J. CHEM. SOC., CHEM. COMMUN., 1986

Free Radical Reactions of 1,1-Diarylethylenes with t-Butylmercury Chloride

Glen A. Russell,* Rajive K. Khanna, and Deliang Guo

Department of Chemistry, Iowa State University, Ames, Iowa 50011, U.S.A.

The photostimulated reactions of Bu^tHgCl with 1,1-diarylethylenes yield different products for the aryl groups C_6H_5 , $p-O_2NC_6H_4$, or $p-MeOC_6H_4$ reflecting the donor or acceptor properties of Bu^tCB₂C(Ar)₂.

We have studied the products formed by trapping t-butyl radicals in the photostimulated reactions of diarylethylenes (1a-c) with Bu^tHgCl. Photolysis in Me₂SO of Bu^tHgCl and (1a) formed $(3a)^1$ and $(4a)^2$ in an approximately 1:1 ratio (Table 1). By g.c.-mass spectrometry a small amount of $(Bu^tCH₂CPh₂)_2$ was also detected. The rate of formation of (3a) and (4a) was not appreciably retarded by the presence of

10% of $Bu^{t}_{2}NO^{\cdot}$. With (1a), the reaction follows a non-chain path, Scheme 1.⁺ Under similar conditions, (1b) reacted to

[†] Evidence for the reaction of monomeric HgCl with RHgCl to generate R is provided by the free radical chain reaction of ArCH=CHHgCl with RHgCl to form ArCH=CHR + HgCl₂ + Hg^{0.3}

Table 1. Photostimulated reactions of ButHgCl in Me₂SO at 35-40 °C.ª

Equiv. of Bu ^t HgCl	Reactant	Conditions ^b	Product (% Yield) ^c
3	(1a)	R , 90 h	(3a) (43); (4a) (35)
3	(1a) (1a)	R, 10 mol % DBNO, 90 h	(3a)(3b);(4a)(3b) (3a)(3b);(4a)(2b)
6	(1a) (1a)	S, 8 equiv. $MeC(CO_2Et)_2^-$, 12 h	(5a) ((5b); (4a) (25)) (5) (68); (3a) (7); (4a) (0)
6	(1a)	S, 8 equiv. MeC(CO_2Et) ₂ ⁻ , 10 mol % DBNO, 12 h	$(5)(8); (\mathbf{3a})(3);$ $(\mathbf{4a})(0)$
3	(1 a)	S, 8 equiv. $MeC(CO_2Et)_2^-$, 12 h	(5)(57); (3a)(16); $(4)(0)^d$
6	(1 a)	R, 8 equiv. $CH(CO_2Et)_2^-$, 12 h	(3a) (8); (4a) (12); (5) (4)
3	(1b)	R, 16 h	(3b) (<1); (4b) (84)
3	(1b)	R, 10 mol %, DBNO, 16 h	(3b) (<1); (4b) (19)
6	(1b)	\mathbf{R} , 8 equiv. MeC(CO ₂ Et) ₂ , 16 h	(3b) (9); (4b) (69)
6	(1b)	R, 8 equiv. $CH(CO_2Et)_2^-$, 16 h	(3b) (2); (4b) (76)
3	(1c)	R, 30 h	(3c)(41); (4c)(<1)
3 3	(lc)	R, 10 mol % DBNO, 30 h	(3c)(16); (4c)(<1)
6	(3a)	S, 8 equiv. MeC(CO_2Et) ₂ ⁻ , 12 h	(5)(7)
6	(4a)	S, 8 equiv. $MeC(CO_2Et)_2^-$, 12 h	No reaction
1	Ph ₂ CH ⁻	S, 2 h ^e	$Bu^{t}CHPh_{2}(36)$
1 1	$(p-O_2N\tilde{C}_6N_4)_2CH^-$		None detected
1	Ph ₂ P ⁻	S, 2 h	$Ph_2P(:O)Bu^{t}(38)$
1	Ph ₂ P-	S, 2 h ^e	$Ph_2PBu^t(42)$

^a Reactions were performed in nitrogen-purged Me₂SO. Nucleophiles (N⁻) were generated by the action of Bu⁴OK on the conjugate acid. ^b R = Rayonet reactor with 350 nm irradiation; $\tilde{S} = 275$ W sunlamp ca. 15 cm from the reaction flask; DBNO = Bu¹₂NO¹. ^c Yields determined by ¹H n.m.r. and g.l.c. on a 1 mmol scale for reactions 0.1 m in the reactant. ^d A 35% yield of MeC(CO₂Et)₂C(CO₂Et)₂Me was isolated. With 6 equiv. of ButHgCl, only 2% of MeC(CO2Et)2C(CO2Et)2Me was formed. e Hexamethylphosphoric triamide (HMPA) solvent.

$$\begin{array}{cccc} CH_2=CAr_2 & Bu^tCH_2CAr_2 & Bu^tCH_2CHAr_2 & Bu^tCH=CAr_2 \\ (1) & (2) & (3) & (4) \end{array}$$

, Ar =
$$C_6H_5$$
; **b**, Ar = p -MeOC₆H₄; **c**, Ar = p -O₂NC₆H₄

$$\begin{array}{c} \mathsf{Bu}^{\mathsf{t}}\mathsf{CH}_{2}\mathsf{CBu}^{\mathsf{t}}\mathsf{Ph}_{2} \\ (\mathbf{5}) \end{array}$$

 $Bu^{t}HgCl \xrightarrow{hv} Bu^{t} + HgCl$ $HgCl + Bu^{t}HgCl \rightarrow Bu^{t} + HgCl_{2} + Hg^{0}$ $Bu^{t} + (1a) \rightarrow (2a)^{t}$ $2(2a) \rightarrow (3a) + (4a)$

