

Enantioselective Allylation of Selected *ortho*-Substituted Benzaldehydes: A Comparative Study

Filip Hessler,^[a] Robert Betík,^[a] Aneta Kadlčíková,^[a] Roman Belle,^{[a][‡]} and Martin Kotora*^[a]

Keywords: Synthetic methods / Allylation / Lewis bases / Lewis acids / Brønsted acid / Aldehydes

We report a systematic study of the allylation of *ortho*-substituted benzaldehydes under catalysis of a Lewis base (*N*,*N*dioxide), a Lewis acid (Keck allylation), and a Brønsted acid. *ortho*-Halobenzaldehydes were used as the aldehydic substrates, and special attention was paid to *ortho*-vinyl and alkynyl benzaldehydes, which might serve as interesting synthons for the preparation of more complex chiral compounds. Similar enantioselectivities were achieved under catalytic

Introduction

Secondary chiral homoallylic alcohols are important synthetic building blocks that have been conveniently used in the syntheses of various natural compounds and pharmaceutically active substances. Out of numerous examples, those of Fluoxetine,^[1] goniothalamin,^[2] argentinolactone,^[3] diospongine,^[4] epicalyxin F,^[5] dodonein,^[6] HMG-CoA reductase inhibitor FR901512,^[7] and papulacandine D^[8] can be highlighted. Although there are several possible synthetic approaches to chiral secondary homoallylic alcohols, probably the most straightforward and at the same time most flexible strategy is based on allylation of aldehydes with a suitable allylic reagent in the presence of a chiral catalytic system.^[9]

Among these methods, the use of a Lewis-base-catalyzed enantioselective allylation of aldehydes constitutes a vast area for exploratory research. This methodology has evolved over the last decade into a mature synthetic procedure that is complimentary to other allylation reactions such as those based on catalysis by Lewis acids or transition metals. Out of the plethora of various Lewis base catalysts, those having the pyridine oxide activating moiety situated within a chiral environment constitute a distinct class of highly active catalysts that are capable of high asymmetric induction, usually under mild reaction conditions. Various types of *N*-oxide-based catalyst have been developed by conditions. In the case of *ortho*-halobenzaldehydes, Lewis base catalysis proved to be more efficient, and the highest asymmetric induction for allylation of *ortho*-fluorobenz-aldehyde reached 82% *ee*, which is comparable to other used catalytic conditions. In cases of *ortho*-vinylbenzaldehyde, the Keck allylation provided the product in 88% *ee*. An enantioenriched homoallylic alcohol was used as the starting material for the synthesis of a sertraline intermediate.

Nakajima,^[10] Hayashi,^[11] Kočovský,^[12] and others.^[13] Our group has also developed a series of bis(tetrahydroisoquinoline) based *N*,*N*-dioxides that were suitable for highly enantioselective allylation of aryl and α , β -unsaturated aldehydes (up to 99% *ee*) with a low loading of catalyst (1 mol-%).^[14]

The N-oxide-catalyzed enantioselective allylation has been carried out predominantly with para- and, to a lesser extent, meta-substituted benzaldehydes. Surprisingly little attention has been paid to the systematic allylation of ortho-substituted benzaldehydes, and only individual have been occasionally examples reported.^[10a,11b,11c,12d,12e,14a,14d,14f,15-17] In this respect, it is worth noting that other studies using S-oxide,^[18] P-oxide,^[19] alcohols,^[20] Brønsted acids,^[21] Ti,^[22] In,^[23] Sn,^[24] Cr,^[25] Rh,^[26] Pd,^[27] Bi,^[28] and Ag^[29] chiral catalytic systems have also been used only superficially to address allylations of ortho-substituted benzaldehydes. Allylations of orthofluoro-, -chloro-, -bromo-, -iodo-, -methyl-, -methoxy, -cyano, and -nitro-benzaldehydes have been reported so far. In general, but not always, a lower asymmetric induction in comparison with the para and meta-substituted derivatives has been observed. As far as enantioselective allylation of ortho-alkenyl- or alkynylbenzaldehydes is concerned, to our knowledge, no systematic study has been undertaken, but allylations of such compounds under racemic conditions have been reported. These include allylation of orthovinylbenzaldehyde by using a Ag-catalyzed process^[30] and allylations of ortho-alkynylbenzaldehydes with allylmagnesium halides.^[31] A lone example of an enantioselective methallylation of a substituted ortho-vinylbenzaldehyde was carried out during the total synthesis of HMG-CoA reductase inhibitor FR901512.^[7] Recently, while working on this project, an interesting and synthetically valuable report

 [[]a] Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 128 43 Praha 2, Czech Republic E-mail: kotora@natur.cuni.cz http://www.natur.cuni.cz/chemistry/orgchem/

kotora?set_language=en

^[‡] Erasmus internship student, 2011

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/ejoc.201403034.

FULL PAPER

was published dealing with concomitant asymmetric allylation followed by ring-closing metathesis yielding cyclic benzo-fused homoallylic alcohols with *ee* values up to 99%.^[32]

From a synthetic point of view, this lack of interest in broader screening is surprising, because chiral homoallylic alcohols bearing an *ortho*-substituted benzene ring could be valuable intermediates for the synthesis of interesting substances with high or at least reasonable asymmetric induction. One such molecule is the recently synthesized analogue^[33] of spinosine A, possessing the dihydronaphthalene skeleton **1**, as a substitute for the naturally occurring substance with the tricyclo[7.3.0.0^{2.6}]dodecane framework (Figure 1). Another molecule is sertraline **2**, which is an antidepressant.^[34]

Figure 1. Spinosine A analogue 1 and sertraline 2.

We originally envisioned that enantioselective allylation of a suitable *ortho*-substituted benzaldehyde would be a convenient method for the introduction of a stereogenic center and would provide a useful chiral intermediate that would ultimately be transformed into the desired target(s). Specifically, our goal was to synthesize the known intermediate **3** for the sertraline synthesis (Scheme 1). Retrosynthetic analysis anticipated the following steps: (a) ring-closing metathesis of the *ortho*-vinyl benzyl alcohol and (b) enantioselective allylation of *ortho*-vinyl benzaldehyde.

Scheme 1. Retrosynthetic analysis of sertraline 2.

Results and Discussion

Lewis-Base-Catalyzed Enantioselective Allylations

Given that no systematic study regarding enantioselective allylation of *ortho*-substituted benzaldehydes **5** has been previously undertaken, we initially screened various substrates and reaction conditions. Two diastereoisomeric N,N'-dioxides, (R,R)-**4** and (R,S)-**4** (Figure 2), that were able to induce a high level of asymmetric induction in the allylation of *para*-substituted benzaldehydes, were chosen as catalysts.^[14e]

Figure 2. Catalysts (R,R)-4 and (R,S)-4.

