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Abstract: The synthesis and 1,3-dipolar cycloaddition reactions of
two new camphor-derived nitrones are described. These two ni-
trones reacted with alkenes in high yield and with high stereoselec-
tivity. The chemical transformations of the cycloadducts were also
examined.
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Asymmetric 1,3-dipolar cycloaddition reactions between
nitrones and alkenes are among the most efficient
methods for the construction of optically active isoxazol-
idines, which are readily converted to synthetically useful
chiral g-amino alcohols (Scheme 1).1 In particular, inter-
molecular 1,3-dipolar cycloaddition of a-alkoxycarbon-
ylnitrones 1 is very attractive for construction of various
nitrogen-containing carbon frameworks because of the
high reactivity of 1. However, nitrones 1 are known to
exist as equilibrating mixtures of E- and Z-configuration
in solution even at room temperature.2 As a result,
cycloadditions of nitrones 1 with alkenes often gave mix-
tures of diastereomers.

Scheme 1

To control the geometry of nitrone 1, several chiral E-
geometry-fixed a-alkoxycarbonylnitrones have been pre-
pared.3 In our laboratory, for preparation of optically ac-
tive a-amino acid, we have investigated two chiral glycine
templates, tricycloiminolactone 4a and 4b derived from
camphorquinone.4 Alkylation of 4a and 4b afforded the a-
monosubstituted product in good yield and excellent dia-
stereoselectivities. Hydrolysis of the product provided D-
and L-a-amino acid (Scheme 2). Herein we describe the
preparation and evaluation of two new chiral six-mem-
bered ring nitrones 6 and 10.1

Nitrone 6 was prepared from the tricycloiminolactone 4a
in a two-step procedure (Scheme 3). Hydrogenation of 4a
in the presence of 10% Pd/C in i-PrOH gave amine 5 in a
quantitative yield.5

To obtain nitrone 6, several oxidation methods were
attempted. Oxidation of 5 with Na2WO4–H2O2,

6a SeO2–
H2O2,

6b methyltrioxorheniumurea–hydrogen peroxide
complex,3a,e or dimethyl dioxirane gave a low yield of 6
(<23%), probably because nitrone 6 was more reactive,
and overoxidation was a significant problem. Eventually,
oxidation of 5 in the presence of MCPBA/Na2CO3 afford-
ed 6 in a better yield (44%).7

Scheme 3 Reagents and conditions: a) 10% Pd/C, i-PrOH, r.t.,
100%; b) MCPBA, Na2CO3, 0 °C to r.t., 44%.

With the cyclic nitrone 6 in hand, we next examined its re-
activity and stereoselectivity in cycloadditions. Nitrone 6
underwent cycloaddtion reactions with a wide range of
alkenes. The reactions occurred with the normal regio-
chemical outcome as expected for cycloadditions of this
type to produce the cycloadducts in high yield (95–100%,
Table 1).8 Hence, cycloadditions of 6 with alkenes (7a–
d,g,h) gave the a-face cycloadducts (8a–d,g,h) in high
exo/endo ratio (>20:1 to >99:1, Table 1). Although the
exo/endo selectivities between nitrone 6 with allylic alco-
hol 7e and with a-methylstyrene 7f were less satisfactory
(5:1 and 5:2, respectively), the cycloadducts were also
produced as the all a-face diastereomers.
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In all cases studied, the stereochemical outcome of the
cycloaddition reactions was the result of reaction from the
less hindered a-face of nitrone 6 and this placed the
isoxazolidine 5-substituent (R3) of the major stereoisomer
in the exo position. The a-face selectivity of the cycload-
ditions was similar to what was previsouly reported by
us,4a in which the tricycloimnolactone 4a afforded the a-
monosubstituted products in excellent diastereoselectivi-
ties (de >98%). This was due to the steric hidrance of C12-
methyl group which effectively blocked the approach to
the b-face and thus favored the attack of electrophile from
the a-face of the enolate. A similar stereochemical course
was also described by Tamura.3b

Because of steric hindrance between the substituents on
the alkenes and the nitrone 6, exo transition states were
favored, and 5-exo-substituted isoxazolidines were the
major isomers. For methyl methacrylate 7g, interaction
between the N+–O– bond of nitrone 6 and the C=O bond
of 7g favored the formation of the major cycloadduct 8g.3f

The successful application of 6 in cycloaddition reactions
prompted us to examine the usefulness of the regioiso-
meric nitrone 10 for this kind of reaction. Similar to the
preparation procedure of 6 (Scheme 4), hydrogenation of
4b proceeded in high yield to give compound 9, but its
oxidation to nitrone 10 was not satisfactory (9%).