Scheme 1

$$\begin{array}{l} \operatorname{Bu}^{\iota_{\bullet}} + (\mathbf{1b}) \rightarrow (\mathbf{2b})^{\bullet} \\ (\mathbf{2b})^{\bullet} + \operatorname{Bu}^{t}\operatorname{HgCl} \rightarrow (\mathbf{2b})^{+} + \operatorname{Bu}^{\iota_{\bullet}} + \operatorname{Hg}^{0} + \operatorname{Cl}^{-} \\ (\mathbf{2b})^{+} \rightarrow (\mathbf{4b}) + \operatorname{H}^{+} \end{array}$$

Scheme 2

form nearly exclusively (4b)[‡] (see Table 1). Now the rate of the reaction was drastically retarded by the presence of 10 mol % of But₂NO· and the chain process of Scheme 2 is suggested for the nucleophilic (2b).

Reaction of ButHgCl with (1c) leads to the formation of $(3c)^1$ as the major isolable product (Table 1). Apparently the electrophilic (2c)· reacts according to Scheme 3.

Bu^t· + (1c)
$$\rightarrow$$
 (2c)·
(2c)· + Bu^tHgCl \rightarrow (2c)⁻ + Bu^t· + HgCl⁻
(2c)⁻ + H⁺ \rightarrow (3c)

Scheme 3

 $Bu^{t} \cdot + (1a) \rightarrow (2a) \cdot$ (2a) + MeC(CO₂Et)₂⁻ \longleftrightarrow (2a)⁻ + MeC(CO₂Et)₂. $(2a)^- + Bu^{t} \rightarrow (5)^{-}$ $(5)^{-} + Bu^{t}HgCl \rightarrow (5) + Bu^{t} + Hg^{0} + Cl^{-}$ $MeC(CO_2Et)_2^{-} + Bu^{t}HgCl \rightarrow MeC(CO_2Et)_2^{-} + Bu^{t} + Bu^{t}$ HgCl+

Scheme 4

The photostimulated reaction of (1a) with 6 equiv. of ButHgCl in the presence of an excess (8 equiv.) of MeC- $(CO_2Et)_2$ leads to the formation of Bu^tCH₂CBu^tPh₂ (5)⁴ in good yield. This product is not observed in the absence of $MeC(CO_2Et)_2^-$ nor in the presence of the less easily oxidized $HC(CO_2Et)_2^-$. The formation of (5) occurs by a free radical chain process whose kinetic chain length is drastically retarded by the presence of Bu_2^tNO (see Table 1). Under the reaction conditions, (4a) is not converted into (5) and the oxidative dimerization product $MeC(CO_2Et)_2C(CO_2Et)_2Me^5$ is not formed in significant yield when excess of ButHgCl (6 equiv.) is employed. Di-t-butylation products analogous to (5) were not detected in similar reactions of (1b) and (1c). The formation of (5) seems to be connected with the fact that Ph₂CR⁻ ions react with Bu^t to form t-butylated products, whereas the less basic $(p-O_2NC_6H_4)_2CR^-$ is much less reactive⁶ although Ph₂P⁻ reacts readily to form Bu^tP(:O)Ph₂

a

[‡] B.p. 220-224 °C (5 Torr); ¹H n.m.r. (CDCl₃) δ 0.92 (s, 9H), 3.76 (s, 3H), 3.83 (s, 3H), 5.82 (s, 1H), and 6.8-7.4 (m, 8H). All reaction products gave analytical data, including mass spectra, consistent with their structures.

in Me₂SO and Bu^tPPh₂ in HMPA (Table 1). The overall scheme suggested for the formation of (5) is shown in Scheme 4.

The results demonstrate that alkylmercurials can serve as electron acceptors⁷ or donors towards free radicals which are either easily oxidized (nucleophilic) or easily reduced (electrophilic). The formally $S_{\rm H2}$ process (A[•] + Bu^tHgCl \rightarrow AHgCl + Bu^t) occurs readily only for electrophilic radicals,^{8,9} *e.g.*, MeC(CO₂Et)₂[•], and may occur *via* electron transfer or at least by a transition state reflecting the electrophilic character of A.

We thank the National Science Foundation and the Petroleum Research Fund for supporting this research.

Received, 9th January 1986; Com. 043

References

- 1 L. Schmerling, J. P. Luvisi, and R. W. Welch, J. Am. Chem. Soc., 1955, 77, 1774.
- 2 W. Adam, J. Baeza, and J.-C. Liu, J. Am. Chem. Soc., 1974, 94, 2000.
- 3 G. A. Russell, H. Tashtoush, and P. Ngoviwatchai, J. Am. Chem. Soc., 1984, **106**, 4622.
- 4 H. Lehmkuhl and O. Olbrysch, Liebigs Ann. Chem., 1975, 1162.
- 5 E. F. Rogers, H. D. Brown, I. M. Rasmussen, and R. E. Heal, J. Am. Chem. Soc., 1953, 75, 2991.
- 6 G. A. Russell and R. K. Khanna, J. Am. Chem. Soc., 1985, 107, 1450; Tetrahedron, 1985, 41, 4133.
- 7 G. A. Russell, J. Hershberger, and K. Owens, J. Am. Chem. Soc., 1979, 101, 1312; J. Organomet. Chem., 1982, 225, 43.
- 8 G. A. Russell and H. Tashtoush, J. Am. Chem. Soc., 1983, 105, 1398.
- 9 W. A. Nugent and J. K. Kochi, J. Organomet. Chem., 1977, 124, 327, 349, 371.