_2$, $R^3 = Ph$], (Scheme 2).

We obtained the known amidrazones 5c, i and 11 and the unknown 5a,b,d-h,j by the reaction of acyl halide arylhydrazones 10 with corresponding alkylamines (H₂NCH₂R³) in the presence of triethylamine. ⁶⁻⁸ Purification of the readily oxidizable amidrazones 5a-j is in general not necessary, and this allows the synthesis of different 1,3-di- and 1,3,5-trisubstituted 1,2,4-triazoles. Thus, 5,5'-bis(1,2,4-triazolyl) 12 has been synthesized from bisamidrazone 11, in accordance with this method (Scheme 3).

Scheme 3

The structure of triazoles 9a-j and 12 had been confirmed by microanalytical data, IR, UV and ¹H NMR spectra.

N-[(4-Nitrophenylazo)(diisopropoxyphosphoryl)methylene|-tert-

Ag₂O (0.62 g, 2.7 mmol) was added to a solution of N-tert-butyl(diisopropoxyphosphoryl)formamide 4-nitrophenylhydrazone $[1, R^1 = (i-PrO)_2P(O), R^2 = NO_2-4, R^3 = t-Bu]$ in acetone (15 mL). The mixture was stirred at r.t. for 6 h. The next day the solid was separated, the acetone was removed under vacuum, and 0.7 g (70%) of crimson-red needles were obtained by recrystallization from hexane (Table).

1-Aryl-1,2,4-triazoles 9; General Procedures:

Method A (for triazoles 9a,d,j, 12): 30 % aq H₂O₂ (10 mL) and a few drops of sat. aq KOH was added to a stirred solution of amidrazone 5 (15 mmol) in MeCN (2-5 mL) and stirring was continued at r.t. for 1 h. The solid was separated, washed with H₂O, dried and crystallized from the appropriate solvent (Table) to give 9.

Method B (for triazoles 9b,c,e-g): The mixture of acyl halide arylhydrazone 10 (50 mmol) in EtOH (20 mL, for 9b, c) or in MeCN (20 mL, for 9e-g), of corresponding alkylamine R3CH2NH2 (50 mmol) and of Et₃N (50 mmol) was kept at r.t. for 1-2 d. Precipitated salts were filtered. Remaining solutions were poured into H₂O. For the MeCN case, solvent was distilled and the residue was poured into H₂O. Solids were filtered, washed several times with H₂O and oxidized without further purification as described in method A.

Method C (for triazole 9i): Amidrazone 5i (0.3 g, 0.84 mmol) was dissolved in CHCl₃ (25 mL), and 30 % aq H₂O₂ (2 mL), a few drops of aq. KOH and BnEt₃NCl (0.01 g) were added. The mixture was stirred at r.t. for 5 d. The layers were separated. The aqueous layer was extracted with CHCl₃ (2 × 25 mL). Combined CHCl₃ solutions were dried (Na₂SO₄), CHCl₃ was removed. The residue was crystallized from CCl4 to give 9i (Table).

