ISOLATION OF [Rh(DIOLEFIN)X₂]⁻ SPECIES AND THEIR REACTIONS WITH P- OR N-DONOR LIGANDS, TIN(II) HALIDES AND CARBON MONOXIDE

M. A. GARCIA, M. A. GARRALDA* and L. IBARLUCEA

Catedra de Quimica Inorganica, Facultad de Quimica, Universidad del Pais Vasco, San Sebastian, Spain

(Received 27 October 1987; accepted after revision 13 January 1988)

Abstract—Anionic $[Rh(diolefin)X_2]^-$ species (X = Cl, Br) have been prepared and their reactions studied. The reactions with monodentate ligands led to neutral tetracoordinated complexes, and with N-donor bidentate ligands (Rh : LL = 2:1) gave Rh(X)(diolefin)(LL), $[Rh(diolefin)(LL)]^+[Rh(diolefin)X_2]^-$, or [Rh(diolefin)(LL)]X compounds, depending on the nature of LL or X. Reactions with carbon monoxide involved diolefin displacement. A trichlorostannato complex was obtained from the $[Rh(COD)Cl_2]^-$ species. Reactions of $[Rh(COD)Br]_2$ with bidentate N-donor ligands were also studied.

The reaction between $[Rh(diolefin)Cl]_2$ and some bidentate N-donor ligands (Rh: LL = 2:1) may give, depending on the nature of LL, ion-pair $[Rh(diolefin)(LL)]^+[Rh(diolefin)Cl_2]^-$ complexes, that contain diolefinic rhodium(I) anions.¹⁻⁴ While anionic carbonylated rhodium(I) species $[Rh(CO)_2X_2]^-$ have been extensively studied⁵⁻¹² and the crystal structure of $[Rh(CO)_2Cl_2]^-$ has been determined,⁶⁻⁸ similar diolefinic $[Rh(diolefin)X_2]^$ species have received less attention. AsPh₄[Rh (COD)Cl₂] has been isolated¹³ and the molecular structure of an ionic complex containing the [Rh (COD)Cl₂]⁻ anion has been reported.¹⁴

In the present paper, we describe the synthesis of different $[Rh(diolefin)X_2]^-$ species and their reactivity with mono- and bidentate ligands containing N- or P-donor atoms, with carbon monoxide and with tin(II) halides.

RESULTS AND DISCUSSION

 $[Rh(diolefin)X_2]^-$ species may be easily prepared by the reaction of $[Rh(diolefin)X]_2$ dimers with a stoichiometric amount of the corresponding halide as the salt of bulky cations that favour precipitation [eq. (1)]

 $[Rh(diolefin)X]_2 + 2RX \rightarrow 2R[Rh(diolefin)X_2].$ (1)

The complexes (I-III) thus obtained (see Table 1) are yellow and air stable, behave as 1:1 electrolytes in acetone solution and their IR spectra show, along with the bands due to the corresponding cations and diolefins, one or two bands in the far-IR due to v (Rh—X). The ¹H-NMR spectra of the two anions containing 1,5-cyclooctadiene (X = Cl, Br) show three groups of resonances, around 4.3, 2.4 and 1.7 ppm. These values agree with those found in the literature for the anion $[Rh(COD)Cl_2]^-$ isolated as the tetraphenylarsonium salt by a more complicated method.¹³ The anion $[Rh(NBD)Cl_2]^{-1}$ shows the corresponding signals around 3.8, 3.6 and 1.1 ppm. All these signals are very similar to those corresponding to the starting dimers [Rh(diolefin)X]₂.¹⁵

The reactivity of $[Rh(COD)X_2]^-$ with aliphatic diamines (LL) depends on the degree of N-substitution in the diamine. Thus, when LL = ethylenediamine (en), pentacoordinated neutral Rh(X)(COD)(en) compounds are obtained, irrespective of the stoichiometric ratios employed (Rh:LL = 2:1 or 1:1) [eq. (2)]

$$Et_4N[Rh(COD)X_2]+en$$

 $\rightarrow Rh(X)(COD)(en) + Et_4NX,$ (2)

but when the more crowded LL = N, N, N', N'tetramethylethylenediamine (tmen) is used, no reaction occurs and the starting products are recovered unchanged.