Initially, allylation of ortho-substituted halobenzaldehydes was carried out. Surprisingly, one of the highest asymmetric inductions was achieved in the case of o-fluorobenzaldehyde 5a: 82% ee for (R,R)-4 and 66% ee for (R,S)-4 (Table 1, entry 1). In the case of o-chloro, and o-iodobenzaldehydes 5b and 5d the asymmetric induction decreased (entries 2 and 4). Strangely, o-bromobenzaldehyde 5c did not react at all under any conditions (entry 3). Although speculative, the observed decrease in stereoselectivity could be explained by the increasing atomic size of the halogen atom. This assumption was supported by the allylation of o-trifluoromethylbenzaldehyde 5e, which proceeded with low enantioselectivity: 4% ee for (R,R)-4 and 22% ee for (R,S)-4 (entry 5). Interestingly, in both cases, the same enantiomer was obtained as the major product. In the next step, enantioselective allylation of 2-iodo-4-methoxybenzaldehyde (5f), which is relevant for the synthesis of 3, was studied. The allylation catalyzed by (R,R)-4 gave 6f in low yield (5%) and moderate asymmetric induction (56% ee); on the other hand, the use of (R,S)-4 proceeded with reasonable yield (53%) and gave rather good enantioselectivity (80% ee; entry 6). Attempts to increase the asymmetric induction by changing the reaction conditions did not meet with success. The reaction carried out in toluene did not proceed (entry 7), and the reaction in dichloromethane proceeded with low enantioselectivity of 41% for (R,R)-4 and 4% for (*R*,*S*)-4 (entry 8). A change of configuration of the product upon change of solvent was reported by us previously^[14b-14h] and probably indicates a different course of the reaction mechanism in each solvent.^[35] It should also be added that such a phenomenon is not uncommon and has also been observed in other catalytic reactions.^[36] Notably, in cases of allylations catalyzed by other N-oxide bases, the reactions in tetrahydrofuran (THF) either proceeded very sluggishly or it did not proceed at all.

The allylation of *ortho*-vinylbenzaldehyde (**5g**) in the presence of (S,R)-4 proceeded with reasonable yields (40%) and moderate enantioselectivity (72 and 76% *ee*) (entry 9). Surprisingly, the reaction with 5-methoxy-2-vinylbenzaldehyde (**5h**) did not proceed and the starting material was recovered unchanged (entry 10).

Allylation of benzaldehydes **5i–n**, bearing alkynyl groups in the *ortho* position, in the presence of (R,R)-4 or (R,S)-4 proceeded with low asymmetric induction (Table 1, entries 11–16). The highest *ee* achieved with (R,R)-4 was 42% *ee* for **5k** and with (R,S)-4 it was 60% *ee* for **5m**. Together,

Table 1. Enantioselective allylation of *ortho*-substituted benzaldehydes with (R,R)-4 and (R,S)-4.

$\begin{bmatrix} R^{1} \\ + \end{bmatrix} \xrightarrow{\text{SiCl}_{3}} \xrightarrow{(R,R)-4 \text{ or } (R,S)-4} \begin{bmatrix} R^{1} \\ R^{1} \\ + \end{bmatrix} \xrightarrow{(1 \text{ mol-}\%)} \begin{bmatrix} R^{1} \\ R^{$										
			R^{2}	СНО		(<i>i</i> Pr) ₂ NI				
			- 2	5		() ()	6	ОН		
Entry	5	R ¹	\mathbb{R}^2	6	Yield [%] ^[b]	(R,R) - 4 ^[a] $er^{[c]}$	ee [%] ^[d]	Yield [%] ^[b]	(R,S)- 4 ^[a] $er^{[c]}$	ee [%] ^[d]
1	5a	F	Н	6a	48	9:91	82 (+)-R	34	83:17	66 (-) - S
2	5b	Cl	Н	6b	75	6.5:93.5	$46 (+)-R^{[e]}$	78	96:4	$14 (-)-S^{[e]}$
3	5c	$Br^{[f]}$	Н	6c	0	_	_	0	_	—
4	5d	Ι	Н	6d	52	42:58	16 (+)- <i>R</i>	51	75.45	30 (-)- <i>S</i>
5	5e	CF_3	Н	6e	5	52:48	4 (-)- <i>S</i>	20	61.39	22 (-)-S
6	5f	Ι	OMe	6f	5	78:22	56 (+)-R	53	10.90	80 (-)- <i>S</i>
7 ^[g]	5f	Ι	OMe	6f	0	_	_	0	_	
8 ^[h]	5f	Ι	OMe	6f	70	29.5:70.5	41 (-)- <i>S</i>	40	48.52	4 (-)- <i>R</i>
9	5g	$CH=CH_2$	Н	6 g	40	14:86	72 $(+)$ - $R^{[i]}$	40	88.12	76 (-)- <i>S</i>
10	5h	$CH=CH_2$	OMe	6h	0	_	_	0	_	_
11	5i	C≡CTMS	Н	6i	57	54:46	8 (+)- $R^{[j]}$	45	42.58	16 (-)- <i>S</i>
12	5j	C≡CH	OMe	6j	70	71:29	$18 (+) - R^{[j]}$	10	37.63	27 (–)- <i>S</i>
13	5k	C≡CPh	OMe	6k	50	71:29	$42 (+) - R^{[j]}$	65	25.75	50 (-)-S
14	51	$C \equiv C - tBu$	OMe	61	33	46:54	8 (+)- $R^{[j]}$	34	40.60	20 (–)- <i>S</i>
15	5m	C≡CTMS	OMe	6m	60	61:39	$22 (+) - R^{[j]}$	73	20.80	60 (–)- <i>S</i>
16	5n	C≡CTBDMS	OMe	6n	30	59:41	$18 (+) - R^{[j]}$	60	31.69	38 (–)- <i>S</i>
17	50	Н	OMe	60	60	92.5:7.5	85 (+)- <i>R</i>	60	6.94	88 (–)- <i>S</i>

[a] The reactions were carried out with 1 mol-% catalyst in THF at -78 °C for 20 h, unless otherwise mentioned. [b] Isolated yield. [c] Enantiomeric ratio. The ratio numbers refer to the order of the peaks in the ¹⁹F NMR spectra. [d] The assignment of the absolute configuration was based on the fact that it is known that compounds **6** having the sign of rotation '+' possess *R* configuration and those with sign '-' *S* configuration unless otherwise mentioned. [e] These results were reported previously.^[14d] [f] The reaction was attempted several times with the purified reactants, but it did not proceed. [g] The reaction was carried out in toluene. [h] The reaction was carried out in dichloromethane. [i] Configuration assigned by comparison with known data.^[7,32] [j] The tentative assignment of configuration was based on the results from the TRIP-PA catalyzed reactions (see the Supporting Information).

these results indicate that it is not possible to sensibly rationalize the influence of the substituent on the triple bond on asymmetric induction.

The results described above indicated that that the use of (R,S)-4 catalysts in allylation reactions proceeded, in general, with higher asymmetric induction than those with (R,R)-4. This phenomenon has also been observed in previous cases;^[14d,14e,14g] however, exceptions have also been observed.^[14d,14g] A possible, albeit speculative, explanation could be rationalized in terms of a conformationally and thermodynamically more favorable and more rigid transition state in which the chiral information is transferred from the ligand into the product.

