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ABSTRACT
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We have developed a novel copper-catalyzed amidation of unactivated sp
catalyst —oxidant (CuBr/ '‘BuOOH) system under mild conditions. The

dephenylation was first found for

R4
3
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N
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3 C—H bonds adjacent to a nitrogen atom by using an inexpensive
N-benzylaniline, and the new class of

products provide diverse structures for pharmaceuticals and combinatorial chemistry.

Direct and selective formation of -©€C, C-0O, and C-N
bonds from unactivated carbehydrogen bonds is an

versions for their synthesis, thus the direct utilization of only
C—H bonds is highly desirabfeln the past several years,

important and long-standing goal in chemistry. These great achievements have been made on amidation viath C
conversions have wide potential in synthetic organic chem- activation strategy, particularly with regards to allylic and
istry because €H bonds are ubiquitous in organic mol- benzylic CG-H bonds?® and most of them were performed
ecules. However, achieving selectivity among many different through the metatnitrene-type amidation. Although great

C—H bonds remains a challengé&.he formation of G-N

(3) Davies, H. M. L.; Long, M. SAngew. Chem., Int. EQR005 44,

bonds is very important in organic synthesis because manyssig 3520,

bioactive and medicinal molecules are nitrogen-containing

compoundg.The vast majority of methods for the introduc-
tion of C—N bonds depends on functional group intercon-
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progress has been made in intramolecutanidation reac- || N

tions, iptermoleculércouplings remain limited, and some  1gpe 2. Copper-Catalyzed Amidation of,N-Dimethylaniline

expensive metal catalysts, such as Ru and Rh, were generallyyqrivatives

used. Herein, we report an efficient copper-catalyzed ami- . b

dation of sp C—H bonds adjacent to a nitrogen atom. @N/ . SR Mieiviied N/—N>/_R2
Since tert-butyl hydroperoxide 'BuOOH) is a suitable RIC /1 VRN R

oxidant in the copper-catalyzed formation of-C bonds entry anmiline

by directly using C-H bonds’ we first choseN,N-dimethyl- =

p-toluidine and benzoylamide as the model substrates and , \NAHJ\

1.5 equiv oftBUOOH (relative to benzoylamide) in decane ! O 76

as the oxidant to optimize the catalysis conditions, including 3a

optimization of the copper catalysts and solvents in amidation 0

at 80°C as shown in Table 1. Several copper salts, CuCl, \”Au)ﬁ

3b
| .
Table 1. Copper-Catalyzed Amidation of $C—H Bonds: Nf\g*@
Optimization of Condition®

/ Q . \N/\H i
\ 80°C, 6h . ]a )

1a 2c 3c

2

product yield %°

67

71

entry catalyst additional solvent yield® (%) NN Jok

CuCl DMSO 20 5 la " 22
CuBr DMSO 61 3e
Cul DMSO 52 R
CuO DMSO 16 \NAuJ\anﬁn
CuSO0, DMSO 3 6 Ia 78
CuBr DMF 48 3t
CuBr CH;CN 25
CuBr CH,Cly 35 Q“_\
CuBr CH;0H 25 7 1a (- 77
CuBr THF 42
CuBr 82 (77¢)

DMSO 0? PP

/
CuBr 0° 8 Oy @ H 59
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CuBr DMSO 577
CuBr 608

[
SIS

@ Reaction conditions: under nitrogen atmosphexgiN-dimethylp- Y r@ 71

toluidine (2 mmol), benzoylamide (1 mmolBuOOH (1.5 mmol, 56 M 9 1b ©
in decane), catalyst (0.05 mmol), solvent (0.5 mLiReported yields were

determined by NMR using THF or GIEN as internal standard, and were

based on benzoylamideélsolated yield. No addition of copper-catalyst

or 'BUOOH. ¢ Room temperaturé.Pure'BUOOH was used as a dehydro- 10 @
genative reagent instead ®uOOH in decaned Without nitrogen atmo-

sphere.

/ \ Hﬁ
1 e~ )14 35°

CuBr, Cul, CuO, and CuSQ(5 mol % catalytic amount

relative to benzoylamide), were tested in DMSO, and CuBr y 3k

was found to be the most effective catalyst in this amidation. {

The reaction did not proceed in the absence of either a copper 12 1d IféN_\N—C}m 2
catalyst orBuOOH (entry 12). We also studied the effect °/ 3l

of solvents (compare entries 1;-&0). Decane provided the a Reaction conditions: under nitrogen atmosphere, anilines (4 mmol for

highest viel ntrv 11): DM ntrv 14) and mixed éntries 3, 6, 8, 16-11, 13, 14; 3 mmol for others), amides (2 mmol),
gnesty eq (See entry ) SO (See entry ) and ed CuBr (0.1 mmol),'BuOOH (3 mmol, 5-6 M in decane)?® Isolated yield.
solvents (mixture of decane and other solvents) gave lowercpmso (1 mL) as the additional solvent.

yields. When the reaction temperature was lowered to room

1o§7gaglz)8|:ié§éj38(()g)leﬁ‘D'zs';L _LibC.J-%Proc.LNaté.O%Zag. 5557“;1%5500(6) temperature, no product was found (entry 13). The amidation
. I, Z.; Li, C.-J.0rg. Lett. , — . (c . . f