^{*}Author to whom correspondence should be addressed.

The anions $[Rh(COD)X_2]^-$ react with bidentate heterocyclic N-donor ligands to give products that depend on the type of halogen, X. Thus, $Et_4N[Rh(COD)Cl_2]$ reacts with 2,2'-bipyridine (bipy), 1,10-phenanthroline (phen), 5,6-dimethyl-1,10-phenanthroline (5,6-Me₂phen) or 4,7-diphenyl-1,10-phenanthroline (4,7-Ph₂phen) to yield ionpair compounds [Rh(COD)(LL)]+[Rh(COD)Cl2]when Rh: LL = 2:1 or ionic tetracoordinated [Rh(COD)(LL)]Cl when Rh: LL = 1:1. These products may also be obtained by the reaction of $[Rh(COD)Cl]_2$ with these ligands.^{3,16} On the other hand, the reaction of Et₄N[Rh(COD)Br₂] with these ligands gave only tetracoordinated ionic [Rh(CO-D)(LL)]Br complexes, irrespective of the stoichiometric ratios employed (Rh: LL = 2:1 or 1:1). The elemental analyses, molar conductivities and yields for the complexes obtained (IV-VII) are collected in Table 1.

$[Rh(COD)Br]_2 + LL$

$\rightarrow [Rh(COD)(LL)]^{+}[Rh(COD)Br_{2}]^{-}.$ (5)

The complexes obtained are collected in Table 1 (X-XVI), they behave as 1:1 electrolytes in acetone solution and their IR spectra show bands due to v (Rh—Br) of the anion [Rh(COD)Br₂]⁻. In keeping with previous suggestions¹⁸ we could attribute the behaviour of [Rh(COD)Br]₂, to a bridge cleavage mechanism via five-coordinate intermediates that could avoid free bromine appearing in solution.

The reaction of $[Rh(COD)Br]_2$ with ethylenediamine, 2,9-dimethyl-1,10-phenanthroline (2,9-Me₂phen) or 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (2,9-Me₂-4,7-Ph₂phen) (Rh:LL = 1:1 or 2:1) gave only pentacoordinated neutral compounds Rh(Br)(COD)(LL) (XV-XVII), analogous to those obtained from $[Rh(COD)Cl]_2^{3,4}$ [eq. (6)]

$$[Rh(COD)X_{2}]^{-} \xrightarrow{(i)} 1/2[Rh(COD)(LL)]^{+}[Rh(COD)X_{2}]^{-} + X^{-}$$

$$(3)$$

(i) = 1/2LL (X = Cl); (ii) = LL (X = Cl, Br).

These results indicate a lower tendency to form the ion-pair compounds, when the anionic species contain bromine.

Monodentate P- or N-donor ligands, such as quinoline (quin) or triphenylphosphine, react easily with $[Rh(diolefin)X_2]^-$ species (Rh: L = 1:1), and displace one halide atom, yielding neutral tetra-coordinated compounds [eq. (4)]

$$Et_4N[Rh(COD)X_2] + L \rightarrow Rh(X)(COD)L + Et_4NX$$
(4)
$$L = quin. Ph_3P.$$

Carbon monoxide displaces the coordinated diolefin, leading to the well-known dicarbonylated anions $[Rh(CO)_2Cl_2]^{-5}$ identified through the IR spectra of the solutions obtained.

 $Et_4N[Rh(COD)Cl_2]$ reacts with $SnCl_2$ but needs Rh : Sn = 1:3 molar ratios to react completely and give $(Et_4N)_2[Rh(SnCl_3)_3(COD)]$,¹⁷ while Et_4N [Rh(COD)Br₂] does not react with $SnBr_2$ under the same conditions and the starting product is recovered unchanged.