Lewis-Acid-Catalyzed Enantioselective Allylations

Lewis-acid-catalyzed allylation is associated mainly with the Keck protocol. The method is based on the reaction of allyltributylstannane with carbonyl compounds catalyzed by chiral titanium species prepared in situ from $Ti(O-iPr)_4$ and binol. This procedure usually furnished the corresponding homoallylic alcohols in high yields and enantioselectivities.^[37]

Given that, to our knowledge, there are no reports on enantioselective allylation of *ortho*-substituted benzaldehydes, we screened various Keck allylation protocols (Conditions A, B, and C) to find the best conditions for high asymmetric induction. Aldehydes 5f-g, and 5m, which could be used as building blocks for the synthesis of structurally more complex compounds, were chosen as model compounds. It should be noted that the reaction rates were very slow in all cases and the reactions had to be carried out for at least seven days to achieve reasonable conversion and to obtain the corresponding homoallylic alcohols **6** in sensible isolated yields.

In the case of allylation of aldehyde **5f** to homoallylic alcohol **6f**, a mediocre asymmetric induction (60% *ee*) was achieved under classical Keck conditions A (Table 2, entry 1) and also modified conditions C (entry 3).^[37a-37c]

Attempts to carry out the reaction in toluene and THF failed, as the reactions did not proceed. The use of conditions B (catalyst/ligand ratio, 1:2) and C, which were reported to induce higher asymmetric induction,^[38] proved to give either inferior (46% *ee*; Table 2, entry 2) or the same results (60% *ee*, entry 3).

A similar trend was also observed during the allylation of other aldehydes. Thus, allylation of **5g** provided the corresponding homoallylic alcohol **6g** with a nice enantioselectivity of 88% *ee* (Table 2, entry 4) under conditions A, whereas under conditions C the enantioselectivity was only 42% *ee* (entry 5). In view of these results, the remaining aldehyde **5m** was allylated only using conditions A with rather low enantioselectivity of 24% *ee* (entry 6).

The question remains how to improve the enantioselectivity of the Keck allylation. One possible pathway could rely on the use of binols possessing bulky substituents Table 2. Enantioselective allylation of *ortho*-substituted benzaldehydes by using the Keck protocol.

Linuy	5	Condition.		er	66 [70]
1	5f	А	80	80:20	60 (+)- <i>R</i>
2	5f	В	55	73:27	46 (+)-R
3	5f	С	70	80:20	60 (+)-R
4	5g	А	55	94:6	88 (+)-R
5	5g	С	60	71:29	42 (+)- <i>R</i>
6	5m	Α	80	62:38	24 (+)- <i>R</i>

[a] Reaction conditions A: $Ti(OiPr)_4$ (10 mol-%), (S)-Binol (10 mol-%), CH_2Cl_2 , 4 Å MS, -20 °C, 7 d. Reaction conditions B: $Ti(OiPr)_4$ (10 mol-%), (S)-Binol (20 mol-%), CH_2Cl_2 , 4 Å MS, -20 °C, 7 d. Reaction conditions C: $Ti(OiPr)_4$ (7.5 mol-%), $TiCl_4$ (2.5 mol-%), (S)-Binol (10 mol-%), Ag_2O (5 mol-%), 4 Å, -10 °C, 7 d. [b] Isolated yield. [c] Enantiomeric ratio. The ratio numbers refer to the order of the peaks in the ¹⁹F NMR spectra.

in positions 3 and 3'. However, available studies that would provide leads in this direction have, to our knowledge, not been undertaken. Moreover, allylations of ketones under Keck conditions with variously substituted binols suggest that attachment of substituents in the position mentioned above resulted in lower levels of asymmetric induction.^[39] Nevertheless, allylations of **5f** were carried out under Keck conditions A by using (*R*)-3,3-bis[3,5-bis(trifluormethyl)phenyl]binol and (*R*)-3,3-dibromobinol. In the former case, the reaction did not proceed and in the latter case 30% of the product was formed with *ee* of approximately 20%. These results thus support the speculations mentioned above on lower activity of substituted binols.

Brønsted Acid (TRIP PA) Catalyzed Enantioselective Allylations

For comparison with the experiments described above, allylations catalyzed by a chiral Brønsted acid, (R)-TRIP PA,^[21] were also carried out with selected benzaldehydes (Table 3). Allylation of aldehydes 5a, 5d, 5e-g, 5i, 5j, and 5m-p, proceeded with high yields and with asymmetric induction in the range of 9-90% ee with several exceptions. In some cases these values were lower than or comparable to those obtained with (R,R)-4 or (R,S)-4 (Table 1, entries 1, 5, 6, 15, and 16). In the case of aldehydes 5d, 5g, 5i, 5j, and 50, the asymmetric induction was higher than those obtained with (R,R)-4 or (R,S)-4 (Table 1, entries 4, 9, 11, 12, 17). The lower asymmetric induction in allylation of 5g in comparison with previously reported results^[32] might be caused by the lower load of the catalyst (2.5 vs. 5 mol-%). In this respect, the authors also observed a drop in asymmetric induction. In addition, allylation of aldehyde 5p was undertaken to compare this protocol with the recently reported Ag-catalyzed methodology.^[29b] In this case, asymmetric induction was also lower (65% ee) than the reported value (74% ee).

Table 3. Enantioselective allylation of *ortho*-substituted benzaldehydes by using (*R*)-TRIP PA.

R^2	CHO ⁺	$BPin \frac{(R)}{t}$	TRIP PA 5 mol-%) oluene -30 °C	6 OH
Entry	5	Yield [%] ^[a]	er ^[b]	<i>ee</i> [%] ^[c]
	5a	95	27:73	46 (+)- <i>R</i>
2	5d	99	24.5:75.5	51 (+)-R
3	5e	59	40.5:59.5	18 (+)- <i>R</i>
ŀ	5f	66	71:29	42 (+)- <i>R</i>
5	5g	96	9:91	82 (+)- <i>R</i>
5	5i	93	37:63	26 (+)-R
7	5j	98	82:18	64 (+)-R
3	5m	94	70.5:29.5	41 (+)- <i>R</i>
)	5n	98	54.5:45.5	9 (+)- <i>R</i>
0	50	95	5:95	90 (+)-R
1	5p ^[d]	94	82.5:17.5	65 (+)- <i>R</i>

[a] Isolated yield. [b] Enantiomeric ratio. The ratio numbers refer to the order of the peaks in the ¹⁹F NMR spectra. [c] For assignment of the configuration, see the Supporting Information. [d] $R^1 = Br$, $R^2 = OMe$.

Synthesis of a Sertraline Intermediate

Given that allylation of 2-vinylbenzaldehyde **5g** under Keck conditions provided the corresponding homoallylic alcohol **6g** with a reasonable enantioselectivity (88% *ee*) and isolated yield (55%), it was decided to use this substrate for the synthesis of sertraline intermediate (Scheme 2). The prepared compound **6g** was subjected to ring-closing metathesis by using Grubbs 2nd generation catalysts (G II) (2 mol-%) under standard conditions in CH₂Cl₂ at 20 °C for 48 h. The reaction proceeded smoothly and the corresponding dihydronaphthalene **3** was obtained in 79% isolated yield and 84% *ee*. Notably, a slight loss of enantiopurity during ring-closing metathesis reactions have previously been observed in this laboratory,^[14e] and we do not currently have reasonable explanation for this phenomenon.

