Journal of Organometallic Chemistry xxx (2015) 1-8

Contents lists available at ScienceDirect

Journal of Organometallic Chemistry

journal homepage: www.elsevier.com/locate/jorganchem

2-(diphenylphosphino)pyridine platinum (I) and palladium (I) complex as an efficient binuclear catalyst for Suzuki-Miyaura coupling reaction in water under mild reaction conditions

Mohammad Gholinejad^{*}, Hamid R. Shahsavari^{*}, Mehran Razeghi, Maryam Niazi, Fatemeh Hamed

Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), PO-Box 45195-1159, Gava zang, Zanjan, 45137-6731, Iran

ARTICLE INFO

Article history: Received 2 February 2015 Received in revised form 10 May 2015 Accepted 11 May 2015 Available online xxx

Keywords: Platinum Palladium Binuclear Suzuki Water

1. Introduction

Palladium has found such wide utility because it affects an extraordinary number of very different reactions, including many carbon–carbon bond-forming reactions [1–5]. Among the different types of palladium catalyzed reactions, Suzuki-Miyaura coupling reaction, which is the reaction of organic electrophiles, such as aryl or alkenyl halides and triflates with organoboron compounds in the presence of a base, is one of the important organic reactions [6–14]. Despite numerous reports on development of Suzuki-Miyaura coupling reaction, efforts to improve the conditions of the reaction are still in progress. Along this line, improving the low reactivity of aryl bromides and chlorides, introducing of new efficient catalysts, using recyclable heterogeneous catalysts, shortening of the reaction times and conducting reactions in eco-friendly solvents such as water are challenging subjects for investigation [6-23].

* Corresponding authors.

http://dx.doi.org/10.1016/j.jorganchem.2015.05.047 0022-328X/© 2015 Elsevier B.V. All rights reserved.

ABSTRACT

Binuclear complex of platinum (I) and palladium (I) showed superior activity in Suzuki-Miyaura coupling reaction of aryl halides with arylboronic acids compared to the sole palladium or platinum species. The catalyst showed good tolerance in water and coupling reactions were performed in water as a green solvent. Aryl iodides were reacted at room temperature and the reactions of aryl bromides were performed at 60 $^{\circ}$ C.

© 2015 Elsevier B.V. All rights reserved.

In recent years bimetallic catalysts have attracted great attention in the field of catalysts [24,25]. In fact, synergistic combination of two metals enhances their catalytic performance, activity, selectivity, and stability compared to corresponding monometallic catalysts. Along this line, catalytic activity of palladium catalysts in the presence of other transition metals in coupling reactions were investigated. NiFe₂O₄-dopamine-Pd composite has been found as a magnetically separable and efficient catalyst for Heck C–C coupling reactions [26].

Recently, Pd/Cu bimetallic composite nanoparticles exhibited high catalytic activity in the Sonogashira cross-coupling reaction between aryl iodide and terminal alkynes [27]. Also, bimetallic Au/ Pd alloy nanoclusters showed excellent reactivity for Ullmann coupling of chloroarenes in aqueous media at low temperature [28,29]. Recently, we have demonstrated synergistic effect between palladium and copper species using copper ferrite supported palladium nanoparticles in cyanation reaction of aryl halides [30]. Most recently, we have also reported assemblies of copper ferrite and palladium nanoparticles on silica spheres as a bimetallic catalyst for Sonogashira coupling reaction [31]. However, among the different types of bimetallic catalysts, platinum based bimetallic catalysts are most commonly used in catalytic and electro

E-mail addresses: gholinejad@iasbs.ac.ir (M. Gholinejad), shahsavari@iasbs.ac.ir (H.R. Shahsavari).