In the light of the above results, we have studied the reaction between $[Rh(COD)Br]_2$, prepared *in* situ from $[Rh(COD)Cl]_2$,¹ and bidentate N-donor ligands (Rh: LL = 2:1). The reaction with LL =bipy, phen, 5,6-Me₂phen, 4,7-Ph₂phen or tmen, gave ion-pair compounds [eq. (5)]

$$[Rh(COD)Br]_2 + 2LL \rightarrow 2Rh(Br)(COD)(LL).$$

(6)

These compounds behave as non-electrolytes in acetone solution and their IR spectra show one band around 200 cm⁻¹ that may be due to v (Rh—Br), thus confirming the bromine being bonded to the rhodium atom. Rh(Br)(COD)(en) shows bands due to the coordinated diamine at v (N—H) = 3190 ($\Delta v = 180$), 3170 ($\Delta v = 200$) and 3080 ($\Delta v = 205$) cm⁻¹. The band at the higher frequency is split, probably due to crystal lattice effects. The v (N—H) decreases upon coordination are smaller than in the analogous Rh(Cl)(COD)(en).⁴

EXPERIMENTAL

 $[Rh(COD)Cl]_2$, in situ $[Rh(COD)Br]_2^1$ and $[Rh(NBD)Cl]_2^{19}$ compounds were prepared by published methods. The C, H and N microanalysis were carried out with a Perkin–Elmer 240C microanalyser. Conductivities were measured in *ca* 2.5×10^{-4} M acetone solutions with a Metrhom E518 conductimeter. Proton NMR spectra were recorded at room temperature with an XL-200 Varian spectrometer with tetramethylsilane as the internal standard and deuterochloroform as the solvent. IR spectra were recorded on a Perkin–Elmer 598 spectrophotometer in the range 4000–200 cm⁻¹ using Nujol mulls between polyethylene sheets and

Compound						*** 11
	Fo %C	und (ca %H	lc.) %N	$(\Omega^{-1} \operatorname{cm}^2 \operatorname{mol}^{-1})$	v (Rh - X) (cm ⁻¹)	Yield (%)
$Et_4N[Rh(COD)Cl_2]$ (I)	45.3	7.4	3.2	106	270(sh)	61
	(46.4)	(7.8)	(3.4)		258(s)	
AsPh ₄ [Rh(NBD)Cl ₂] (II)	56.2	4.3	—	112	275(m)	76
	(57.3)	(4.3)			260(m)	
$Et_4N[Rh(COD)Br_2]$ (III)	38.4	7.1	2.8	136	188(s)	74
	(38.3)	(6.4)	(2.8)			
[Rh(COD)(phen)]Br (IV)	49.9	4.3	5.9	а		52
	(51.0)	(4.3)	(5.9)			
[Rh(COD)(bipy)]Br (V)	46.9	4.7	6.1	109		70
	(48.4)	(4.5)	(6.3)			
[Rh(COD)(5,6-Me ₂ phen)]Br (VI)	50.4	4.5	5.6	121	_	75
	(52.9)	(4.8)	(5.6)			
[Rh(COD)(4,7-Ph ₂ phen)]Br (VII)	60.1	4.8	4.3	114	—	66
	(61.6)	(4.5)	(4.5)			
Rh(Br)(COD)(quin) (VIII)	47.5	4.8	3.5	10	193(s)	53
	(48.6)	(4.6)	(3.3)			
Rh(Cl)(COD)(quin) (IX)	54.0	5.0	4.4	10	285(sh)	31
	(54.3)	(4.5)	(3.7)		265(m)	
$[Rh(COD)(4,7-Ph_2phen)][Rh(COD) Br_2] (X)$	51.8	4.4	3.3	96	178(m)	72
	(52.5)	(4.4)	(3.1)			
[Rh(COD)(phen)][Rh(COD)Br ₂](XI)	43.8	4.3	3.7	а	191(s)	69
	(44.1)	(4.2)	(3.7)			
$[Rh(COD)(5,6-Me_2phen)][Rh(COD)Br_2] (XII)$	45.4	4.6	3.4	а	1 79(s)	65
	(45.6)	(4.6)	(3.5)			
[Rh(COD)(bipy)][Rh(COD)Br ₂] (XIII)	42.7	4.3	4.1	104	190(m)	47
	(42.3)	(4.4)	(3.8)			
[Rh(COD)(tmen)][Rh(COD)Br ₂] (XIV)	36.0	5.8	4.1	116	195(s)	79
	(37.8)	(5.8)	(4.0)			
$Rh(Br)(COD)(2,9-Me_2phen)$ (XV)	51.6	4.8	5.4	2	202(s)	48
	(52.9)	(4.8)	(5.6)			
$Rh(Br)(COD)(2,9-Me_2-4,7-Ph_2phen) (XVI)$	61.6	5.0	4.5	2	202(s)	85
	(62.6)	(4.9)	(4.3)			
Rh(Br)(COD)(en) (XVII)	33.6	5.7	7.2	а	202(s)	65
	(34.2)	(5.7)	(8.0)			