Scheme 2. Synthesis of the sertraline intermediate 3.

Conclusions

We have shown that catalytic allylation of *ortho*-substituted benzaldehydes under selected Lewis basic and acid catalysts provides the corresponding homoallylic alcohols with reasonable enantioselectivity depending on the nature of the *ortho*-substituent. However, it seems difficult to correlate the level of asymmetric induction with respect to the steric bulk of the substituent. In addition, the obtained results also indicate difficulties regarding the choice of a suitable catalyst with which to achieve highly enantioselective

allylation. In some cases the use of N,N'-dioxide catalysts gives better optical purity; in others, Keck or Brønsted acid allylation seems to provide better results. The advantage of the N,N'-dioxide catalysts is in their rather low loading, with only 1 mol-% being sufficient to bring about the desired allylation. In contrast, the Keck allylation suffers from high catalyst loadings (usually 10 mol-%) and long reaction times (one week). As far as TRIP PA is concerned, it has been published that this reagent usually gives the product with high enantiopurity, but the level of asymmetric induction depends on the catalyst loading, as has been noted by us and by others. The optimal amount of TRIP PA to achieve high asymmetric induction in the allylation of ortho-substituted benzaldehydes is 10 mol-%,^[32] which can be considered to be a high loading. In summary, although progress has been made, the development of a highly catalytically active and general system for the allylation of orthosubstituted arylaldehydes that provides products with high optical purity remains to be solved.

Experimental Section

General: All solvents - unless otherwise stated - were used as obtained. THF and Et₂O were distilled from LiAlH₄, DCM and Et₃N from CaH₂, toluene from sodium benzophenone ketyl. All other reagents and starting materials {e.g. (2-iodophenyl)methanol, (2bromo-5-methoxyphenyl)methanol, and 2-[(trimethylsilyl)ethynyl] benzaldehyde} were obtained from commercial sources. ¹H, ¹⁹F and ¹³C NMR spectra were recorded with a Varian UNITY 400 (1H at 400 MHz, 13C at 100.6 MHz) and a Varian UNITY 300 (1H and ¹⁹F at 300 MHz, ¹³C at 75 MHz) as solutions in CDCl₃ or C_6D_6 at 25 °C. Chemical shifts are given on the δ -scale, coupling constants J are given in Hz. Melting points (uncorrected) were determined by using a Kofler apparatus. Mass spectra were recorded with a ZAB-SEQ (VG-Analytical) instrument. Infrared spectra were recorded with a Bruker IFS 55 spectrometer as THF solutions and are reported in wavenumbers (cm⁻¹). Fluka 60 silica gel was used for flash chromatography. TLC was performed on silica gel 60 F₂₅₄ coated aluminum sheets (Merck). Specific rotation values were determined with an Autopol III automatic polarimeter (Rudolph Research Analytical), the samples were dissolved in CHCl₃ (concentrations in g/100 mL). All reactions were carried out under argon.

General Procedure for Allylation with *N*,*N*'-Dioxides: To a solution of bis(tetrahydroisoquinoline)-*N*,*N*'-dioxides (*R*,*R*)-4 or (*S*,*R*)-4 (0.0023 mmol, 1 mg) in THF, toluene, or CH₂Cl₂ (1 mL), the corresponding aldehyde (0.23 mmol) and diisopropylethylamine (0.26 mmol, 47 µL, 35 mg) were added at -78 or -40 °C. Allyltrichlorosilane (0.26 mmol, 40 µL, 49 mg) was then added and the reaction mixture was stirred for 4–20 h at the same temperature, unless otherwise stated. The reaction was quenched with brine (4 mL) and the mixture was extracted with EtOAc (3×5 mL), the combined organic fractions were dried with MgSO₄ and volatiles were removed under reduced pressure. Column chromatography of the residue on silica gel (hexane/EtOAc, 5:1) gave the product as a yellowish liquid or colorless solid. Enantiomeric excess was determined by ¹⁹F NMR analysis of the corresponding Mosher acid esters or by GC analysis.

Allylation of *ortho*-Substituted Benzaldehydes Catalyzed by (*S*,*R*)-4. (*S*)-(-)-1-(2-Fluorophenyl)but-3-en-1-ol (6a): Column chromatog-

raphy on silica gel afforded the title compound (13 mg, 34%) as a colorless liquid. The spectral characteristics are in agreement with the previously reported data.^[40] 66% *ee* [Mosher ester: ¹⁹F NMR (300 MHz): $\delta = -71.37$ (83%), -71.51 (17%) ppm].

(*S*)-(-)-1-(2-Iodophenyl)but-3-en-1-ol (6d): Column chromatography on silica gel afforded the title compound (32 mg, 51%) as a colorless liquid. The spectral characteristics are in agreement with the previously reported data.^[41] 30% *ee* [Mosher ester: ¹⁹F NMR (300 MHz): $\delta = -71.23$ (75%), -71.32 (45%) ppm].

(*S*)-(-)-1-[2-(Trifluoromethyl)phenyl]but-3-en-1-ol (6e): Column chromatography on silica gel afforded the title compound (10 mg, 20%) as a colorless liquid. The spectral characteristics are in agreement with the previously reported data.^[40] 22% *ee* [Mosher ester: ¹⁹F NMR (300 MHz): $\delta = -71.25$ (61%), -71.34 (39%) ppm].

(*S*)-(-)-1-(2-Iodo-5-methoxyphenyl)but-3-en-1-ol (6f): Column chromatography on silica gel afforded the title compound (37 mg, 53%) as a pale solid; m.p. 28–29 °C; $[a]_D = -32.0$ (c = 0.98, CHCl₃). ¹H NMR (300 MHz): $\delta = 2.25-2.33$ (m, 2 H), 2.54–2.65 (m, 1 H), 3.79 (s, 3 H), 4.85–4.89 (m, 1 H), 5.16–5.24 (m, 2 H), 5.83–5.95 (m, 1 H), 6.58 (dd, J = 8.7, 3.0 Hz, 1 H), 7.12 (d, J = 3 Hz, 1 H), 7.65 (d, J = 8.7 Hz, 1 H) ppm. ¹³C NMR (75 MHz): $\delta = 42.3$, 55.4, 76.2, 85.5, 112.7, 115.6, 118.7, 134.3, 139.7, 146.7, 160.3 ppm. IR (THF): $\tilde{v} = 801$, 1007, 1268, 1291, 1468, 1590, 2931, 3078 cm⁻¹. MS: *m/z* (%) = 123.1 (100), 283.1 (23), 301.1 (70), 341.3 (54), 368.2 (25), 418.3 (58). HRMS (ESI): *m/z* calcd for C₁₁H₁₃O₂INa 326.98524; found 326.98511. 80% *ee* [Mosher ester: ¹⁹F NMR (300 MHz): $\delta = -71.15$ (10%), -71. 27 (90%) ppm].

(*S*)-(-)-1-(2-Vinylphenyl)but-3-en-1-ol (6g): Column chromatography on silica gel afforded the title compound (16 mg, 40%) as a colorless liquid. The spectral characteristics are in agreement with the previously reported data.^[30] 76% *ee* [Mosher ester: ¹⁹F NMR (300 MHz): $\delta = -71.22$ (88%), -71.47 (12%) ppm].

