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Abstract: B-alkylcatecholboranes react efficiently with 2,2,6,6-tet-
ramethylpiperidine-N-oxyl (TEMPO) to give alkyl radicals. In the
presence of an excess of TEMPO, the generated radicals are effi-
ciently converted to alkoxyamine derivatives.
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Boron chemistry represents a unique and highly versatile
tool for transformations of organic molecules.1 The use of
organoboranes as radical precursors has been reported in
the early seventies by Brown.2-3 However, this work has
not found many synthetic applications except for the sys-
tem Et3B/O2 that is routinely used for the initiation of rad-
ical reactions.4-6 Recently, we have reported that B-
alkylcatecholboranes are efficient radical precursors
which can be applied for radical mediated conjugate addi-
tion with various a,b-unsaturated ketones and aldehydes
(equation 1).7 The key step in the propagation of the chain
reaction was the reaction between the enolate radical and
the B-alkylcatecholborane (equation 2). Other types of

oxy radicals should offer similar opportunities to perform
radical substitution at boron with formation of alkyl radi-
cals.8 In this communication, we report that 2,2,6,6-tet-
ramethylpiperidine-N-oxyl (TEMPO) reacts cleanly with
B-alkylcatecholboranes to afford alkyl radicals (equation
3) which can be trapped by a second equivalent of TEM-
PO to give alkoxyamines (equation 4).9 

B-alkylcatecholboranes were prepared by hydroboration
of the corresponding alkenes 1a-e with catecholborane (2
equivalents) in the presence of a catalytic amount of N,N-
dimethylacetamide in dichloromethane.10 The excess of
catecholborane was solvolyzed with 1.2 equivalent of eth-
anol. DMPU (1 equivalent) was then added followed by
2.2 equivalents of TEMPO. This one-pot procedure fur-
nished the alkoxyamines 2a-e in good yields (equation 5).
The role of DMPU is not yet understood, but in the ab-
sence of DMPU, a decrease of the yields was observed;
for instance, 1a was converted to 2a in only 63% yield. A
similar but more pronounced effect was already observed
in  the  oxygen initiated reaction depicted in equation 1.7

It is also important to note that this reaction works effi-
ciently with B-alkylcatecholboranes but not with trialkyl-
boranes. For instance, under similar reaction conditions
(with and without DMPU), triethylborane gave no trace of
1-ethoxy-2,2,6,6-tetramethylpiperidine. The exact reason
for this considerable difference of reactivity is not under-
stood at the moment.
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Table 1.  Hydroboration of alkenes 1a-e followed by reaction with
TEMPO according to equation 5 (NC9H18 = 2,2,6,6-tetramethylpipe-
ridin-1-yl).

Moderate to good yields were obtained depending on the
nature of the radical. The best yields have been obtained
with secondary alkyl radicals generated from cyclohex-
ene, 1-phenylcyclopentene and a-pinene (entries 1-3).
Primary and tertiary alkylcatecholboranes generated from
b-pinene and 2,3-dimethyl-2-butene afforded the corre-
sponding alkoxyamines with slightly lower yields (entries
4 and 5). The stereochemical outcome fits the expectation
for radical reactions: radicals react from the less hindered
face leading to trans compounds (table 1, entries 2 and
3).11

The radical nature of the reaction was demonstrated by the
reaction of (+)-2-carene (equation 6). The intermediate
cyclopropylmethyl radical undergoes a ring opening to a
homoallyl radical. The resulting alkoxyamine was re-
duced with Zn/AcOH to afford the corresponding alcohol
in excellent yield.12,13

In summary, we reported an alternative method to gener-
ate alkyl radicals from B-alkylcatecholboranes. Further
investigations to demonstrate the utility of this approach
to run inter- and intramolecular carbon-carbon bond form-
ing reactions is underway in our laboratory. Moreover,
this procedure constitutes an alternative way to oxidize or-
ganoboranes to alcohols under weakly acidic and reduc-
tive conditions. Finally, the use of optically active
nitroxides14 should broaden the scope of the radical asym-
metric hydroxylation procedure developed by Braslau.9
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