J.C.S. Снем. Сомм., 1981

The Direct Conversion of α-Olefins into Vinyl- and Allyl-silanes catalysed by Rhodium Complexes

By ANDRES MILLAN, ELIZABETH TOWNS, and PETER M. MAITLIS* (Department of Chemistry, The University, Sheffield, Sheffield S3 7HF)

Summary At high α -olefin to Et₃SiH ratios and at temperatures ≤ 40 °C [(RhC₅Me₅)₂Cl₄] catalyses the formation of vinyl- and allyl-silanes; other rhodium complexes act similarly.

WHILE the transition metal complex-catalysed hydrosilylation of terminal olefins is a well established reaction (A)¹ only scattered reports have appeared concerning the coproduction of vinylsilanes.²⁻⁵ Most of those have related to the formation of styrylsilanes from the reactions of styrene (or substituted styrenes) with R₃SiH.²⁻⁴ The current interest in vinylsilanes as organic synthons⁶ prompts us to report our results on an efficient direct conversion of α -olefins into unsaturated silanes and on the conditions needed to accomplish this.

$$RCH = CH_2 + R'_{3}SiH \rightarrow RCH_2CH_2SiR'_{3}$$
(A)

For most of these experiments we have used $[(RhC_5Me_5)_2-Cl_4]^{7,8}$ as the catalyst but we have also found that very similar results are given by the Wilkinson complex $[Rh(PPh_a)_3Cl]$ under similar conditions.

Using hex-l-ene as a model α -olefin, and Et₃SiH as the silicon hydride we were able to characterise three products, n-hexyl(triethyl)silane (1), (E)-hex-l-enyl(triethyl)silane (2), and (E)-hex-2-enyl(triethyl)silane (3);† n-hexane was also formed and evidence for the isomerisation of hex-l-ene to internal olefins was found.

$$\begin{array}{rl} {\rm CH}_3[{\rm CH}_2]_4{\rm CH}\!=\!{\rm CH}_2 &+& {\rm Et}_3{\rm SiH} \rightarrow \\ {\rm CH}_3{}^{\rm a}{\rm CH}_2{}^{\rm b}{\rm CH}_2{}^{\rm c}{\rm CH}_2{}^{\rm d}{\rm CH}_2{}^{\rm e}{\rm CH}_2{}^{\rm f}{\rm Si}({\rm CH}_2{}^{\rm g}{\rm CH}_3{}^{\rm h})_3 &+\\ & (1) \\ {\rm CH}_3{}^{\rm a}{\rm CH}_2{}^{\rm b}{\rm CH}_2{}^{\rm c}{\rm CH}_2{}^{\rm d}{\rm CH}^{\rm e}\!=\!{\rm CH}{}^{\rm f}{\rm Si}({\rm CH}_2{}^{\rm g}{\rm CH}_3{}^{\rm h})_3 &+\\ & (2) \\ {\rm CH}_3{}^{\rm a}{\rm CH}_2{}^{\rm b}{\rm CH}_2{}^{\rm c}{\rm CH}{}^{\rm d}\!=\!{\rm CH}{}^{\rm e}{\rm CH}_2{}^{\rm f}{\rm Si}({\rm CH}_2{}^{\rm g}{\rm CH}_3{}^{\rm h})_3 &+\\ & (3) \\ &+& {\rm CH}_3[{\rm CH}_2]_4{\rm CH}_3 \end{array}$$

The relative ratios (1):(2):(3) were investigated as a function of several variables. Those which had the greatest

effect were (a) the initial ratio of hexene: Et_3SiH and (b) the reaction temperature. Oxygen, traces of water, and different levels of catalyst had only very minor effects for [(RhC₅-Me₅)₂Cl₄].