(*S*)-(-)-1-{2-[2-(Trimethylsilyl)ethynyl]phenyl}but-3-en-1-ol (6i): Column chromatography on silica gel afforded the title compound (24 mg, 45%) as a colorless liquid. The spectral characteristics are in agreement with the previously reported data.^[42] 16% *ee* [Mosher ester: ¹⁹F NMR (300 MHz): δ = -71.22 (42%), -71.36 (58%) ppm].

(*S*)-(-)-1-(2-Ethynyl-5-methoxyphenyl)but-3-en-1-ol (6j): Column chromatography on silica gel afforded the title compound (5 mg, 10%) as a colorless liquid. $[a]_D = -58$ (c = 0.3, CHCl₃). ¹H NMR (300 MHz): $\delta = 2.21-2.22$ (m, 1 H), 2.40-2.45 (m, 1 H), 2.63-2.65 (m, 1 H), 3.26 (s, 1 H), 3.84 (s, 3 H), 5.15-5.22 (m, 3 H), 5.80-5.96 (m, 1 H), 6.77 (dd, J = 8.4, 2.7 Hz, 1 H), 7.08–7.09 (m, 1 H), 7.42 (d, J = 8.4 Hz, 1 H) ppm. ¹³C NMR (75 MHz): $\delta = 42.7, 55.3, 71.0, 80.9, 81.4, 110.7, 111.4, 113.0, 118.4, 134.3, 134.6, 148.3, 160.3 ppm. IR (THF): <math>\tilde{v} = 819, 1030, 1233, 1276, 1489, 1605, 1733, 2099, 2854, 2926, 3073 cm⁻¹. MS: <math>m/z$ (%) = 203.1 (100) [M⁺]. HRMS (ESI): m/z calcd for C₁₃H₁₄O₂ 203.10666; found 203.10660. 27% *ee* [Mosher ester: ¹⁹F NMR (300 MHz): $\delta = -71.22$ (37%), -71. 32 (63%) ppm].

(*S*)-(-)-1-[5-Methoxy-2-(2-phenylethynyl)phenyl]but-3-en-1-ol (6k): Column chromatography on silica gel afforded the title compound (34 mg, 65%) as a pale solid; m.p. 57–59 °C; $[a]_D = -12.6$ (c = 0.33, CHCl₃). ¹H NMR (300 MHz): $\delta = 2.25-2.27$ (m, 1 H), 2.45–2.50 (m, 1 H), 2.72–2.75 (m, 1 H), 3.85 (s, 3 H), 5.16–5.28 (m, 3 H), 5.82–6.00 (m, 1 H), 6.78–6.82 (m, 1 H), 7.11–7.13 (m, 1 H), 7.32– 7.38 (m, 3 H), 7.43–7.52 (m, 3 H) ppm. ¹³C NMR (75 MHz): $\delta =$ 42.8, 55.4, 71.4, 87.1, 93.2, 110.7, 112.5, 113.1, 118.4, 123.5, 128.1, 128.4 (2C), 131.3 (2C), 133.6, 134.7, 147.7. 160.1 ppm. IR (THF): $\tilde{v} = 686$, 753, 820, 921, 1057, 1171, 1234, 1296, 1463, 1503, 1608, 1895, 2210, 2837, 2924, 3048, 3276 cm⁻¹. MS: *m/z* (%) = 301.1 (100)

FULL PAPER

[M⁺]. HRMS: m/z calcd for C₁₉H₁₈O₂Na 301.11990; found 301.11989. 50% *ee* [Mosher ester: ¹⁹F NMR (300 MHz): δ = -71.23 (25%), -71.29 (75%) ppm].

(*S*)-(-)-1-{5-Methoxy-2-[2-(*tert*-butyl)ethynyl]phenyl}but-3-en-1-ol (6): Column chromatography on silica gel afforded the title compound (20 mg, 34%) as a colorless liquid. $[a]_{\rm D} = -6.0$ (c = 0.18, CHCl₃). ¹H NMR (300 MHz): $\delta = 1.24$ (s, 9 H), 2.27–2.38 (m, 2 H), 2.51–2.62 (m, 1 H), 3.73 (s, 3 H), 5.00–5.14 (m, 3 H), 5.74–5.87 (m, 1 H), 5.81 (dd, J = 8.4, 2.7 Hz, 1 H), 6.95–6.96 (m, 1 H), 7.19–7.22 (m, 1 H) ppm. ¹³C NMR (75 MHz): $\delta = 28.2, 31.1$ (3C), 40.9, 42.5, 55.3, 71.4, 102.4, 110.6, 112.7, 113.2, 118.0, 133.3, 135.0, 147.4, 159.3 ppm. IR (THF): $\tilde{v} = 820, 912, 1037, 1158, 1230, 1288, 1492, 1606, 2835, 2866, 2904, 2968, 3072, 3415 cm⁻¹. MS:$ *m/z*(%) = 281.1 (100) [M⁺]. HRMS:*m/z*calcd for C₁₇H₂₂O₂Na 281.15120; found 281.15108. 20%*ee* $[Mosher ester: ¹⁹F NMR (300 MHz): <math>\delta = -71.21$ (40%), -71.23 (60%) ppm].

(*S*)-(-)-1-{5-Methoxy-2-[2-(trimethylsilyl)ethynyl]phenyl}but-3-en-1ol (6m): Column chromatography on silica gel afforded the title compound (40 mg, 73%) as a pale solid. The spectral characteristics are in agreement with the previously reported data.^[42] 60% *ee* [Mosher ester: ¹⁹F NMR (300 MHz): $\delta = -71.20$ (20%), -71.25(80%) ppm].

(*S*)-(-)-1-{5-Methoxy-2-[2-(*tert*-butyldimethylsilyl)ethynyl]phenyl}but-3-en-1-ol (6n): Column chromatography on silica gel afforded the title compound (44 mg, 60%) as a colorless liquid. [a]_D = -8.2 (c = 0.84, CHCl₃). ¹H NMR (300 MHz): δ = 0.18 (s, 6 H), 1.00 (s, 9 H), 2.25–2.27 (m, 1 H), 2.35–2.44 (m, 1 H), 2.67–2.71 (m, 1 H), 3.82 (s, 3 H), 5.15–5.30 (m, 3 H), 5.80–5.92 (m, 1 H), 6.72–6.75 (m, 1 H), 7.05–7.06 (m, 1 H), 7.37–7.40 (m, 1 H) ppm. ¹³C NMR (75 MHz): δ = -4.5, 16.7, 26.1 (3C), 42.7, 55.3, 71.2, 96.3, 103.4, 110.6, 112.5, 112.9, 118.4, 134.1, 134.6, 148.2, 160.1 ppm. IR (THF): \tilde{v} = 775, 832, 1035, 1250, 1488, 1606, 2149, 2894, 2927, 2951, 3077, 3406 cm⁻¹. MS: *m*/*z* (%) = 123.1 (100), 257.0 (26), 339.2 (60) [M⁺]. HRMS (ESI): *m*/*z* calcd for C₁₉H₂₈O₂NaSi: 339.17508; found: 339.17502. 38% *ee* [Mosher ester: ¹⁹F NMR (300 MHz): δ = -71.17 (31%), -71.23 (69%) ppm].