Table. Compounds 4, 9, 12 Prepared

Com- pound	Yield (%) (Method)	mp (°C) ^a (solvent)	Molecular Formula ^b or Lit. mp (°C)	UV (EtOH)° λ_{max} (nm) (log ε)	¹ H NMR (CDCl ₃ /TMS) ^{d. e} δ , J (Hz)
4	70	80-81 (hexane)	C ₁₇ H ₂₇ NO ₅ P (398.2)	210 (4.68), 296 (4.26)	1.26 (d), 1.37 (d) and 1.43 (s, 21 H, CH ₃), 4.70 (m, 2 H, CH), 7.86 (d, 2 H) and 8.24 (d, 2 H, $C_6H_4NO_3$ -4, $J=9.0$)
9a	50 (A)	198-200 (EtOH)	199-201°	248, 312	7.33 (m, 3H) and 8.00 (m, 2H, Ph), 7.88 (d, 2H) and 8.29 (d, 2H, $C_6H_4NO_2$ -4, $J = 9.0$)
9b	79 (B)	140-142 (EtOH)	14210	-	_
9c	45 (B)	103-104 (MeOH)	104-10511	-	-
9d	50 (A)	165–167 (EtOH)	160-16212	250, 312	7.32 (10 H, 2Ph), 7.42 (d, 2H) and 8.05 (d, 2H, $C_6H_4NO_2$ -4, $J = 9.0$)
9e	60 (B)	133-134 (ligroin/ benzene, 3:1)	$C_{17}H_{12}N_4S$ (304.1)	_	7.30 (m, 8 H) and 8.10 (m, 2 H, 2 Ph), 7.77 (d, 1 H, 5-H, J = 2.0), 8.66 (d, 1 H, 2-H, J = 2.0)
9f	38 (B)	214–214.5 (EtOH)	$C_{17}H_{11}N_5O_2S$ (349.1)	250 (4.48), 309 (4.02)	7.60 (m, 3 H) and 8.20 (m, 2 H, Ph), 7.92 (d, 2 H) and 8.46 (d, 2 H, $C_6H_4NO_2$ -4, $J=9.0$), 8.62 (d, 1 H, 5-H, $J=2.0$), 9.25 (d, 1 H, 2-H, $J=2.0$)
9g	55 (B)	201-202 (CHCl ₃)	$C_{12}H_9N_5O_2S$ (287.1)	-	2.50 (s, 3 H, CH ₃), 7.57 (d, 2 H) and 8.23 (d, 2 H, $C_6H_4NO_2$ -4, $J = 9.0$), 8.05 (d, 1 H, 5-H, $J = 2.0$), 8.68 (d, 1 H, 2-H, $J = 2.0$)
9h	53 (D)	117–118 (CCl ₄)	$C_{16}H_{15}N_4O_5P$ (374.1)	283, 247	3.96 (d, 6H, CH ₃ O, $J = 11$), 7.35 (s, 5H, Ph), 7.45 (d, 2H) and 8.13 (d, 2H, C ₆ H ₄ NO ₂ -4, $J = 9.0$)
9i	50 (C)	122–123 (CCl ₄)	116-1176	-	
9j	50 (A)	119-120 (hexane/ Et ₂ O, 1:1)	$C_{20}H_{23}N_4O_5P$ (430.2)	246 (4.61), 286 (4.54)	1.40 (d, 12 H, CH ₃ , J = 6.0), 4.83 (m, 2 H, CH), 7.45 (s, 5 H, Ph), 7.57 (d, 2 H) and 8.22 (d, 2 H, C ₆ H ₄ NO ₂ -4, J = 9.0)
12	10 (A)	201-203 (MeOH)	${\rm C_{28}H_{36}N_8O_{10}P_2} \ (706.3)$	252, 279	1.23 (d) and 1.36 (d, 12 H, CH_3 , $J = 6.0$), 4.76 (m, 2 H, CH), 7.60 (d, 2 H) and 8.19 (d, 2 H, $C_6H_4NO_2$ -4, $J = 9.0$)

^a Melting points were measured with a Boetius micro mp apparatus and are not corrected.

Method D (for triazole 9h): 2% aq. KMnO₄ (10.6 mL) was added to a solution of amidrazone 5h (0.2 g, 0.53 mmol) in Et₂O (8 mL). The mixture was stirred for 2 h. Et₂O layer was separated and aqueous layers were extracted by Et₂O (10 mL). Removal of the solvent after drying (Na₂SO₄) gave a residue, which was recrystallized from CCl₄ to give 9h (Table).

- (1) Blatter, H. M.; Lukaszewski, H. Tetrahedron Lett. 1968, 2701.
- (2) Neugebauer, F. A.; Umminger, I. Chem. Ber. 1981, 114, 2423.
- (3) Buzykin, B.I.; Gazetdinova, N. G. Izv. Akad. Nauk SSSR, Ser. Khim. 1980, 1616.

- (4) Neilson, D.G.; Roger, R.; Heatlie, J.W.M.; Newlands, L.R. Chem. Rev. 1970, 70, 151.
- (5) Kadaba, P.K. Adv. Heterocycl. Chem. 1989, 46, 170-281.
- (6) Sokolov, M.P.; Buzykin, B.I.; Zijblikova, T.A. Zh. Obshch. Khim. 1990, 60, 1293.
- (7) Buzykin, B.I.; Bredikhina, Z.A.; Gazetdinova, N.G. Zh. Obshch. Khim. 1991, 61, 1084.
- (8) Buzykin, B. I.; Bredikhina, Z. A.; Molodykh, Zh. V. Izv. Akad. Nauk SSSR, Ser. Khim. 1991, 61, 2111.
- (9) Butler, R.N.; Fitzgerald, K.J.; Fleming, M.T. Tetrahedron Lett. 1986, 27, 4921.
- (10) Ponzio, G. Gazz. Chim. Ital. 1910, 40, 85.
- (11) Huisgen, R.; Grashey, R.; Seidel, M. Liebigs Ann. Chem. 1962, 653, 105.
- (12) Weidinger, H.; Kranz, J. Chem. Ber. 1963, 96, 2070.

Satisfactory microanalyses obtained: C, H, N < \pm 0.35.

^c Measured using a Specord M-40 spectrophotometer.

d Obtained on a Varian T-60 (60 MHz) spectrometer.

^e 9f measured in DMSO-d₆, 9j in CD₃CN, 4, 12 in CCl₄.