Optimizations were therefore conducted to find a satisfac-
tory method for nitrone 10 (Scheme 5). Condensation of
3-(hydroxyamino)isoborneol hydrochloride 139 with

Table 1 Cycloadduts 8a–h Obtained from the 1,3-Dipolar Cycloadditions of 6 to Alkenes 7a–h

Alkene R1 R2 R3 Conditions Yield (%)a,b exo/endoc

7a H H Ph 60 °C, 8 h 98 >99:1

7b H H Bu 60 °C, 32 h 95 >20:1

7c H –(CH2)4– 60–80 °C, 89 h 100 >99:1

7d H –(CH2)3– 30 °C, 25 h 99 >99:1

7e H H CH2OH 60 °C, 5 h 100 5:1

7f Ph H Me 60 °C, 67 h 100 5:2

7g CO2Me H Me 60 °C,15 h 100 >20:1

7h H –(o-CH2C6H4)– 60 °C, 25 h 100 >20:1d

a Reactions were performed using 10 equiv of alkene in toluene. The structure of the major isomer is shown.
b Total yield of exo and endo isomers (purified major isomer).
c The exo assignment refers to the 5-alkyl or aryl substituent (for 8f and 8g, exo refers to 5-methyl). The stereochemistry of 8a–h was determined 
by 1D NOE. The exo/endo ratio was determined by integration of 1H NMR (400 MHz) spectra of the crude reaction mixture.
d Major isomer was not isolated in pure form.
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Scheme 4 Reagents and conditions: a) 10% Pd/C, i-PrOH, r.t., 100%;
b) MCPBA, Na2CO3, 0 °C to r.t., 9%.
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glyoxylic acid and in situ cyclization of the nitrone inter-
mediate 14 with TsOH gave the target nitrone 10 in 37%
yield.3b This yield could be improved to 50% by using
TsOH–DCC for the cyclization.10

As expected, the 1,3-dipolar cycloadditions of the regio-
isomeric nitrone 10 with various alkenes 7a–d gave
15a–d in high yield and in high exo/endo ratio (>20:1 to
99:1, Table 2).11

To remove the camphor-derived chiral auxiliary group in
the cycloadduts 8a–h and 15a–d, it is necessary to cleave
the N–O and C–N bonds regioselectively. The cyclo-
adducts were subjected to the oxidative procedure devel-
oped by Langlois.12 However, treatment of 8a with
MCPBA failed to initiate any reactions, and only starting
material was recovered. It was believed that the bridge-
head methyl group adjacent to the nitrogen atom that
blocked the approach of MCPBA. On the other hand,
oxidation of the regioisomeric adduct 15a with MCPBA
afforded an intermediate N-oxide 16a which underwent a
spontaneous elimination to produce nitrone 17a. Sub-
sequent transesterification, hydrolysis and further oxida-
tion of 17a gave the a-oximino-g-lactone 19a. Similarly,
the cycloadduct 15b obtained from terminal alkene 7b
gave 17d (Scheme 6).13 For the cycloadducts 15c and
15d, similar oxidation gave nitrones 17c and 17d.14 In this
case, further hydrolysis and oxidation of 17c and 17d
were not observed.

