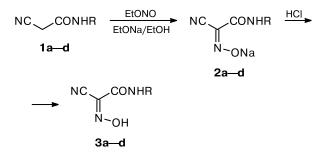
Synthesis of 4-aminoisoxazole-3-carboxamides using base-promoted nitrosation of *N*-substituted cyanoacetamides

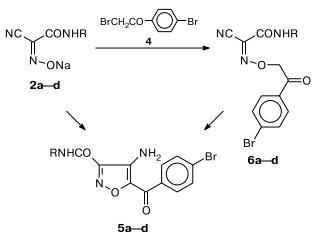
V. P. Kislyi,* E. B. Danilova, E. P. Zakharov, and V. V. Semenov


N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation. Fax: +7 (095) 135 5328. E-mail: vs@zelinsky.ru

The reactions of *N*-substituted cyanoacetamides with EtONO in the presence of an equimolar amount of EtONa afforded the corresponding sodium salts of hydroxyimino derivatives in 70–95% yields. The latter were transformed into 4-amino-5-(4-bromobenzoyl)isoxazole-3-carboxamides in 30–57% yields using the known method.

Key words: *N*-substituted cyanoacetamides, base-promoted nitrosation, 2-(4-bromophenyl)-2-oxoethoxyiminocyanoacetamides, 4-amino-5-(4-bromobenzoyl)isoxazole-3-carboxamides.

Base-promoted nitrosation of the α -carbon unit in nitriles (*i.e.*, the action of alkyl nitrites in the presence of bases) has previously¹ been used successfully for aryl-acetonitriles. However, nitrosation under acidic conditions (NaNO₂ in the presence of AcOH ^{2,3} or phosphoric acid) was mainly used for the cyanoacetic acid derivatives.⁴ Base-promoted nitrosation of cyanoacetic ester (amyl nitrite, EtONa) was described⁵ without indicating conditions, and only a "low yield" was mentioned.


It should be noted that the typical procedure for nitrosation of the cyanoacetic acid derivatives (ester, amide) is inappropriate for *N*-substituted amides 1b-d, because these compounds are virtually insoluble in water.⁶

 $R = Me(a), CH_2Ph(b), Ph(c), 2-MeOC_6H_4(d)$

We established that the addition of a solution of EtONO (in ethanol or diethyl ether) to a suspension of 1a-d in ethanol in the presence of an equimolar amount of EtONa produces rapidly sodium salts of oximes 2a-d in high yields. The latter can be transformed into oximes 3a-d by acidification (Table 1).

Sodium salts of oximes treated with 4-bromophenacyl bromide (4) are transformed into 4-amino-5-(4-bromobenzoyl)isoxazole-3-carboxamides 5 via the two-step method described previously.⁷ The reactions of sodium salts 2 with bromoketone 4 in DMF afford *O*-alkylated oximes 6a-c, which are transformed into aminoisoxazoles 5a-d under the treatment of LiOH (see Ref. 7) or KOH in water or aqueous ethanol.

 $R = Me(a), CH_2Ph(b), Ph(c), 2-MeOC_6H_4(d)$

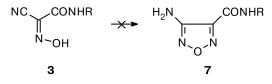
The presence of the aryl substituent at the amidic nitrogen atom facilitates ring closure: for instance, under the reaction conditions, O-substituted oxime **6d** undergoes spontaneous partial ring closure to form isoxazole **5d**.

Both the alkylation of sodium salts of oximes and the reactions with H-forms of oximes in the presence of tri-

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 594-596, March, 2004.