FIGURE 1. Change in products with change in hex-l-ene and Et_3SiH ratio {at 40 °C, catalyst [(RhC₅Me_5)_2Cl_4], in C_2H_4Cl_2 }. \bigcirc , Et_3SiCH_2[CH_2]_4CH_3 (1); \bigcirc , Et_3SiCH=CHCH_2[CH_2]_2CH_3 (2); \square , Et_3SiCH_2CH=CHCH_2CH_2CH_3 (3).

Higher ratios of olefin to Et_3SiH (Figure 1 and Table) gave higher amounts of the vinylsilane (2) and lower amounts of the hexylsilane (1) until, at a 7:1 ratio, less than 10% of (1) was present in the reaction mixture. The amount of the allylsilane (3) produced was affected much less by the hexene: Et_3SiH ratio but it too increased somewhat at higher olefin ratios.

On increasing the reaction temperature from 40 to $100 \,^{\circ}$ C the amount of vinylsilane (2) decreased sharply with simultaneous increases in the amounts of (1) and (3) (Figure 2).

[†]¹H N.m.r. spectra (400 MHz) in CDCl₃: (1) $\delta 0.50$ [q, CH₂^g, $J(H^gH^h) 8 Hz$], 0.92 (t, CH₃^h, CH₃^a), and 1.28 (broad s, CH₂^{b,c,d,e}); (2) $\delta 0.50$ (q, CH₂^g), 0.92 (t, CH₃^h), 1.28 (broad s, CH₂^{b,c)}, 2.11 (dt, CH₂^d), 5.52 (d, CH^t), and 6.03 (dt, CH^e); $J(H^eH^t) = 19$, $J(H^eH^d) = J(H^aH^e) = 7$, $J(H^gH^h) = 8$, $J(H^dH^f) = 1 Hz$; (3) $\delta 0.50$ (q, CH₂^g), 0.88 (t, CH₃^a), 0.92 (t, CH₃^h), 1.35 (tq, CH₂^b), 1.43 (d, CH₂^t), 1.95 (dt, CH₂^c), 5.25 (dt, CH^d), and 5.37 (dt, CH^e); $J(H^aH^b) = J(H^eH^d) = J(H^eH^t) = 7$, $J(H^gH^h) = 8$, $J(H^dH^e) = 15$ Hz.

				1 ABLE			
Decetort		Time /h	Ratio olefin : Et ₃ SiH	Total yield (%)	Products (%)a		
$RCH_2CH = CH_2$	Catalystb				RCH2CH2CH2SiEt3	RCH ₂ CH : CHSiEt ₃	RCH: CHCH_SiEt
$R = Pr^n$	A A A B C D	1 1 1 1 6 0.67	1:1 3:1 5:1 7:1 5:1 5:1	40 90 95 95 90 93 75	87 44 19 10 25 53 100	0 35 58 67 50 31 0	8 16 21 21 22 15 0
$\begin{array}{l} R = Bu^n \\ R = n \cdot C_8 H_{13} \\ PhCH=CH_2 \end{array}$	A A A	4 6 72	5:1 3:1 5:1	90 98 90	34 34 PhCH ₂ CH ₂ SiEt ₃ 25 % PhCH=CHSiEt ₃ 55 % unidentified 20 %	52 46	8 20

T

^a Characterised and analysed by ¹H n.m.r. spectroscopy (220 MHz), g.l.c., and mass spectrometry. ^b A = [(RhC₅Me₅)₂Cl₄] (0·01 mmol), Et₃SiH (7·5 mmol), solvent C₂H₄Cl₂ (9 cm³), at 40 °C. B = [Rh(PPh₃)₃Cl] (0·005 mmol), Et₃SiH (7·5 mmol), solvent C₂H₄Cl₂, (9 cm³), at 40 °C. C = [Rh(acac)₃] (0·1 mmol), Et₃SiH (15 mmol), solvent C₂H₄Cl₂, (9 cm³), at 40 °C. D = [Pt₂(C₂H₄)₂Cl₄] (0·01 mmol), Et₃SiH (7·5 mmol), solvent C₂H₄Cl₂ (9 cm³), at 40 °C.