Table 1. Analytical, conductivity and IR data and yields for the isolated compounds

^a Insoluble in acetone.

with a Nicolet 60SX spectrophotometer in the range $500-140 \text{ cm}^{-1}$, using polyethylene pellets.

Preparation of Et₄N[Rh(COD)X₂] complexes

To 5 cm³ of dichloromethane solutions of $[Rh(COD)X]_2$ (0.12 mmol), the appropriate Et₄NX (0.24 mmol) was added. Upon addition of diethyl ether yellow precipitates were formed, filtered off, washed with diethyl ether and air-dried.

Preparation of Ph₄As[Rh(NBD)Cl₂]

Addition of $Ph_4AsCl (0.24 \text{ mmol})$ to 5 cm³ of a dichloromethane solution of $[Rh(NBD)Cl]_2 (0.12)$

mmol), followed by addition of n-hexane gave a yellow solid that was filtered off, washed with n-hexane and air-dried.

Reactions of Et₄N[Rh(COD)X₂]

(i) Reaction with ethylenediamine. Addition of ethylenediamine (0.12 mmol) to solutions of $Et_4N[Rh(COD)X_2]$ (0.12 mmol) in 5 cm³ of dichloromethane yield yellow solids that were filtered off, washed with dichloromethane and air dried. The solids obtained were identified as Rh(X)(COD)(en).

(ii) Reaction with phenanthroline type ligands. To $Et_4N[Rh(COD)X_2]$ (0.12 mmol) solutions in 5 cm³ of dichloromethane, the corresponding stoichiometric amounts (0.12 mmol) of 1,10-phenanthroline, 2,2'-bipyridine, 5,6-dimethyl-1,10-phenanthroline or 4,7-diphenyl-1,10-phenanthroline were added, whereupon the solution turned red or violet. The formed [Rh(COD)(LL)]Br complexes precipitated immediately as red crystals when LL = 1,10-phenanthroline or 5,6-dimethyl-1,10phenanthroline were added and required elimination of CH₂Cl₂ and addition of acetone when LL = 2,2'-bipyridine (red crystals) or 4,7-diphenyl-1,10-phenanthroline (violet crystals) was used. The complexes obtained were filtered off, washed with acetone and air-dried.

(iii) Reaction with triphenylphosphine. $Ph_3P(0.08 \text{ mmol})$ was added to yellow solutions of Et_4N [Rh(COD)X₂] (0.08 mmol) in 5 cm³ of $CH_2Cl_2/$ MeOH (1:1) whereupon the solutions became orange. The elimination of dichloromethane yielded orange Rh(X)(COD)(Ph₃P) compounds that were filtered off, washed with methanol and air-dried.

(iv) Reaction with quinoline. Quinoline (0.12 mmol) was added to 5 cm³ of yellow dichloromethane solutions of $Et_4N[Rh(COD)X_2]$ (0.12 mmol). Addition of methanol (3 cm³) and elimination of dichloromethane led to yellow precipitates of Rh(X)(COD)(quin) complexes that were filtered off, washed with methanol and air-dried.

(v) Reaction with carbon monoxide. Carbon monoxide (P = 1 atm) was bubbled through dichloromethane solutions of Et₄N[Rh(COD)X₂] (0.12 mmol) for 30 min. IR spectra of the yellow solutions obtained confirmed the formation of Et₄N[Rh (CO)₂X₂] complexes.