M. Gholinejad et al. / Journal of Organometallic Chemistry xxx (2015) 1-8

Scheme 1. Synthesis of binuclear complexes of platinum (I) and palladium (I) involving 2-(diphenylphosphino)pyridine as a bridging ligand.

catalytic applications [32]. Literature search reveals that there is only one report on using platinum catalyzed Suzuki-Miyaura coupling reaction and platinum based catalysts are not potent catalysts for coupling reactions [33]. However, combination of second metal such as palladium with platinum can increase catalytic activity of new bimetallic catalyst [32].

Very recently, synergistic effect of a conjugated organometallic platinum moiety with palladium was applied in Suzuki and Heck coupling reactions of aryl bromides under mild reaction conditions [34,35]. Now in this article, we have introduced binuclear complex of platinum (I) and palladium (I) catalyst involving 2-(diphenyl-phosphino)pyridine ligand (Scheme 1) as a highly efficient catalyst in Suzuki-Miyaura coupling reactions in neat water under mild reaction conditions.

The catalyst successfully was prepared according to the reported method by Balch and coworker [36] using Pd₂(dba)₃.CHCl₃ and

Pt(Ph₂Ppy)₂Cl₂ in CH₂Cl₂ (Scheme 1) and was characterized using ¹H (see supporting information) and ³¹P{¹H} NMR spectroscopy. ³¹P{¹H} NMR of the catalyst in CDCl₃ shows two different signals for phosphorus atoms (Fig. 1). The P_a atom bonded to the platinum center is appeared at $\delta = -7.6$ ppm with a large platinum coupling constant ¹J_{PtP} = 4047 Hz, whereas the P_b atom bonded to the palladium atom is observed at $\delta = 7.0$ ppm with a much smaller platinum coupling constant ²J_{PtP} value of 111 Hz. It is interesting to note, due to P_aP_b coupling, the two non-equivalent phosphorus atoms in this catalyst are coupled to each other through the Pt–Pd metal bond and so each resonance appears as a doublet with ³J^{ab}_P = 14 Hz.

The thermogravimetric analysis (TGA) curve of catalyst has been shown in Fig. 2. According to this curve, the prepared catalyst has high thermal stability and negligible ligand leaching up to 200 $^{\circ}$ C.

Fig. 2. Thermogravimetric diagram of the catalyst.

Table 1

Screening of different reaction conditions for the reaction of 4-bromoanisole with phenylboronic acid in the presence of catalyst.

^a GC yields.

2. Results and discussion

The catalytic activity of prepared catalyst were assessed in Suzuki-Miyaura coupling reaction. In initial experiments, reaction of less reactive 4-bromoanisole with phenylboronic acid was selected as a model reaction and effect of different reaction conditions such base, solvent and temperature was studied (Table 1).

The results of Table 1 indicated that using K_3PO_4 as a base and H_2O as a solvent at 60 °C in the presence of the catalyst are the most effective reaction conditions for the reaction of 4-bromoanisole with phenylboronic acid. The scope of the reaction was further expanded for the reactions of structurally varied aryl halides under optimized reaction conditions (Table 2). Due to more reactivity of aryl iodides than aryl bromides and chlorides, we decided to perform reactions of aryl iodides in both 60 °C and room temperature under optimized reaction conditions (Table 2, entries 1–10). The results of Table 2 indicated that reactions of aryl iodides with arylboronic acids proceeded well at room temperature and desired biphenyl products were obtained in excellent yields (Table 2, entries 2,3, and 5–10). However, reactions of aryl iodides

at 60 °C afforded excellent yields in shorter reaction times. In addition, aryl bromides reacted efficiently with arylboronic acids and gave coupling products in high to excellent yields (Table 2, entries 11–22). Reactions of aryl chlorides under optimized reaction conditions were sluggish. Therefore, we increased reaction temperature to 80 °C. Under this condition, desired coupling products were obtained in 47–56% isolated yields (Table 2, entries 23–24). Also, results of Table 2 indicated that heterocyclic aryl halides such as 2-iodothiophene and 5-bromopyrimidine were reacted efficiently and produced coupling products in 80–97% yields (Table 2, entries 9 and 18–19).

