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Abstract: A BF3-mediated release of the hydroxy and the nitrogen-
protecting group of N-(cumyl or 1,1-diphenylethyl)-2,3-dihydro-3-
hydroxy-1H-benzisoindol-1-ones is accompanied by recombination
of the nitrogen-protecting unit to the 3-position of the ring system.
The addition of sulfur or carbon nucleophiles affords products of
preferential capture of the rearrangement intermediate offering a
convenient and rapid synthetic route to N-unprotected 2,3-dihydro-
3-substituted-1H-benzisoindol-1-ones.
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The naphthyl amide organic fragment is prevalent in a
number of bioactive compounds1–6 including those target-
ing the NK1 receptor,1 the inhibition of aldosterone syn-
thase,3 the leukocyte proteases cathepsin G4 and
chymase,5 and a malarial receptor.2 Aromatic amides in-
cluding some naphthyl amides are also central to the inhi-
bition of a group of poly(ADP-ribose) polymerase
enzymes (PARPs)7–9 that bind NAD+ and have been im-
plicated in the cellular response to DNA injury.10 The cat-
alytic domain of the PARP enzymes has been shown to be
structurally similar to that of bacterial ribosyltransferases,
including Pseudomonas aeruginosa exotoxin A, which
we are currently studying. PARP inhibitors often contain
aromatic amide or lactam functionalities and operate by
preferentially binding to the nicotinamide portion of the
binding pocket normally occupied by NAD+.9,11,12 As
such, we have targeted novel amides and imides possess-
ing the naphthalene11 backbone as part of a study to find
inhibitors of exotoxin A.

Specifically, we have been probing the functionalization
of the 2-position of N-protected 1-naphthamides. We ap-
plied the Dai protocol for the ortho-metalation of N,N-
disubstituted amides (3.2 equiv s-BuLi, THF, –78 °C, 3
h)13 to monosubstituted amides 1 (a: R = 1,1-diphenyleth-
yl, b: R = cumyl) as a means to introduce additional func-
tionality. Consistent with the literature,14 the metalation
proceeds at the 2-position rather than the 8-position giving
dianions 2. Quenching with DMF affords two naphthal-

imidines (2,3-dihydro-3-hydroxy-1H-benz[e]isoindol-1-
ones, 3), which differ only by their protection on the nitro-
gen (Scheme 1). At this point, nitrogen deprotection was
attempted with BF3·OEt2

15 and a surprising yet parallel
manifold of products was obtained for both compounds 3a
and 3b. Scheme 2 and the first two entries of Table 1 in-
dicate the assigned structures of the unexpected products.
In each product, the nitrogen-protecting group is appar-
ently lost and its carbon skeleton is reattached at the
adjacent carbon atom.16

Scheme 1

Three more substrates were prepared in order to establish
the generality of the rearrangement. Application of the
Dai metalation conditions to the appropriate N-1,1-di-
phenylethyl and N-cumyl amides gave phthalimidines
(2,3-dihydro-3-hydroxy-1H-isoindol-1-ones) 4a (79%)
and 4b15 (67%), respectively, and 3-hydroxy-2,3-dihydro-
1H-benz[f]isoindol-1-one (5b, 50%, Table 1). As an
aside, we are aware of only three reports of metalation of
1,3-unsubstituted-2-naphthylamides. Using only N,N-di-
alkylated amides, yields are low and unselective17,18 or the
reaction favors lithiation at the 1-position possibly due to
6-methoxy substitution.19 In our lithiation using an N-
monosubstituted amide, the 1-substituted product is iso-
lated in 22% yield. Even though this chemistry has not
been optimized, a 50% yield of 3-substituted product is
noteworthy20 and furthermore, the total yield of products
is quite high compared to the other examples in this
relatively unexplored series of substrates.

HNR O NR OLi

Li

DMF
N

O R

OH

H

3a  27%
3b  84%

–78 °C to 0 °C
     1 h

3.2 equiv s-BuLi

–78 °C, 3 h

1a  R = CMePh2 2

1b  R = CMe2Ph
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Scheme 2

Treatment of phthalimidines 4 and 5b with BF3·OEt2 pro-
vided the same rearrangement products demonstrating
that the benzo fusion on the aromatic is not a requirement
and that the placement of the benzo group has minimal ef-
fect (Scheme 2, Table 1).

