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The lankacidins, represented by lankacidin C ( l ) ,  comprise a 
group of structurally unique, orally active antibiotics with 
substantial invivoantitumor activity.l Becauseof the lankacidins' 
instability to both acids and bases,*cJ chemical transformations 
of the intact antibiotics have been limited, and only a few 
approaches to their total synthesis have been r e p ~ r t e d . ~  We now 
describe the first total synthesis of natural (-)-lankacidin C (1) 
by a convergent, enantioselective sequence starting from D-ar- 
abinose and L-aspartic acid, proceeding through the tricyclic 
carbamate 3 as an advanced relay intermediate. Structure 3 was 
chosen because it precluded the known degradative chemistry of 
this system.lcJ To this end, natural 1 was silylated and reduced 
(Scheme I) to give a 1:l mixture of C(2')-diol epimers, of which 
the less-polar isomelg was reacted with Im2CO toyield2. Selective 
deacylation of 2 with LiOOHS gave a 98% yield of the stable 
relay 3, mp 186-187 OC, [.Iz2D = -68.3'. 

The enantiopure C( 12)-C( 18) segment was prepared (Scheme 
11) from the known dithioacetal 4, derived in 43% yield from 
D-arabinose? The aldehyde 5reacted with thecrotylboraneshown 
to give 58% of the adduct 6,' which was smoothly transformed 
to the ester 7. Oxidative cleavage produced the unstable 
noraldehyde 8, which was directly converted by the Takai methods 
to the iodoalkene 9a and then to the acid 9b. 

Stereoselective acylation by 9c of the Li enolate lo9 gave a 
8-ketolactam, reduced by KEt3BH to the single carbinol 11 
(Scheme 111).10 As explored earlier by Koch, 11 was desilylated 
and subjected to MeS03H-catalyzed N - 0 acyl migration and 
then ImzCO trapping to yield 12.3cg9 Hydrolysis, Dess-Martin 
oxidation," and PMB scission gave the stable iodoaldehyde 13. 

Lynchpin closure of 13 to relay 3 was achieved (Scheme IV) 
by Stille coupling of 13 with the stannane 14'2 to give the tetraene 
15a. The chloride 15b was reacted with TMSCN and then 
cyclized with LiHMDS a t  -78 OC to yield on hydrolysis the 
tetraenone 16.13 The stereospecific reduction at  C(8) wasachieved 
by the (R)-CBS method14 to give 89% of the 88-01, which on 
silylation gave crystalline 3, mp 187-188 OC, [ c Y ] ~ ~ D  = -69.9O, 
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This reaction was performed under sonication. 

a (a) Imidazole, TBSC1, DMF, rt, 100%. (b) NaBH4, MeOH, rt, 
99%. (c) 1,l'-Carbonyldiimidazole, LiHMDS, THF,-78 OC, 92% (from 
the less polar isomer). (d) LiOOH, THF-HzO (3:1), 98%. 

Scheme 11' 
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(a) NaH, PMBCI, DMF, rt, 91%. (b) HgC12, CaCO3, MeCN- 
H20, 77%. (c) Chiral borane reagent, NaOH, H202, THF, 55%. (d) 
TBDPSCI, imidazole, DMF, rt, 48 h, 84%. (e) 03, Sudan 111, Me& 
CH2ClrCHsOH (l: l) ,  -78 OC. (f) NaC102, rt, 78% (two steps). (8) 
CH2N2,87%. (h) CuC12, MeOH, reflux for 1 h, 97%. (i) Pb(OAc),, 
THF, 0-5 OC. (j) CrC12, CHI3, THF, 62% (two steps). (k) LiOH, 
THF-H+MeOH (6:3:2), rt, 12 h. (1) PySSPy, PhsP, THF, rt, 15 h, 
79% (two steps). 
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a (a) KEtsBH, Et20, -78 "C. (b) BudNF, THF, rt, 2 h; MsOH, rt, 
2 h; 1,l'-carbonyldiimidazole, NEt3, rt, 12 h, 75% (two steps). (c) HC1 
(0.14M),H2O-dioxane(l:l),rt, 8 h, 70%. (d) Dess-Martinperiodinane, 
CH2C12, 85%. (e) CAN, MeCN-H20, 97%. (f) TBSC1, imidazole, 
79%. 

indistinguishable by mmp, TLC, IH NMR, I3C NMR, IR, and 
FAB HRMS from 3 made from natural 1. 
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gave 80% of the target molecule 1, identical in all respects with 
the natural antibiotic. This first total synthesis of (-)-1 proceeds 
in 30 steps from D-arabinose to relay 3 and proceeds from 3 to 
1 over four steps in 55% yield. 
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a (a) Catalytic PdC12(CH&N)2, DMF, rt, 90%. (b) 2,6-Lutidine, 
LiCl, MsCl, DMF, 0 OC. (c) Catalytic KCN/18-crown-6, TMSCN. (d) 
LiHMDS,THF,-78 OC;AcOH,THF-H2O,rt, 20 h; l%aqucousNaOH, 
61% from 15n. (e) Oxazaborole catalyst, BHs-THF, THF, -10 OC, 
89%. ( f )  TBSCl, imidazole, DMF, rt, 95%. 

Scheme V' 
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(a) LiHMDS, THF, -78 OC, 85%. (b) LiOH, THF-H20 (3:1), 0 
OC, 82%. (c) Dess-Martin periodinane, CH2C12, rt, 96%. (d) HCOOH- 
THF-H2O (3:6:1), rt, 3 h, 82%. 

The final relay conversion of 3 to 1 by direct alkaline hydrolysis 
failed. However, when relay 3 (from natural 1) was acylated as 
in Scheme V, the N-acylcarbamate 17 was formed. Aqueous 
LiOH a t  0 OC gave 82% of the bicyclic amide 18, which on Dess- 
Martin oxidation and careful desilylation (aqueous HC02H-THF) 
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