The catalyst is not soluble in the reaction medium and reactions proceeded under heterogeneous reaction conditions. However, in order to confirm the heterogeneity of catalyst, we have studied hot filtration test for the reaction of 4-bromoanisol and phenylboronic acid. The reaction mixture was filtered after 8 h at the reaction temperature and GC analysis showed 46% GC yield. Then, filtrate allowed reacting for 24 h. GC analysis of reaction after 24 h showed 57% yield.

In addition, we have also studied poisoning test using poly(4vinylpyridine) with ratio of 400: 1 with respect to the catalyst for the reaction of 4-bromoanisol and phenylboronic acid under optimized reaction conditions. GC analysis of the reaction showed 69% conversion to desired coupling product while, similar reaction in the absence of poisoning was produced 86% GC yield. This result also confirmed that reaction proceeded mostly under heterogeneous conditions [40].

Furthermore, leaching of the catalyst into the reaction mixture after 24 h was determined by atomic absorption spectroscopy to be 3.5%. Therefore, we assume that the catalyst predominantly have a heterogeneous nature at the reaction conditions.

In order to confirm the synergistic effect between Pd and Pt species in the catalyst, we have performed reaction of 4-bromoanisole with phenylboronic acid in the presence of sole Pd and Pt species under optimized reaction conditions (Scheme 2). However, results indicated that in the presence of corresponding monometallic catalysts, low isolated yields of products were obtained.

It is worth mentioning that it is difficult to recognize how the electronic and chemical properties of bimetallic systems affected property of them, compared to individual metals [24,25]. The observed superior activity in the presented platinum (I) and palladium (I) catalyst may related to electron exchange between palladium and platinum which cause the modifications of the chemical and catalytic property of the catalyst.

3. Conclusions

In conclusion, we have described application of binuclear complex of platinum (I) and palladium (I) as an efficient catalyst for Suzuki-Miyaura coupling reaction of aryl halides in aqueous media. Using this catalyst, aryl iodides and bromides were reacted effectively at 25–60 °C and high to excellent isolated yields were obtained. Reactions of aryl chlorides were sluggish and moderate isolated yields were obtained.

4. Experimental

4.1. General

The ¹H, ¹³C and ³¹P NMR spectra were recorded on a Bruker Avance DPX 400 MHz spectrometer. The operating frequencies and references, respectively, are shown in parentheses as follows: ¹H (400 MHz, TMS), ¹³C (100 MHz, TMS) and ³¹P (162 MHz, 85% H₃PO₄). The chemical shifts and coupling constants are in ppm and

4

M. Gholinejad et al. / Journal of Organometallic Chemistry xxx (2015) 1-8

Table 2

Reactions of structurally different aryl halides with arylboronic acids in the presence of the catalyst.^a

$$Ar_{1}X + Ar_{2}X \xrightarrow{Catalyst (0.8 mol%)} Ar_{1}-Ar_{2}$$
$$K_{3}PO_{4}, H_{2}O$$
$$25-80 \ ^{\circ}C$$

Entry	Ar ₁ X	Temp. (°C)	Ar ₂	Time	Product	Isolated yield(%)
1		60	Ph	0.5	la	99
2		25	Ph	15	la la	83
3	MeO	25	Ph	15	MeO 2a	98
4	MeO	60	Ph	2	MeO 2a	95
5	MeO	25	4-MeOC ₆ H ₄ -	15	MeO 3a	96
6	Me	25	Ph	15	Me 4a	94
7	O ₂ N	25	Ph	3	O ₂ N 5a	75
8	O ₂ N	25	4-MeOC ₆ H ₄ -	3	O ₂ N 6a	80
9	S I	25	Ph	5	s 7a	97
10	Me	25	Ph	24	Me 8a	72