A mechanism for the rearrangement is suggested in
Scheme 3. The products are consistent with Lewis acid
mediated iminium ion (9) formation, which can bring
about the loss of the nitrogen-protecting group from some
of the substrates, with the lost residue taking the form of
alkene (a-methylstyrene or 1,1-diphenylethene). This ma-
terial then recombines to the proximal carbon of another
iminium ion 9 offering carbocation 10. Loss of proton and
BF3-induced loss of the nitrogen-protecting group via
complexation with the carbonyl can explain products 7
and 8. Alcohols 6 form by reintroduction of nucleophilic
oxygen to cation 10 either before or after loss of the nitro-
gen substituent. A control experiment confirmed that alk-
enes 7 and 8 may also arise from the action of BF3 on
alcohols 6.21 Accordingly, longer reaction times give
more of the dehydrated products 7 and 8. A crossover ex-
periment was supportive of the intermolecularity of the re-
arrangement. The clean release and reattachment

sequence of events distinguishes this rearrangement from
related N-to-C transformations entailing pericyclic azo-
nia-22 or aza-Cope23 rearrangements of N-acyliminium
ions.

The above mechanism featuring common N-acyliminium
ion chemistry24,25 can fully and adequately account for the
rearrangement products. However, as a means of continu-
ing the pursuit of aromatic amides, it was felt that this re-
action could be readily adapted to introduce alternative
groups at the 3-position and achieve loss of the nitrogen-
protecting unit in a single reaction mixture.26 Hence inter-
ception of the electrophilic intermediate 9 by an added nu-
cleophile should permit the introduction of diverse groups
at the 3-position while precluding re-attack of a-methyl-
styrene or 1,1-diphenylethylene. Given the large number
of known 3-substituted isoindolones27 and our interest in
naphthyl-derived targets, we focused primarily on substi-
tution of compounds 3b and 5b.

3, 4 or 5
BF3·OEt2

r.t.

NH

O

H

H

PhPh

+

NH

O

H

or

Ph

NH

O

H

c, 2,3-benzo ([e]) fusion; d, no benzo fusion; 
e, 3,4-benzo ([f]) fusion

6

7 8

OH

Ph
R

Table 1 Products from the BF3-Induced Rearrangement of N-Substituted Phthalimidines (Scheme 2)

Starting material R Products (%)

6 7 8

3a
3b

Ph
Me

ac, 26
bc, 50

c, 47
–

–
c, 38

4a
4b

Ph
Me

ad, 8
bd, 42

d, 75
–

–
d, 28

5b Me e, 52 – e, 38
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Scheme 3

3, 4 or 5
BF3·OEt2
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O
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A wide variety of common neutral carbon nucleophiles
proved amenable for this chemistry. Thiols are also via-
ble, whether bearing hydrophobic or hydrophilic substitu-
ents. The products namely 2,3-dihydro-3-substituted 1H-
benzisoindol-1-ones,28 could be obtained in 58–80%
yields after chromatographic purification (Table 2).29

In this transformation, the already-incorporated formyl
unit, originally from DMF, and the nucleophile combine
to represent the doubly electrophilic synthetic equivalents
HC+2SR or HC+2CR3. Moreover, the method is superior to
other iminium substitutions in that the hydroxyl group
does not require conversion to a methoxy group prior to its
displacement.30 Also, the substitution at the 3-position
and the deprotection conveniently occur as a one-pot pro-
tocol.

In summary, we report what is believed to be a new rear-
rangement of N-cumyl (and N-diphenylethyl)-3-hydroxy-
isoindolones to 3-substituted isoindolones by way of
Lewis acid mediated release and recombination of the N-
protecting group. The addition of carbon- or sulfur-based
nucleophiles permits capture of the transient iminium and
formation of a series of N-unprotected-2,3-dihydro-3-
substituted 1H-benzisoindol-1-ones. The preparation of
these potential PARP inhibitors is a facile and appealing
2-step procedure from simple N-protected aromatic
amides. We also suggest the results of past ortholithiation/
quenching chemistry of N,N-dialkyl-2-naphthyl amides
may not be fully indicative of the synthetic potential avail-
able and such a reaction with N-monosubstituted ana-
logues may prove more useful.
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