(*S*)-(-)-1-(3-Methoxyphenyl)but-3-en-1-ol (60): Column chromatography on silica gel afforded the title compound (24 mg, 60%) as a colorless liquid. The spectral characteristics are in agreement with the previously reported data.^[43] 88% *ee* [GC (HP-Chiral β column; 30 m×0.25 mm; oven: 80 °C for 1 min, then 1 °C/min to 160 °C, 5 min at the same temperature): *t*_R = 69.25 (+), 69.66 (–) min].

General Procedure for Keck Allylation. Conditions A: To a solution of Ti(O*i*Pr)₄ (0.1 mmol, 28 mg) in CH₂Cl₂ (5 mL), (*S*)-binol (0.1 mmol, 28 mg) and 4Å molecular sieves (200 mg) were added. The mixture was sealed in a pressure tube and heated to 50 °C for 2 h, then cooled to -10 °C and the corresponding benzaldehyde (1 mmol) and allyltributyltin (360 mg, 1.1 mmol) or allenyltrimethyltin (358 mg, 1.1 mmol) were added. The pressure tube was again sealed and left at -18 °C (freezer) for 7 d. HCl (0.5%, 20 mL) was then added and the reaction mixture was extracted with CH₂Cl₂ (3 × 10 mL). The combined organic fractions were dried with anhydrous Na₂SO₄ and volatiles were removed under reduced pressure. Residue mixtures were purified by column chromatography on silica gel.

Conditions B: Procedure was the same as described for Conditions A, but (*S*)-binol (0.2 mmol, 56 mg) was used.

Conditions C: To a the solution of $Ti(OiPr)_4$ (0.075 mmol, 21 mg) and $TiCl_4$ (0.025 mmol, 5 mg) in CH_2Cl_2 (5 mL), (*S*)-binol (0.1 mmol, 28 mg), Ag₂O (0.05 mmol, 12 mg) and 4Å molecular sieves (200 mg) were added. The mixture was sure-sealed in a pres-

sure tube and heated to 50 °C for 2 h, then it was cooled to -10 °C and the substituted benzaldehyde (1 mmol) and allyltributyltin (360 mg, 1.1 mmol) or allenyltrimethyltin (358 mg, 1.1 mmol) were added. The mixture was sure-sealed and left at -18 °C (freezer) for 7 d. Work-up was the same as described for Conditions A.

(*R*)-(+)-1-(2-Iodo-5-methoxyphenyl)but-3-en-1-ol (6f): Conditions A: yield 80%. The spectral characteristics are in agreement with the previously reported data.^[30] 60% *ee* [Mosher ester: ¹⁹F NMR (300 MHz): $\delta = -71.17$ (80%), -71.30 (20%) ppm. Conditions B: yield 55%; 46% *ee*. Conditions C: yield 70%; 60% *ee*.

(*S*)-(-)-1-(2-Vinylphenyl)but-3-en-1-ol (6g): Conditions A: yield 55%. The spectral characteristics are in agreement with the previously reported data.^[30] 88% *ee* [Mosher ester: ¹⁹F NMR (300 MHz): $\delta = -71.24$ (94%), -71.49 (6%) ppm]. Conditions C: yield 60%; 42% *ee*.

(*R*)-(+)-1-{5-Methoxy-2-[(trimethylsilyl)ethynyl]phenyl}but-3-en-1ol (6m): Conditions A: yield 80%. The spectral characteristics are in agreement with the previously reported data.^[42] 24% *ee* [Mosher ester: ¹⁹F NMR (300 MHz): δ = -71.21 (62%), -71.26 (38%) ppm].

General Procedure for Allylboration of Aldehydes: (R)-TRIP-PA catalyst (3.2 mg, 0.0042 mmol, 2.5 mol-%) and the corresponding benzaldehyde (0.17 mmol) were dissolved in toluene (3 mL) and cooled to -30 °C. Pinacol allylboronate (0.038 mL, 0.20 mmol) was added dropwise and the reaction mixture was stirred for 16 h while maintaining -30 °C, then the mixture was warmed to room temperature. The solvent was evaporated under reduced pressure and column chromatographic purification of the residue on silica gel (hexane/EtOAc, 5:1) furnished the homoallylic alcohol as a colorless oil. The ee values were determined by ¹⁹F NMR analysis of the corresponding Mosher esters. The absolute configurations were tentatively assigned primarily according to the known fact that (R)-TRIP PA catalyzed allylation of benzaldehydes provides the corresponding homoallylic alcohols with R-configuration. For other supporting data regarding the assigned configuration, see references in individual cases.

(*R*)-(+)-1-(2-Fluorophenyl)but-3-en-1-ol (6a): Isolated yield 95%. The spectral^[40] and optical characteristics^[24] are in agreement with the previously reported data. [a]_D = +28.5 (c = 3.3, CHCl₃); 46% *ee* [Mosher ester: ¹⁹F NMR (300 MHz): δ = -71.38 (27%), -71.52 (73%) ppm].

(*R*)-(+)-1-(2-Iodophenyl)but-3-en-1-ol (6d): Isolated yield 99%. The spectral^[41] and optical^[29] characteristics are in agreement with the previously reported data. $[a]_{\rm D}$ = +36.8 (*c* = 14.1, CHCl₃); 51% *ee* [Mosher ester: ¹⁹F NMR (300 MHz): δ = -71.24 (24.5%), -71.33 (75.5%) ppm].

(*R*)-(+)-1-(2-(Trifluoromethyl)phenyl)but-3-en-1-ol (6e): Isolated yield 59%. The spectral^[40] and optical characteristics are in agreement with the previously reported data.^[24] $[a]_D = +13.2$ (c = 1.9, CHCl₃); 19% *ee* [Mosher ester: ¹⁹F NMR (300 MHz): $\delta = -71.25$ (40.5%), -71.34 (59.5%) ppm].

(*R*)-(+)-1-(2-Iodo-5-methoxyphenyl)but-3-en-1-ol (6f): Isolated yield 66%. 42% *ee* [Mosher ester: ¹⁹F NMR (300 MHz): δ = -71.16 (71%), -71.29 (29%) ppm].

(*R*)-(+)-1-(2-Vinylphenyl)but-3-en-1-ol (6g): Isolated yield 96%. The spectral^[30] and optical characteristics^[32] are in agreement with the previously reported data. Configuration was also assigned according to analogy with a related compound.^[44] $[a]_D = +50.2$ (c = 4.3, CHCl₃); 82% *ee* [Mosher ester: ¹⁹F NMR (300 MHz): $\delta = -71.24$ (9%), -71.48 (91%) ppm].

(*R*)-(+)-1-(2-Ethynyl-5-methoxyphenyl)but-3-en-1-ol (6j): Isolated yield 98%. 64% *ee* [Mosher ester: ¹⁹F NMR (300 MHz): δ = -71.23 (82%), -71.33 (18%) ppm].