Li, Z.: Li, C.-J.J. Am. Chem. S08004 126, 11810-11811. (d) Li, Z.: Li, led to a lower yield in the ab;ence pf a nltrogen atmosphgre
C.-J.J. Am. Chem. So@005 127, 3672-3673. (entry 15). The use of 2 equiv of aniline increased the amide
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s such example in metal-catalyzed direct amidation ef+C

Table 3. Copper-Catalyzed Amidation of bonds reported thus fa.r. o
N-Methyl-N-benzylaniliné We also attempted intramolecular amidation under our

g3 standard coupling conditions as shown in Scheme 1, and the
Oy
R 10
Ph

dehydrogenative product (minor)

@_N/ . f]\ JR® 5 mol % CuBr, 'BuOOH Scheme 1. Synthesis of the Six-Membered Cyclic Compound
RZON

> mol % CuBr, BuOOR +
) 80°C, 6 h Y-
1e 2" N a l |

» N—N N— N
: )R H CuBr, 'BUOOH N
dephenylation pmdug (major) N._-COOMe DMSO, N, N._-COOMe
o) 80°C,6h 0

3
59%

entry amide product yield %° 4 5
v v 28
o six-membered cyclic compourtdvas obtained in 59% vyield.
CH,CONH, 3m
1 2a . This might be a favorable process to construct complex
@/”VNY 56 nitrogen-containing heterocycles in pharmaceuticals and
© 3h combinatorial chemistry.
@ A tentative mechanism for product formation is proposed
0 I 17 in Scheme 2. Reaction of thi-substituted aniline with
HN ©/ © 3n
2
|
2d ©/NVN 45 Scheme 2. Tentative Mechanism for the Direct Oxidative
° @i Coupling of N-Substituted Aniline with Amide
=
s ’[Cu
©/an 23 N R1¢\:/>_N\ e
=\ ./ =\ / cusr| ‘H B R*
3 CH,CH,CH,CONH; ° 30 S Nj Btéing, 1@N\.{ Cubr B
2b | H R* R A R4 S /) Itl/ .[Cu]
NN 43 R%=H, Ph RIS e X
©/ ° 3 1 P R?
p /
R3 /—N
aReaction conditions: under nitrogen atmosphere, anilines (4 mmol), — | O QN }/’—Rz
amides (2 mmol), CuBr (0.1 mmofBuOOH (3 mmol, 5-6 M in decane). j)J\ , 1(/:/>—N’ ‘[Cu]—"’}‘—‘/(R2 R lho
b i R :
Isolated yleld' R? 2 N R R4 p A dehydrogenative product (minor)
./ o W (Cu] A
. . . .. . S NU,[CU]‘-"]I% N /R
conversion and improved the yield. After the optimization RIS X R? R’ N
. R
process for catalysts, solvents and temperature, we decided ' o>/'_ ,
to carry out the following reactions under our standard dephenylation product (major)

conditions: 5 mol % CuBr as the catalyst relative to amides 3

and decane or decane/DMSO mixture as the solvent (the

mixed solvent was used for insoluble substrates in decane . .
at 80°C )tBuOOH under catalysis of CuBr produced the free radical

A through a single-electron transfer. The resulting iminium
type intermediateB or C was then generated, leaving a

The scope of the copper-catalyzed amidation was explored
under our standard conditions. As shown in Table 2, the hvd 8 henvl f dical. Combination & or C
coupling reactions could be performed for all of the substrates ydrogen=or phenyl free radical. “Lombination @ or

examined, and the desired amidation products were obtaineoand aml'd?t;’]\' ith copper tfolrmted_ tlr(;e dc:)hmplmgrt!i, and duct
in various yields. The substituted anilines containing electron- removal ot the copper catalyst yielded the amidation produc

rich groups showed higher reactivity than those containing 3 (dehydrogenative product or dephenylation product).
electron-deficient groups. The ortho-substituted anilig ( In summary, we have developed a novel copper-catalyzed
gave a low yield (entry 10) because of steric hindrance. @midation of unactivated $pC—H bonds adjacent to a
However, the electron-deficient amides gave higher reaction Mtrogen atom via cross-dehydrogenative-coupling reaction
yields than the electron-rich ones, the primary amides PY USINg an inexpensive catalyst-oxidant (CUBuOOH)

provided higher reaction activity than the secondary ones, SYStém under mild conditions. The dephenylation Nof
andN-arylamide was a poor substrate (entry 5). benzylaniline first was disclosed, and the new products may

Interestingly, reactions of amides with-methyl-N-ben- provide diverse structures for pharmaceuticals and combi-
zylaniline led to both dehydrogenative adéphenylation
(8) (@) Wang, F.; Sayre, L. Ml. Am. Chem. S0d.992 114, 248-255.

coupling products, and the latter product was major (see (b) Leonard, N. J.- Leubner, G. W. Am. Chem. Sod949 71, 3408
Table 3). To our knowledge, the dephenylation is the first 3411.
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natorial chemistry. The scope, mechanism, and syntheticlRT0404) in China, and the Key Subject Foundation from
application of this reaction is under investigation. Beijing Department of Education (XK100030514).
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