M. Gholinejad et al. / Journal of Organometallic Chemistry xxx (2015) 1-8

5

Table 2 (continued) Entry Isolated yield(%) Ar₁X Temp. (°C) Ar₂ Time Product Br 11 60 Ph 24 86 1a Br 12 60 Ph 24 81 MeO MeO 2a .OMe Br 13 60 4-MeOC₆H₄-24 91 MeO MeO 3a Me Br 87 14 60 4-MeC₆H₄-24 MeO MeO 9a Br 2 15 60 Ph 90 NC NC 10a Br 16 60 Ph 10 92 O_2N O_2N 5a Rr 17 60 Ph 24 86 11a Br 18 60 Ph 20 80 12a Me Br 19 60 4-MeC₆H₄-24 83 13a Br 20 60 Ph 24 75 OHC OHC 14a

(continued on next page)

^a Reaction conditions: ArX (1 mmol), ArB(OH)₂ (1.5 mmol), K₃PO₄ (1.5 mmol), H₂O (2 mL), and catalyst 0.8 mol%.

Scheme 2. Reaction of 4-bromoanisole with phenylboronic acid in the presence of sole Pd and Pt species.

Hz, respectively. The microanalyses were performed using a Thermofinigan Flash EA-1112 CHNSO rapid elemental analyzer. The progress of the reactions was followed with TLC using silica gel SILG/UV 254 plates or by GC Varian CP 3800 instrument. Pt(Ph₂Ppy)₂Cl₂ [37], Pd(Ph₂Ppy)₂Cl₂ [38] and Pd₂(dba)₃.CHCl₃ [39] were prepared according to literature methods.

4.2. General procedure for the preparation of catalyst

The catalyst was prepared according to the reported procedure in the literature [36], which briefly will explain here. A solution containing $Pd_2(dba)_3$.CHCl₃ (0.149 g, 0.15 mmol) and $Pt(Ph_2Ppy)_2Cl_2$ (0.237 g, 0.30 mmol) in 50 mL of dichloromethane was heated in reflux condition for 2 h under nitrogen atmosphere. Then the solution was cooled to room temperature, and diethyl ether was added slowly to precipitate a greenish brown solid. The precipitate was collected by filtration and dried by vacuum. Yield 0.085 g, 73%. C₃₄H₂₈Cl₂N₂P₂PdPt (MW = 898.95): calcd. C 45.43, H 3.14, N, 3.12. Found: C 45.21, H 3.13, N 3.48. ¹H NMR in CDCl₃: δ 9.61–9.50 (m, 2H), 7.75–7.32 (m, 24H), 6.78–6.67 (m, 2H). ³¹P NMR in CDCl₃: δ –7.6 (d, ³J^{ab}_P = 14 Hz, ¹J_{PtP} = 4047 Hz, 1 P, P^a bonded to the Pt), 32.4 (d, ³J^{ab}_P = 14 Hz, ¹J_{PtP} = 111 Hz, 1 P, P^b bonded to the Pd) ppm.

4.3. General procedure for the Suzuki-Miyaura reaction

Aryl halide (1 mmol), arylboronic acid (1.5 mmol), catalyst (0.8 mol%), K_3PO_4 (1.5 mmol) and distilled water (2 mL) were added to a 5 mL flask. The mixture was stirred for appropriate reaction time at 25 °C for aryl iodides, 60 °C for aryl bromides and 80 °C for aryl chlorides. The progress of the reaction was monitored by GC.

After completion of the reaction, the aqueous layer was extracted with ethyl acetate or hexane (5 \times 1 mL) and further purified by column chromatography using hexane and ethyl acetate as an eluant.

1a. ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.61 (d, *J* = 7.7, 2H), 7.45 (t, *J* = 7.6, 2H), 7.36 (t, *J* = 7.3, 1H); ¹³C NMR (101 MHz, CDCl₃) δ (ppm): 141.4, 128.9, 127.4, 127.3.