FIGURE 2. Change in products with temperature for reaction of hex-lene and Et_siH fratio 3:1, catalyst [[RhC₉Me₉]₂Cl₄] in C₂H₄Cl₂}. \bigcirc , Et_3SiCH₂[CH₂]₄CH₃ (1); \triangle , Et₃SiCH₂=CHCH₂-[CH₂]₄CH₃ (2); \Box , Et₃SiCH₂CH₂CH₂CH₂CH₂CH₃ (3).

The solvent normally used was 1,2-dichloroethane; the reactions could also be carried out in benzene and entirely without solvent with similar results, but problems due to catalyst insolubility did complicate these reactions. By contrast, $[Rh(acac)_3]$ (Hacac = pentane-2,4-dione) was found to be a poorer catalyst and also gave lower yields of (2) and (3). The Speier-type catalyst, $[Pt_2(C_2H_4)_2Cl_4]$,^{1,9} while giving a very good rate of reaction, produced only (1) and none of the unsaturated silanes (2) or (3).

Several other α -olefins were examined and found to react similarly to hex-l-ene (Table). In addition propene, when bubbled (1 atm) through a solution of [(RhC₅Me₅)₂Cl₄] in dichloroethane at 22 °C, very readily gave a 1:1 mixture of $CH_3CH_2CH_2SiEt_3$ and $CH_3CH=CHSiEt_3$ (analysed by g.l.c. and ¹H n.m.r. spectroscopy). In the reactions involving non-l-ene, several unsaturated materials in addition to the allyl- and vinyl-silanes were observed.

Proposals for a mechanism will be presented in the full paper but we note that the formation of hexane in an amount corresponding approximately to the total of hexenylsilanes produced suggests that a hydrogen-transfer reaction (C) is taking place, in competition with the normal hydrosilation (B).

hex-l-ene +
$$Et_3SiH \xrightarrow{catalyst} n-C_6H_{13}SiEt_3$$
 (B)

catalyst \longrightarrow n-C₆H₁₁SiEt₃ + n-C₆H₁₄ (C) $2 \text{ hex-l-ene} + \text{Et}_3 \text{SiH} -$

The increase in unsaturated silanes at high olefin ratios further suggests that the formation of the unsaturated products proceeds via intermediates of the type (4) containing an olefin co-ordinated to an alkyl-silyl-rhodium centre.

SCHEME

A possible route for breakdown of (4) is given in the Scheme.

We thank Conicit (Venezuela) for a studentship (for A.M.) and the S.R.C. for support.

(Received, 1st April 1981; Com. 375.)

- ¹ J. L. Speier, Adv. Organomet. Chem., 1979, 17, 407. ² A. J. Cornish, M. F. Lappert, G. L. Filatov, and T. A. Nile, J. Organomet. Chem., 1979, 172, 153

- ³ G. Kuncova and V. Chvalovsky, Collect. Czech. Chem. Commun., 1980, 46, 2240.
 ⁴ Y. Seki, K. Takeshita, K. Kawamoto, S. Murai, and N. Sonoda, Angew. Chem., Int. Ed. Engl., 1980, 19, 928.
 ⁵ H. M. Dickers, R. N. Haszeldine, L. S. Malkin, A. P. Mather, and R. V. Parish, J. Chem. Soc., Dalton Trans., 1980, 308.
- ⁶ T. H. Chan and I. Fleming, Synthesis, 1979, 761; F. Cook, R. Moerck, J. Schwindeman, and P. Magnus, J. Org. Chem., 1980, 45, 1046.
- W. Kang, K. Moseley, and P. M. Maitlis, J. Am. Chem. Soc., 1969, 91, 5970.
- * For recent reviews of the chemistry of these systems see P. M. Maitlis, Acc. Chem. Res., 1978, 11, 307; Chem. Soc. Rev., 1981, 10, 1. ⁹ R. A. Benkeser and J. Kang, J. Organomet. Chem., 1980, 185, C9.