(vi) Reaction with tin(II) halides. $SnCl_2 \cdot 2H_2O$ (0.30 mmol) in 5 cm³ of methanol was added to 5 cm³ of Et₄N[Rh(COD)Cl₂] (0.10 mmol) in dichloromethane. The addition of Et₄NCl (0.10 mmol) followed by elimination of dichloromethane gave (Et₄N)₂[Rh(SnCl₃)₃(COD)] that was filtered off, washed with methanol and air-dried.

 $Et_4N[Rh(COD)Br_2]$ did not react with $SnBr_2$ under the same conditions.

Preparation of [Rh(COD)(LL)]⁺[Rh(COD)Br₂]⁻ complexes

Addition of the corresponding ligand (0.06 mmol) to 5 cm³ of dichloromethane solutions of *in situ* prepared [Rh(COD)Br]₂ (0.06 mmol) gave red solids when LL = 1,10-phenanthroline, 2,2' bipyridine or 5,6-dimethyl-1,10-phenanthroline. When LL = 4,7-diphenyl-1,10-phenanthroline or N,N,N',N'-tetramethylethylenediamine, addition of diethyl ether was necessary to afford precipitation of the corresponding compounds. The

complexes obtained were filtered off, washed with diethyl ether and air-dried.

Preparation of Rh(Br)(COD)(LL) complexes

0.12 mmol of the corresponding ligand were added to 5 cm³ of dichloromethane solutions of *in situ* prepared [Rh(COD)Br]₂ (0.06 mmol). When LL = ethylenediamine, a yellow solid appeared immediately. When LL = 2,9-dimethyl-1,10-phenanthroline or 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline, addition of diethyl ether gave yellow solids. The complexes thus obtained, were filtered off, washed with diethyl ether and air-dried.

Acknowledgement—We thank the CAICYT for financial support.

REFERENCES

- 1. J. Chatt and L. M. Venanzi, J. Chem. Soc. 1957, 4735.
- 2. D. M. Roe and G. Massey, J. Organomet. Chem. 1971, 28, 273.
- 3. V. García, M. A. Garralda and L. Ibarlucea, Transition Met. Chem. 1985, 10, 288.
- 4. M. A. Garralda and L. Ibarlucea, J. Organomet. Chem. 1986, 311, 225.
- 5. L. M. Vallarino, Inorg. Chem. 1965, 4, 161.
- E. Cetinkaya, A. W. Johnson, M. F. Lappert, G. M. McLaughlin and K. W. Mir, J. Chem. Soc., Dalton Trans. 1974, 1236.
- C. K. Thomas and J. A. Stanko, *Inorg. Chem.* 1971, 10, 566.
- F. W. B. Einstein and C. R. S. M. Hampton, Can. J. Chem. 1971, 49, 1901.
- 9. A. R. Sanger, J. Chem, Soc., Dalton Trans. 1981, 228.
- 10. J. V. Kingston, Inorg. Nucl. Chem. Lett. 1968, 4, 65.
- J. V. Kingston, F. T. Mahmoud and G. R. Scollary, J. Inorg. Nucl. Chem. 1972, 34, 3197.
- H. A. Hudali, J. V. Kingston and H. A. Tayim, *Inorg. Chem.* 1979, 18, 1391.
- B. Crociani, U. Belluco and P. Sandrini, J. Organomet. Chem. 1979, 177, 385.
- 14. M. C. Bonnet, I. Tkatchenko, R. Faure and H. Loiseleur, Nouv. J. Chim. 1983, 7, 601.
- H. C. Volger, M. M. P. Gaasbeek, H. Hogeveen and K. Vrieze, *Inorg. Chim. Acta* 1969, 3, 145.
- 16. G. Zassinovich, G. Mestroni and A. Camus, J. Organomet. Chem. 1975, 91, 379.
- M. Kretschmer, P. S. Pregosin and H. Ruegger, J. Organomet. Chem. 1983, 241, 87.
- B. Denise and G. Pannetier, J. Organomet. Chem. 1978, 148, 155.
- E. W. Abel, M. A. Bennett and G. Wilkinson, J. Chem. Soc. 1959, 3178.