2a. ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.55 (t, J = 8.2, 4H), 7.42 (t, J = 7.6, 2H), 7.31 (t, J = 7.3, 1H), 6.98 (d, J = 8.7, 2H), 3.86 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ (ppm): 159.3, 141.0, 134.0, 128.9, 128.3, 126.9, 126.8, 114.3, 55.5.

3a. ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.48 (d, *J* = 8.6, 2H), 6.96 (d, *J* = 8.7, 2H), 3.85 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ (ppm): 158.8, 133.6, 127.9, 114.3, 55.46.

4a. ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.70 (d, J = 7.1, 2H), 7.62 (d, J = 8.1, 2H), 7.54 (t, J = 7.6, 2H), 7.44 (t, J = 7.4, 1H), 7.36 (d, J = 7.9, 2H), 2.51 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ (ppm): 141.3, 138.5, 137.1, 129.6, 128.8, 127.1, 127.0, 21.2.

5a. ¹H NMR (400 MHz, CDCl₃) δ (ppm): 8.30 (d, J = 8.8, 2H), 7.74 (d, J = 8.8, 2H), 7.63 (d, J = 7.7, 2H), 7.48 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ (ppm): 147.8, 147.2, 138.9, 129.3, 129.1, 128.0, 127.5, 124.3.

6a. ¹H NMR (400 MHz, CDCl₃) δ (ppm): 8.26 (d, J = 8.8, 2H), 7.68 (d, J = 8.8, 2H), 7.58 (d, J = 8.7, 2H), 7.02 (d, J = 8.7, 2H), 3.87 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ (ppm): 160.5, 147.3, 146.6, 131.1, 128.7, 127.1, 124.2, 114.7, 55.51.

7a. ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.62 (d, J = 7.3, 2H), 7.38 (t, J = 7.6, 2H), 7.32–7.28 (m, 3H), 7.08 (dd, J = 5.0, 3.6, 1H); ¹³C NMR (101 MHz, CDCl₃) δ (ppm): 144.7, 134.6, 129.1, 128.2, 127.7, 126.2, 125.1, 123.3.

8a. ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.50 (t, J = 7.3, 2H), 7.43 (t, J = 7.1, 3H), 7.3–7.33 (m, 4H), 2.37 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ (ppm): 142.1, 135.5, 130.4, 129.9, 129.3, 128.9, 128.2, 127.4, 126.9, 125.9, 20.6.

9a. ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.57 (d, J = 8.7, 2H), 7.51 (d, J = 8.0, 2H), 7.28 (d, J = 8.0, 2H), 7.02 (d, J = 8.7, 2H), 3.89 (s, 3H), 2.44 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ (ppm): 159.0, 138.1, 136.4, 133.8, 129.6, 128.1, 126.7, 114.3, 55.4, 21.2.

10a. ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.73–7.67 (m, 4H), 7.60 (d, J = 7.2, 2H), 7.49 (t, J = 7.1, 2H), 7.46–7.39 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ (ppm): 145.7, 139.2, 132.7, 129.2, 128.8, 127.8, 127.3, 119.0, 111.0.

11a. ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.91 (dd, *J* = 8.1, 1.5, 2H), 7.87 (d, *J* = 8.2, 1H), 7.56–7.41 (m, 9H); ¹³C NMR (101 MHz, CDCl₃) δ (ppm): 140.9, 140.4, 133.9, 131.7, 130.2, 128.4, 127.8, 127.4, 127.1, 126.2, 125.9, 125.5.

12a. ¹H NMR (400 MHz, CDCl₃) δ (ppm): 9.22 (s, 1H), 8.98 (s, 2H), 7.62–7.56 (m, 2H), 7.56–7.51 (m, 2H), 7.50–7.46 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ (ppm): 157.3, 155.0, 134.2, 129.6, 129.3, 127.2.

13a. ¹H NMR (400 MHz, CDCl₃) δ (ppm): 9.23 (s, 1H), 9.02 (s, 2H), 7.48 (d, *J* = 8.0, 2H), 7.33 (d, *J* = 7.8, 2H), 2.43 (s, 3H).