(*R*)-(+)-1-{5-Methoxy-2-[2-(trimethylsilyl)ethynyl]phenyl}but-3-en-1-ol (6m): Isolated yield 94%. The spectral characteristics are in agreement with the previously reported data.^[42] 41% *ee* [Mosher ester: ¹⁹F NMR (300 MHz): $\delta = -71.20$ (70.5%), -71.25 (29.5%) ppm].

(*R*)-(+)-1-{5-Methoxy-2-[2-(*tert*-butyldimethylsilyl)ethynyl]phenyl}but-3-en-1-ol (6n): Isolated yield 98%. 9% *ee* [Mosher ester: ¹⁹F NMR (300 MHz): δ = -71.19 (54.5%), -71.24 (45.5%) ppm].

(*R*)-(+)-1-(3-Methoxyphenyl)but-3-en-1-ol (60): Isolated yield 95%. The spectral and optical^[43] characteristics are in agreement with the previously reported data. $[a]_{\rm D}$ = +49.0 (*c* = 3.1, CHCl₃); 90% *ee* [Mosher ester: ¹⁹F NMR (300 MHz): δ = -71.33 (5%), -71.47 (95%) ppm].

(*R*)-(+)-1-(2-Bromo-5-methoxyphenyl)but-3-en-1-ol (6p): Isolated yield 94%. Spectral and optical data are in accordance with previously published data.^[29] $[a]_D$ = +48.5 (*c* = 2.2, CHCl₃); 65% *ee* [Mosher ester: ¹⁹F NMR (300 MHz): δ = -71.17 (82.5%), -71.29 (17.5%) ppm].

Supporting Information (see footnote on the first page of this article): Preparation of the starting aldehydes **5**, all experimental procedures regarding allylations, copies of ¹H and ¹³C NMR spectra of hitherto unreported compounds.

Acknowledgments

This work was supported by grants from the Czech Ministry of Education, Youth, and Sports (MSM0021620857) and the Czech Science Foundation (P207/11/0587).

- A. de Fátima, A. A. M. Lapis, R. A. Pilli, J. Braz. Chem. Soc. 2005, 16, 495–499.
- [2] a) A. de Fatima, R. A. Pilli, *Tetrahedron Lett.* 2003, 44, 8721– 8724; b) E. Sundby, L. Perk, T. Anthonsen, A. J. Aasen, T. V. Hansen, *Tetrahedron* 2004, 60, 521–524; c) P. Harsch, G. A. O'Doherty, *Tetrahedron* 2009, 65, 5051–5055.
- [3] A. de Fatima, L. K. Kohn, M. A. Antônio, J. E. de Carvalho, R. A. Pilli, *Bioorg. Med. Chem.* 2004, 12, 5437–5442.
- [4] K. B. Sawant, M. P. Jennigs, J. Org. Chem. 2006, 71, 7911– 7914.
- [5] X. Tian, S. D. Rychnowsky, Org. Lett. 2007, 9, 4955–4958.
- [6] A. Ditto, V. Bellosta, J. Cossy, Synlett 2008, 2459–2460.
- [7] M. Inoue, M. Nakada, J. Am. Chem. Soc. 2007, 129, 4164– 4165.
- [8] S. E. Denmark, T. Kobayashi, C. S. Regens, *Tetrahedron* 2010, 66, 4745–4759.
- [9] For reviews, see: a) S. E. Denmark, J. Fu, *Chem. Rev.* 2003, 103, 2763–2793; b) M. Yus, J. C. González-Goméz, F. Foubelo, *Chem. Rev.* 2011, 111, 7774–7854.
- [10] a) N. Nakajima, M. Saito, M. Shiro, S. Hashimoto, J. Am. Chem. Soc. **1998**, 120, 6419–6420; b) N. Nakajima, M. Saito, M. Shiro, S. Hashimoto, Chem. Pharm. Bull. Chem. Soc. **2000**, 48, 306–307; c) N. Nakajima, M. Saito, M. Uemura, S. Hashimoto, Tetrahedron Lett. **2002**, 43, 8827–8829.
- [11] a) T. Shimada, A. Kina, S. Ikeda, T. Hayashi, Org. Lett. 2002,
 4, 2799–2801; b) T. Shimada, A. Kina, T. Hayashi, J. Org.

___Eurjoc

Chem. **2003**, *68*, 6329–6337; c) T. Shimada, A. Kina, T. Hayashi, *Adv. Synth. Catal.* **2004**, *346*, 1169–1174.