1066-5285/04/5303-0622 © 2004 Plenum Publishing Corporation

Com- pound	Yield (%)	M.p. ∕°C	Found (%) Calculated			Empirical formula	IR		¹ H NMR (δ, <i>J</i> /Hz)	
			С	Н	N		CN	CO		
2a	95	310-312	<u>32.2</u>	<u>2.7</u>	<u>28.2</u>	C ₄ H ₄ N ₃ O ₂ Na	2216	1636,	2.8 (d, 3 H, <u>Me</u> NH, $J = 4.2$);	
		(decomp.)	32.6	2.8	28.0			1560	7.4 (br.s, 1 H, NHCO)	
2b	83	245-247	<u>53.3</u>	<u>3.6</u>	<u>18.7</u>	$C_{10}H_8N_3O_2Na$	2215	1650,	4.45 (d, 2 H, Ph <u>CH₂</u> , $J = 6.4$);	
		(decomp.)	53.0	3.7	18.9			1550	7.2—7.4 (m, 5 H, Ph); 8.00 (1 H, NHCO)	
2c	85	222-225	<u>51.2</u>	<u>2.8</u>	<u>19.9</u>	C ₉ H ₆ N ₃ O ₂ Na	2196	1668,	7.1–7.7 (m, 5 H, Ph);	
		(decomp.)	51.7	2.9	19.2			1604, 1548	10.3 (s, 1 H, NHCO)	
2d	70	203-205	<u>49.8</u>	<u>3.3</u>	17.4	$C_{10}H_8N_3O_3Na$	2200	1670,	3.9 (s, 3 H, OMe); 6.9 (m, 3 H,	
		(decomp.)			17.2			1550	<u>Ph</u> OMe); 8.4 (m, 1 H, <u>Ph</u> OMe); 9.6 (br.s, 1 H, NH)	
3a	75	208-211*	<u>37.8</u>	<u>3.4</u>	<u>33.1</u>	$C_4H_5N_3O_2$	2244 w	1664,	2.7 (d, 3 H, <u>Me</u> NH, $J = 4.3$);	
			37.3	4.1	32.9			1552	8.3 (br.s, 1 H, NH); 14.4 (br.s, 1 H, OH)	
3b	89	149-152	<u>59.1</u>	<u>4.4</u>	<u>20.7</u>	$C_{10}H_9N_3O_2$	2242 w	1660,	4.4 (d, 2 H, Ph <u>CH₂</u> , $J = 6.3$);	
			59.5	4.5	20.6	10 9 5 2		1550	7.2–7.4 (m, 5 H, Ph); 9.0 (1 H, NHCO); 14.5 (br.s, 1 H, NOH)	
3c	85	229-232	<u>57.1</u>	<u>3.7</u>	<u>22.2</u>	$C_9H_7N_3O_2$	2240 w	1660,	7.2–7.7 (m, 5 H, Ph); 10.3 (s, 1 H,	
			57.6	3.9	22.0	, , <u>, , ,</u>		1600, 1548	NHCO); 14.5 (br.s, 1 H, NOH)	
3d	79	172—174	<u>54.8</u> 54.3	<u>4.1</u> 4.0	<u>19.2</u> 18.7	$C_{10}H_9N_3O_3$	2245 w	1665, 1550	3.9 (s, 3 H, OMe); 6.9 (m, 3 H, <u>Ph</u> OMe); 8.4 (m, 1 H, <u>Ph</u> OMe); 9.05 (br.s, 1 H, NH); 14.7 (br.s, 1 H, NOH)	


Table 1. Yields, melting points, and data of IR and ¹H NMR spectra of hydroxyimino derivatives 2a-d and 3a-d

* Ref. 6: 212 °C.

ethylamine have been described.⁷ We attempted to reproduce the latter procedure and observed the formation of a complex mixture of products containing only insignificant amounts of compounds **5**, and, hence, their isolation was very difficult. The data obtained allow one to conclude that these are precisely the sodium salts of oximes, which are primarily formed by base-promoted nitrosation, that should reasonably be used instead of oximes themselves in the syntheses of 4-aminoisoxazoles.

The structures of the synthesized compounds were confirmed by the IR and ¹H NMR spectra (Table 2). The IR spectra of sodium salts of oximes **2a**–**d** contain a rather intense absorption band of the CN group, although its frequency (2216–2196 cm⁻¹) is strongly decreased compared to that of the CN group in the starting cyanoacetamides (2276–2260 cm⁻¹). At the same time, in the H-forms of oximes **3a**–**d** and *O*-alkylated oximes **6a**–**c**, the CN group has an unexpectedly low intensity at the normal frequency (2235–2245 cm⁻¹), while the intensity of the absorption band of the nitrile group in the IR spectra of some alkylated oximes **6** is close to the "noise" level. This is rather unusual. The absence of an absorption band of the CN group has already been mentioned⁷ for some compounds of type **6** and is related, probably, to the noticeable conjugation of the CN group in the hydroxyiminocyanoacetamide fragment of compounds of type **6**. At the same time, the structures of compounds **6** seem doubtless, because they were confirmed by the ¹H NMR spectra and, in addition, oximes **6** served as the starting compounds for the synthesis of isoxazoles **5**. The ¹H NMR spectra of oximes **6** exhibit a narrow singlet of the CH₂CO group at 5.8–6.0 ppm. However, this signal is absent from the ¹H NMR spectra of isoxazoles **5**, which contain, by contrast, a noticeably broadened singlet of the amino group at 6.3–6.5 ppm.