14a. ¹H NMR (400 MHz, CDCl₃) δ (ppm): 10.06 (s, 1H), 7.96 (d, J = 8.3, 2H), 7.76 (d, J = 8.2, 2H), 7.66–7.61 (m, 2H), 7.49 (t, J = 7.4, 2H), 7.42 (dd, J = 8.4, 6.2, 1H); ¹³C NMR (101 MHz, CDCl₃) δ (ppm): 192.1, 147.3, 139.8, 135.3, 130.4, 129.1, 128.6, 127.8, 127.5.

15a. ¹H NMR (400 MHz, CDCl₃) δ (ppm): 8.37 (d, *J* = 8.5, 2H), 7.95 (dd, *J* = 7.9, 2.9, 2H), 7.79 (d, *J* = 8.4, 1H), 7.68 (d, *J* = 8.6, 2H), 7.57–7.43 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ (ppm): 147.8, 147.3, 137.9, 133.9, 131.7, 131.1, 129.1, 128.7, 128.5, 128.4, 127.3, 126.9, 126.4, 125.5, 125.3, 123.7.

Acknowledgments

The authors are grateful to Institute for Advanced Studies in Basic Sciences (IASBS) Research Council.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.jorganchem.2015.05.047.

References

- Á. Molnár, Palladium-catalyzed coupling reactions: practical aspects and future developments, in: Palladium-catalyzed Coupling Reactions: Practical Aspects and Future Developments, Wiley-VCH Verlag GmbH & Co. KGaA, 2013.
- [2] Á. Molnár, Efficient, selective, and recyclable palladium catalysts in carbon--carbon coupling reactions, Chem. Rev. 111 (2011) 2251–2320.
- [3] R. Jana, T.P. Pathak, M.S. Sigman, Advances in transition metal (Pd,Ni,Fe)catalyzed cross-coupling reactions using alkyl-organometallics as reaction partners, Chem. Rev. 111 (2011) 1417–1492.
- [4] M. Lamblin, L. Nassar-Hardy, J.C. Hierso, E. Fouquet, F.X. Felpin, Recyclable heterogeneous palladium catalysts in pure water: sustainable developments in Suzuki, Heck, Sonogashira and Tsuji-Trost reactions, Adv. Synth. Catal. 352 (2010) 33–79.
- [5] B.C.G. Söderberg, Transition metals in organic synthesis: highlights for the year 2000, Coord. Chem. Rev. 241 (2003) 147–247.
- [6] D.A. Alonso, C. Najera, Oxime-derived palladacycles as source of palladium nanoparticles, Chem. Soc. Rev. 39 (2010) 2891–2902.
- [7] F. Alonso, I.P. Beletskaya, M. Yus, Non-conventional methodologies for transition-metal catalysed carbon-carbon coupling: a critical overview. Part 2: the Suzuki reaction, Tetrahedron 64 (2008) 3047–3101.
- [8] M. Blangetti, H. Rosso, C. Prandi, A. Deagostino, P. Venturello, Suzuki-Miyaura cross-coupling in acylation reactions, scope and recent developments, Molecules 18 (2013) 1188–1213.
- [9] M. Gholinejad, H.R. Shahsavari, N.N'-bis(2-pyridinecarboxamide)-1,2-benzene palladium complex as a new efficient catalyst for Suzuki–Miyaura coupling reaction under phosphane free conditions, Inorg. Chim. Acta 421 (2014) 433–438.
- [10] J. Hassan, M. Sévignon, C. Gozzi, E. Schulz, M. Lemaire, Aryl–aryl bond formation one century after the discovery of the Ullmann reaction, Chem. Rev. 102 (2002) 1359–1470.
- [11] S. Kotha, K. Lahiri, D. Kashinath, Recent applications of the Suzuki–Miyaura cross-coupling reaction in organic synthesis, Tetrahedron 58 (2002) 9633–9695.