- [12] a) A. V. Malkov, L. Dufková, L. Farrugia, P. Kočovský, Angew. Chem. Int. Ed. 2003, 42, 3674–3676; Angew. Chem. 2003, 115, 3802; b) A. V. Malkov, M. Orsini, D. Pernazza, K. W. Muir, V. Langer, P. Meghani, P. Kočovský, Org. Lett. 2002, 4, 1047– 1049; c) A. V. Malkov, M. Bell, M. Orsini, D. Pernazza, A. Massa, P. Hermann, P. Meghani, P. Kočovský, J. Org. Chem. 2003, 68, 9659–9668; d) A. V. Malkov, M. Bell, F. Castelluzzo, P. Kočovský, Org. Lett. 2005, 7, 3219–3222; e) A. V. Malkov, P. Ramírez-López, L. Biedermannová, L. Rulíšek, L. Dufková, M. Kotora, F. Zhu, P. Kočovský, J. Am. Chem. Soc. 2008, 130, 5341–5348.
- [13] a) T. Bao, M. M.-C. Lo, G. C. Fu, J. Am. Chem. Soc. 2001, 123, 353–354; b) Q. Chai, C. Song, Z. Sun, Y. Ma, C. Ma, Y. Dai, M. B. Andrus, *Tetrahedron Lett.* 2006, 47, 8611–8615; c) G. Chelucci, S. Baldino, S. A. Pinna, M. Benanglia, L. Buffa, S. Guizetti, *Tetrahedron Lett.* 2008, 64, 7574–7582.
- [14] a) R. Hrdina, I. Valterová, J. Hodačová, M. Kotora, Adv. Synth. Catal. 2007, 349, 822–826; b) R. Hrdina, M. Dračínský, I. Valterová, J. Hodačová, I. Císařová, M. Kotora, Adv. Synth. Catal. 2008, 350, 1449–1456; c) A. Kadlčíková, M. Kotora, Molecules 2009, 14, 2918–2926; d) A. Kadlčíková, R. Hrdina, I. Valterová, M. Kotora, Adv. Synth. Catal. 2009, 351, 1279–1283; e) A. Kadlčíková, I. Valterová, L. Ducháčková, J. Roithová, M. Kotora, Chem. Eur. J. 2010, 16, 9442–9445; f) K. Vlašaná, R. Hrdina, L. Valterová, M. Kotora, Eur. J. Org. Chem. 2010, 7040–7044; g) F. Hessler, A. Korotvička, D. Nečas, I. Valterová, M. Kotora, Eur. J. Org. Chem. 2014, 2543–2548; h) P. Motloch, I. Valterová, M. Kotora, Adv. Synth. Catal. 2014, 356, 199–204.
- [15] A. Traverse, Y. Zhao, A. H. Hoveyda, M. L. Snapper, Org. Lett. 2005, 7, 3151–3154.
- [16] V. Simonini, M. Benaglia, L. Pignataro, S. Guizzetti, G. Celentano, Synlett 2008, 1061–1065.
- [17] P. Kwiatkowski, P. Mucha, G. Mloston, J. Jurczak, Synlett 2009, 1757–1760.
- [18] S-oxide: a) P. Wang, J. Chen, L. Cun, J. Deng, J. Zhu, J. Liao, Org. Biomol. Chem. 2009, 7, 3741–3747; b) A. Massa, L. Capozzolo, A. Scettri, Cent. Eur. J. Chem. 2010, 8, 1210–1215.
- [19] P-oxide: K. Iseki, Y. Kuroki, M. Takahashi, S. Kishimoto, Y. Kobayashi, *Tetrahedron* 1997, 53, 3513–3527.
- [20] Alcohol: L. Liu, J. Sun, N. Liu, W. Chang, J. Li, *Tetrahedron: Asymmetry* 2007, 18, 710–716.
- [21] Brønsted acid: a) P. Jain, J. C. Antilla, J. Am. Chem. Soc. 2010, 132, 11884–11886; b) C. Ke, T. Fan, J. Sun, Chin. J. Chem. 2011, 29, 1669–1671.
- [22] Ti complex: Y.-Y. Yin, G. Zhao, Y. Qian, W. Yin, J. Fluorine Chem. 2003, 120, 117–120.
- [23] In complex: a) L. C. Hirayama, S. Gamsey, D. Knueppel, D. Steiner, K. DeLaTorre, B. Singaram, *Tetrahedron Lett.* 2005, 46, 2315–2318; b) T. D. Haddad, L. C. Hirayama, B. Singaram, *J. Org. Chem.* 2010, 75, 642–649.
- [24] Sn complex: V. Rauniyar, H. Zhai, D. G. Hall, J. Am. Chem. Soc. 2008, 130, 8481–8490.
- [25] Cr complex: a) G. Xia, H. Yamamoto, J. Am. Chem. Soc. 2006, 128, 2554–2555; b) P. Kwiatkowski, W. Chaladaj, J. Jurczak, Tetrahedron 2006, 62, 5116–5125; c) X. Huang, C. Chen, Tetrahedron: Asymmetry 2010, 21, 2999–3004; d) J. D. White, S. Shaw, Org. Lett. 2011, 13, 2488–2491; e) X.-R. Huang, X.-H. Pan, G.-H. Lee, C. Chen, Adv. Synth. Catal. 2011, 353, 1949–1954.
- [26] Rh complex: Y. Motoyama, H. Narusawa, H. Nishiyama, *Chem. Commun.* 1999, 131–132.
- [27] Pd complex: S.-F. Zhu, X.-C. Qiao, Y.-Z. Zhang, L.-X. Wang, Q.-L. Zhou, *Chem. Sci.* 2011, 2, 1135–1140.
- [28] Bi complex: Z. Li, B. Planq, T. Ollevier, Chem. Eur. J. 2012, 18, 3144–3147.

FULL PAPER

- [29] Ag complex: a) M. Wadamoto, N. Ozasa, A. Yanagisawa, H. Yamamoto, J. Org. Chem. 2003, 68, 5593–5601; b) R. Mirabdolbaghi, T. Dudding, *Tetrahedron* 2012, 68, 1988–1991.
- [30] N. T. Barczak, E. R. Jarvo, Eur. J. Org. Chem. 2008, 5507-5510.
- [31] a) J. Blanco-Urgoiti, L. Casarrubios, G. Domínguez, J. Pérez-Castells, *Tetrahedron Lett.* 2001, 42, 3315–3317; b) M. Rosillo, L. Casarrubios, G. Domínguez, J. Pérez-Castells, *Tetrahedron Lett.* 2001, 42, 7029–7031; c) M. Rosillo, G. Domínguez, L. Casarrubios, U. Amador, J. Pérez-Castells, *J. Org. Chem.* 2004, 69, 2084–2093; d) R. J. Blanco-Urgoiti, D. Abdi, G. Omínguez, J. Pérez-Castells, *Tetrahedron* 2008, 64, 67–74.
- [32] S. Fustero, E. Rodríguez, R. Lázaro, L. Herrera, S. Catalán, P. Barrio, Adv. Synth. Catal. 2013, 355, 1058–1064.
- [33] L. F. Tietze, G. Brasche, A. Grube, N. Böhnke, C. Stadler, *Chem. Eur. J.* 2007, 13, 8543–8563.
- [34] a) M. Lautens, T. Rovis, J. Org. Chem. 1997, 62, 5246–5247; b)
 M. Lautens, T. Rovis, Tetrahedron 1999, 55, 8967–8976; c)
 E. A. Garcia, S. Ouizem, X. Cheng, P. Romanens, E. P. Kündig, Adv. Synth. Catal. 2010, 352, 2306–2314; d) S. H. Lee,
 I. S. Kim, Q. R. Li, G. R. Dong, L. S. Jeong, J. H. Jung, J. Org. Chem. 2011, 76, 10011–10019.
- [35] a) R. Hrdina, F. Opekar, J. Roithová, M. Kotora, *Chem. Commun.* 2009, 2314–2316; b) L. Ducháčková, A. Kadlčíková, M.

Kotora, J. Roithová, J. Am. Chem. Soc. 2010, 132, 12660-12667.

- [36] M. Bartók, Chem. Rev. 2010, 110, 1663-1705.
- [37] a) G. E. Keck, K. H. Tarbet, L. S. Geraci, J. Am. Chem. Soc. 1993, 115, 8467–8468; b) G. E. Keck, D. Krishnamurthy, M. C. Grier, J. Org. Chem. 1993, 58, 6543–6544; c) G. E. Keck, L. S. Geraci, Tetrahedron Lett. 1993, 34, 7827–7828.
- [38] H. Hanzawa, D. Uraguchi, S. Konishi, T. Hashimoto, K. Maruoka, *Chem. Eur. J.* **2003**, *9*, 4405–4413.
- [39] J. G. Kim, E. H. Camp, P. J. Walsh, Org. Lett. 2006, 8, 4413-4416.
- [40] H. Doucet, M. Santelli, *Tetrahedron: Asymmetry* 2000, 11, 4163–4169.
- [41] a) L. E. Overman, D. J. Ricca, V. D. Tran, J. Am. Chem. Soc.
 1997, 119, 12031–12040; b) N. Kurono, E. Honda, F. Komatsu, K. Orito, M. Tokuda, Tetrahedron 2004, 60, 1791–1801.
- [42] M. Rosillo, G. Dominguez, L. Casarrubios, U. Amadour, J. Perez-Castells, J. Org. Chem. 2004, 69, 2084–2093.
- [43] T.-P. Loh, J.-R. Zhou, Z. Yin, Org. Lett. 1999, 1, 1855–1857.
- [44] S. Obika, H. Kono, Y. Yasui, R. Yanada, Y. Takemoto, J. Org. Chem. 2007, 72, 4462–4468.

Received: August 5, 2014 Published Online: October 1, 2014