It should be noted that hydroxyiminonitriles **3** can be used for the synthesis of 4-aminoisoxazoles and also for syntheses of aminofurazans,⁸ 4-aminoisothiazoles,⁹ 4-aminoimidazoles,¹⁰ and 5-aminooxazoles.¹¹ When oximes **3** were heated with hydroxylamine for many hours under the conditions indicated in the study,⁸ we detected

 $R = H (3e, 7a), CH_2Ph (3b, 7b)$

Com- pound		M.p. /°C	Found Calculated (%)			Empirical formula	IR		¹ H NMR (δ , <i>J</i> /Hz)		
			С	Н	N		CO	Y*	X**	BrPh	Other signals
5a	72	180—182	<u>44.4</u> 44.5	<u>3.1</u> 3.2	<u>13.0</u> 12.9	C ₁₂ H ₁₀ BrN ₃ O ₃	1720, 1660	3488, 3364	6.3 (br.s, 2 H)	7.7—8.05 (m, 4 H)	2.90 (d, 2 H, <u>Me</u> NH, J = 4.6); 8.55 (br.s, 1 H, <u>NH</u> CO)
5b	63	160—162	<u>54.0</u> 54.1	<u>3.5</u> 3.2	<u>10.5</u> 10.3	C ₁₈ H ₁₂ BrN ₃ O ₃	1725, 1680	3375, 3300	6.3 (br.s, 2 H)	7.7—8.07 (m, 4 H)	4.50 (d, 2 H, <u>CH</u> ₂ Ph, J = 6.2); 9.20 (br.s, 1 H, NHCO); 7.2–7.4 (m, 5 H, Ph)
5c	55	205-207	<u>52.9</u> 52.7	<u>3.1</u> 3.0	<u>10.9</u> 10.1	$\mathrm{C}_{17}\mathrm{H}_{12}\mathrm{BrN}_{3}\mathrm{O}_{3}$	1740, 1694	3450, 3350	6.42 (br.s, 2 H)	7.7—8.07 (m, 4 H)	7.2–7.7 (m, 5 H, Ph); 10.7 (s, 1 H, NHCO)
5d	30	158—162	<u>51.9</u> 52.9	<u>3.4</u> 3.9	<u>10.1</u> 10.1	C ₁₈ H ₁₄ BrN ₃ O ₄	1735, 1690	3455, 3310	6.38 (br.s, 2 H)	7.7—8.1 (m, 4 H)	7.1–8.3 (m, 4 H, MeO <u>Ph</u>); 3.97 (s, 3 H, <u>Me</u> OPh); 9.22 (s, 1 H, <u>NH</u> CO)
6a	80	160—162	<u>44.4</u> 44.9	<u>3.1</u> 3.0	<u>13.0</u> 13.8	$\mathrm{C}_{12}\mathrm{H}_{10}\mathrm{BrN}_{3}\mathrm{O}_{3}$	1692, 1584 w	2240	5.82 (s, 2 H)	7.7—7.93 (4 H)	2.70 (d, 3 H, <u>Me</u> NHCO, J = 4.7); 8.3 (br.s, 1 H, NHCO)
6b	64	162—164	<u>54.0</u> 53.7	<u>3.5</u> 3.6	<u>10.5</u> 10.2	C ₁₈ H ₁₄ BrN ₃ O ₃	1690, 1587 w	2240	5.82 (s, 2 H)	7.7—7.93 (4 H)	4.4 (d, 2 H, \underline{CH}_2 NH, J = 6.4); 7.2–7.3 (5 H, Ph); 8.9 (br.s, 1 H, NHCO)
6c	32	194—197	<u>52.8</u> 51.5	<u>3.1</u> 3.7	<u>10.9</u> 10.2	$\mathrm{C}_{17}\mathrm{H}_{12}\mathrm{BrN}_{3}\mathrm{O}_{3}$	1688, 1604 w	2235	6.0 (s, 2 H)	7.7—7.93 (m, 4 H)	7.1–7.7 (m, 5 H,Ph); 10.45 (s, NHCO)

Table 2. Yields, melting points, and data of elemental analyses and ¹H NMR spectra of isoxazoles 5a-d and amides 6a-c

* Y = NH (5a-d), CN (6a-c).