- [12] V. Polshettiwar, A. Decottignies, C. Len, A. Fihri, Suzuki–Miyaura crosscoupling reactions in aqueous media: green and sustainable syntheses of biaryls, ChemSusChem 3 (2010) 502–522.
- [13] R. Rossi, F. Bellina, M. Lessi, Selective palladium-catalyzed Suzuki-Miyaura reactions of polyhalogenated heteroarenes, Adv. Synth. Catal. 354 (2012) 1181–1255.
- [14] A. Suzuki, Recent advances in the cross-coupling reactions of organoboron derivatives with organic electrophiles, 1995–1998, J. Organomet. Chem. 576 (1999) 147–168.
- [15] A. Fihri, M. Bouhrara, B. Nekoueishahraki, J.-M. Basset, V. Polshettiwar, Nanocatalysts for Suzuki cross-coupling reactions, Chem. Soc. Rev. 40 (2011) 5181–5203.
- [16] M. Mora, C. Jiménez-Sanchidrián, J. Rafael Ruiz, Recent advances in the heterogeneous palladium-catalysed Suzuki cross-coupling reaction, Curr. Org. Chem. 16 (2012) 1128–1150.
- [17] K.H. Shaughnessy, Hydrophilic ligands and their application in aqueous-phase metal-catalyzed reactions, Chem. Rev. 109 (2009) 643–710.
- [18] K.H. Shaughnessy, R.B. DeVasher, Palladium-catalyzed cross-coupling in aqueous media: recent progress and current applications, Curr. Org. Chem. 9 (2005) 585-604.
- [19] M. Gholinejad, V. Karimkhani, I. Kim, Active palladium catalyst supported by bulky diimine ligand catalyzed Suzuki–Miyaura coupling reaction in water under phosphane-free and low catalyst loading conditions, Appl. Organomet. Chem. 28 (2014) 221–224.
- [20] P. Conelly-Espinosa, R.A. Toscano, D. Morales-Morales, Synthesis and characterization of hydrophilic theophylline base compounds and their use as ligands in the microwave assisted Suzuki–Miyaura couplings of halopyridines in water, Tetrahedron Lett. 55 (2014) 5841–5845.
- [21] P. Conelly-Espinosa, D. Morales-Morales, [Pd(HQS)₂] (HQS = 8hydroxyquinoline-5-sulfonic acid) a highly efficient catalyst for Suzuki–Miyaura cross couplings in water, Inorg. Chim. Acta 363 (2010) 1311–1315.
- [22] M. Gholinejad, Palladium nanoparticles supported on agarose catalyzed Heck–Matsuda and Suzuki–Miyaura coupling reactions using aryl diazonium salts, Appl. Organometal. Chem. 27 (2013) 19–22.
- [23] H. Firouzabadi, N. Iranpoor, M. Gholinejad, 2-Aminophenyl diphenylphosphinite as an easily accessible ligand for heterogeneous palladium-catalyzed SuzukieMiyaura reaction in water in the absence of any organic co-solvent, J. Organomet. Chem. 695 (2010) 2093–2097.
- [24] M. Sankar, N. Dimitratos, P.J. Miedziak, P.P. Wells, C.J. Kiely, G.J. Hutchings, Designing bimetallic catalysts for a green and sustainable future, Chem. Soc. Rev. 41 (2012) 8099–8139.
- [25] J. Shi, On the synergetic catalytic effect in heterogeneous nanocomposite

8

ARTICLE IN PRESS

M. Gholinejad et al. / Journal of Organometallic Chemistry xxx (2015) 1-8

catalysts, Chem. Rev. 113 (2012) 2139-2181.