In summary, two new camphor-derived nitrones 6 and 10
were prepared. The 1,3-dipolar cycloadditions of 6 and 10
with a wide range of alkenes gave cycloadducts in high
yield and excellent diastereoselectivities. Furthermore,
oxidation of the cycloadducts 15a–d led to derivatives
19a, 19b and 17c, 17d that may be useful in other organic
syntheses.
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Scheme 6 Reagents and conditions: MCPBA (3.5 equiv), CH2Cl2,
0 °C to r.t., then 10% Na2S2O3, 5% Na2CO3.
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Table 2 Cycloadduts 15a–d Obtained from the 1,3-Dipolar Cycloadditions 10 to Alkenes 7a–d

Alkene R1 R2 R3 Conditions Yield (%)a,b exo/endoc

7a H H Ph 60 °C, 19 h 100 >20:1

7b H H Bu 60 °C, 19 h 99 >20:1

7c H –(CH2)4– 30 °C, 77 h 93 >99:1

7d H –(CH2)3– 30 °C, 46 h 99 >99:1

a Reactions were performed with 10 equiv of alkene in toluene. The structure of the major isomer is shown.
b Total yield of exo and endo isomers (purified major isomer).
c The exo assignment refers to the 5-alkyl or aryl substituent. The stereochemistry of 15a–d was determined by 1D NOE. The exo/endo ratio 
was determined by integration of 1H NMR (400 MHz) spectra of the crude reaction mixture.
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(100), 77 (81), 57 (63). HRMS (ESI): m/z calcd for 
C10H13N2O3

+ [M + NH4]: 209.0921; found: 209.0925.
Compound 19b: mp 75–77 °C; [a]D

15 –58 (c 0.89, CHCl3). 
1H NMR (300 MHz, CDCl3): d = 9.57 (br s, 1 H), 4.70 (m, 1 
H), 3.21 (dd, J = 19.2, 8.1 Hz, 1 H), 2.68 (dd, J = 19.2, 5.1 
Hz 1 H), 1.80 (m, 1 H), 1.70 (m, 1 H), 1.40 (m, 4 H), 0.92 
(m, 3 H). 13C NMR (100 MHz, CDCl3): d = 165.41, 148.17, 
77.87, 36.22, 30.12, 26.62, 22.28, 13.83. MS (EI): 

m/z (%) = 154 (9) [M – 17], 126 (10), 114 (100). HRMS 
(ESI): m/z calcd for C8H17N2O3

+ [M + NH4]: 189.1234; 
found: 189.1231.

(14) Compound 17c: mp 243 °C (dec.); [a]D –9 (c 0.37, CHCl3). 
1H NMR (300 MHz, CDCl3): d = 4.57 (s, 1 H), 4.46 (d, 
J = 11.7 Hz, 1 H), 4.22 (br s, 1 H), 3.97 (s, 1 H), 3.22 (d, 
J = 4.5 Hz 1 H), 2.10–1.30 (m, 12 H), 1.20 (m, 1 H), 1.10 (s, 
3 H), 0.98 (s, 3 H), 0.88 (s, 3 H). 13C NMR (100 MHz, 
CDCl3): d = 165.06, 150.60, 81.47, 75.43, 65.07, 50.60, 
50.05, 48.10, 41.42, 34.03, 32.09, 24.97, 24.22, 21.85, 
19.81, 19.50, 19.26, 10.32. MS (EI): m/z = 321 (1) [M+], 
304(3), 276 (7), 260 (3), 248 (4), 223 (77), 55 (99), 41 (100). 
HRMS (ESI): m/z calcd for C18H28NO4

+ [M + 1]: 322.2013; 
found: 322.2009.
Compound 17d: mp 70–72 °C; [a]D

15 –31 (c 0.17, CHCl3). 
1H NMR (300 MHz, CDCl3): d = 4.69 (d, J = 12.3 Hz, 1 H), 
4.62 (s, 1 H), 4.60 (br s, 1 H), 4.33 (br s, 1 H), 3.23 (d, J = 4.5 
Hz 1 H), 2.20–1.52 (m, 10 H), 1.39 (m, 1 H), 1.12 (s, 3 H), 
1.00 (s, 3 H), 0.90 (s, 3 H). 13C NMR (100 MHz, CDCl3): 
d = 165.79, 150.33, 81.34, 73.17, 72.97, 50.88, 50.09, 48.13, 
46.26, 34.08, 32.99, 26.92, 23.03, 21.78, 19.81, 19.25, 
10.31. MS (EI): m/z = 307 (0.3) [M+], 278 (1), 262 (4), 234 
(3), 223 (29), 55 (81), 41 (100). HRMS (ESI): m/z calcd for 
C17H26NO4

+ [M + 1]: 308.1856; found: 308.1849.
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