** $X = COCH_2$ (5a-d), NH₂ (6a-c).

no aminofurazans 7 (TLC analysis using as references authentic amides 7a,b obtained from methyl amino-furazan-3-carboxylate⁸).

Experimental

¹H NMR spectra were recorded on Bruker AM-300 and Bruker DRX-500 instruments with working frequencies of 300.13 and 500.13 MHz, respectively, in a mixture of DMSO- d_6 and CCl₄ (1 : 3). IR spectra were obtained on a Specord M-80 instrument in KBr pellets.

Base-promoted nitrosation of cyanoacetamides (general procedure). A mixture of concentrated H_2SO_4 (8 mL, d = 1.84), ethanol (10.4 mL), and water (84 mL) was slowly added dropwise to a solution of NaNO₂ (21.2 g, 0.3 mol) in a mixture of ethanol (92 mL) and water (84 mL) with gradual heating (30–45 °C) and absorption of the released gas (ethyl nitrite) with ethanol (30 mL). An ethanolic solution of EtONO was rapidly added to a suspension of sodium salt of oxime **2**, which was obtained by mixing of *N*-substituted cyanoacetamide **1a**–**d** (0.07 mol) with a solution of sodium ethoxide (6.8 g, 0.1 mol) in ethanol (50 mL) and stirring of the resulting mixture for 1 h. The mixture was stored for 16 h (in the case of **1b**–**d**, complete dissolution was observed) and concentrated on a rotary evaporator. Toluene was added to the residue, and sodium salt of hydroxyiminocyanoacetamide **2** was filtered off. The yields, melting points, and ¹H NMR spectra of the products are presented in Table 1.

Synthesis of hydroxyiminocyanoacetamides 3a-d (general procedure). Sodium salt of *N*-substituted isonitrosoacetamide 2 (0.05 mol) was suspended in water (30 mL), the suspension was acidified with hydrochloric acid to pH 5–6 and stirred for 30 min at ~20 °C, and the product was filtered off. The yields, melting points, and ¹H NMR spectra of the products are presented in Table 1.

Alkylation of sodium salts of the hydroxyimino derivatives (synthesis of 6a–d, general procedure). A mixture of 4-bromophenacyl bromide (4) (1.4 g, 5 mmol), the corresponding sodium salt 2a-d (5 mmol), and a solvent (8 mL, DMF for 1a or ethanol for 1b–d) was stirred for 8 h at ~20 °C and left for 16 h. Then the solvent was evaporated on a rotary evaporator, and water was added to the residue. *O*-Substituted oxime was filtered off, washed with water and hexane on the filter, and dried *in vacuo*. In the case of salt 2d, a mixture of *O*-alkylated oxime 6d and the corresponding isoxazole 5d (~1 : 1) was formed.

The yields, melting points, and ¹H NMR spectra of the products are presented in Table 2.

Synthesis of 4-aminoisoxazole-3-carboxamides 5a-d (general procedure). A suspension of compounds 6a-c (5 mmol) or a 5d + 6d mixture (see above) in a solution of LiOH \cdot H₂O (0.6 g) in 40 mL of water (for 6a) or 40 mL of 50% ethanol (for 6b,c) was stirred for 8 h. The product was filtered off, washed with water on the filter, and dried *in vacuo*.

References

- 1. O. Touster, in Organic Reactions, Ed. R. Adams, 1953, 7, 327.
- 2. M. Conrad and A. Schulze, Chem. Ber., 1909, 42, 736.
- 3. M. Fields, D. Walz, and S. Rothchild, J. Am. Chem. Soc., 1951, 73, 1000.
- 4. C. O. Parker, Tetrahedron, 1962, 17, 109.
- 5. A. Muller, Ann. Chim. Phys., 1894, 1(7), 463.

- 6. G. Shaw, R. W. Warrener, D. N. Butler, and R. K. Ralph, *J. Chem. Soc.*, 1959, 1648.
- 7. K. Gewald, P. Bellmann, and H.-J. Jaensch, *Liebigs. Ann. Chem.*, 1980, 1623.
- 8. G. Longo, Gazz. Chim. Ital., 1931, 61, 575.
- 9. K. Gewald and P. Bellman, Liebigs. Ann. Chem., 1979, 1534.
- 10. M. R. Grimmet, Adv. Heterocycl. Chem., 1970, 27, 241.
- 11. J. P. Ferris and L. E. Orgel, J. Am. Chem. Soc., 1966, 88, 3829.

Received October 13, 2003; in revised form February 11, 2004