- [26] B. Baruwati, D. Guin, S.V. Manorama, Pd on surface-modified nife₂₀₄ nanoparticles: a magnetically recoverable catalyst for Suzuki and Heck reactions, Org. Lett. 9 (2007) 5377–5380.
- [27] D. Sengupta, J. Saha, G. De, B. Basu, Pd/Cu bimetallic nanoparticles embedded in macroporous ion-exchange resins: an excellent heterogeneous catalyst for the Sonogashira reaction, J. Mater. Chem. A 2 (2014) 3986–3992.
- [28] R.N. Dhital, C. Kamonsatikul, E. Somsook, K. Bobuatong, M. Ehara, S. Karanjit, H. Sakurai, Low-temperature carbon–chlorine bond activation by bimetallic gold/palladium alloy nanoclusters: an application to Ullmann coupling, J. Am. Chem. Soc. 134 (2012) 20250–20253.
- [29] R.N. Dhital, C. Kamonsatikul, E. Somsook, H. Sakurai, Bimetallic goldpalladium alloy nanoclusters: an effective catalyst for Ullmann coupling of chloropyridines under ambient conditions, Catal. Sci. Technol. 3 (2013) 3030–3035.
- [30] M. Gholinejad, A. Aminianfar, Palladium nanoparticles supported on magnetic copper ferrite nanoparticles: the synergistic effect of palladium and copper for cyanation of aryl halides with K₄[Fe(CN)₆], J. Mol. Catal. A Chem. 397 (2015) 106–113.
- [31] M. Gholinejad, J. Ahmadi, ChemPlusChem (2015), http://dx.doi.org/10.1002/ cplu.201500015.
- [32] W. Yu, M.D. Porosoff, J.G. Chen, Review of Pt-based bimetallic catalysis: from model surfaces to supported catalysts, Chem. Rev. 112 (2012) 5780–5817.
- [33] R.B. Bedford, S.L. Hazelwood, D.A. Albisson, Platinum catalysts for Suzuki biaryl coupling reactions, Organometallics 21 (2002) 2599–2600.

- [34] X. Li, X. Zhao, S. Gao, S. Marques-Gonzalez, D.S. Yufit, J.A.K. Howard, P.J. Low, Y. Zhao, N. Gan, Z. Guo, The structure and coordinative self-assembly of films based on a palladium compound of pyridyl-acetylene platinum and its application in Suzuki and Heck coupling reactions, J. Mater. Chem. A 1 (2013) 9164–9172.
- [35] X. Li, X. Zhao, J. Zhang, Y. Zhao, Assembly of a multilayer film and catalytic application in Suzuki cross-coupling reaction based on synergistic effects of a conjugated organometallic pyridyl Pt ($C \equiv C$)₂ moiety with palladium, Chem. Commun. 49 (2013) 10004–10006.
- [36] J.P. Farr, F.E. Wood, A.L. Balch, Head-to-head and head-to-tail isomers of binuclear complexes of platinum (I) and palladium (I) involving 2-(diphenylphosphino)pyridine as a bridging ligand, Inorg. Chem. 22 (1983) 3387–3393.
- [37] J.P. Farr, M.M. Olmstead, F. Wood, A.L. Balch, Formation and reactivity of some heterobinuclear rhodium/platinum complexes with 2-(diphenylphosphino) pyridine as a bridging ligand, J. Am. Chem. Soc. 105 (1983) 792–798.
- [38] A. Maisonnat, J.P. Farr, A.L. Balch, Dinuclear palladium complexes of 2diphenylphosphinopyridine, Inorg. Chim. Acta 53 (1981) L217–L218.
- [39] T. Ukai, H. Kawazura, Y. Ishii, J.J. Bonnet, J.A. Ibers, Chemistry of dibenzylideneacetone-palladium(0) complexes: I. Novel tris(dibenzylideneacetone)dipalladium(solvent) complexes and their reactions with quinones, J. Organomet. Chem. 65 (1974) 253-266.
- [40] V. Polshettiwar, A. Molnar, Silica-supported Pd catalysts for Heck coupling reactions, Tetrahedron 63 (2007) 6949–6976.