Zr-CATALYZED OXIDATION OF ALCOHOLS TO ALDEHYDES IN THE PRESENCE OF ^tBuooh. High reactivity for primary and Allylic hydroxyl functions

Kiyotomi KANEDA,^{*} Yasuyuki KAWANISHI, and Shiichiro TERANISHI^{*} Department of Chemical Engineering, Faculty of Engineering Science, Osaka University, Toyonaka, Osaka 560

 ZrO(OAc)_2 catalyzes selective oxidation of primary alcohols to aldehydes without formation of carboxylic acids and also chemoselective oxidation of allylic alcohols to α,β -unsaturated aldehydes in the presence of ^tBuOOH.

Selective oxidation of hydroxyl functions (primary, secondary, allylic, etc.) plays an important role in organic synthesis. In many cases, a large amount of metal oxidizing agents is required and the design for the catalytic systems with respect to metal has been of considerable current interest.¹⁾ Recently we have found that the VO(acac)2-^tBuOOH system has high oxidation activity for secondary hydroxyl functions in saturated alcohols.²⁾ This remarkably high reactivity may be due to facile coordination of secondary hydroxyls to vanadium, compared to that of primary ones.³⁾ Zirconium compounds contrast to above vanadium compounds are prone to forming more stable metal-alkoxides from primary alcohols. We here report that ZrO(OAc) 2- BuOOH system shows high oxidation reactivity for primary alcohols giving aldehydes and also high chemoselectivity for hydroxyl functions in the presence of olefinic bonds. In this ZrO(OAc)₂-^tBuOOH system, the zirconium compound acts as a catalyst for above oxidations. ZrO(OAc), is specific as the catalyst and other zirconium compounds, e.g., ZrCl₄, Zr(acac)₄, and ZrOCl₂ give extremely the low catalytic activity accompanying the formation of carboxylic acids.

The oxidation of various alcohols with ZrO(OAc)₂ is shown in Table 1. Primary alcohols give the corresponding aldehydes within 1 h in almost quantitative yields. Benzyl alcohols are smoothly oxidized to give the corresponding aldehydes. On the other hand, secondary alcohols are not fast oxidized to the ketones. In competitive oxidation of 1-octanol and 2-octanol, an initial product ratio of octanal and 2-octanone reaches 22.4.

Oxidation of allylic alcohols using ZrO(OAc)₂ gives α,β -unsaturated aldehydes as main products and also in non-allylic alcohol containing an olefinic function, the yield of aldehyde reaches 71%. We expect that zirconium compounds might become a fruitful catalyst for highly selective oxidation of the hydroxyl functions in the presence of olefinic ones.⁴)

Alcohol	Aldehyde	Yield/% ^{b)}	Time/h
1-Hexanol	1-Hexanal	95	1
1-Octanol	1-Octanal	94	1
1-Dodecanol	1-Dodecanal	95	1
Benzyl alcohol	Benzaldehyde	91	1
p-Methylbenzyl alcohol	p-Methylbenzaldehyde	90	1
o-Methylbenzyl alcohol	o-Mehtylbenzaldehyde	83	1
p-Nitrobenzyl alcohol	p-Nitrobenzaldehyde	94	1
2-Octanol	2-Octanone	85	6
2-Phenylethanol	Acetophenone	70	6
Citronellol	Citronellal	74	1
2-Octen-1-o1 ^{c)}	2-Octen-1-al	71	6

Table 1. Oxidation of Various Alcohols Using ZrO(OAc)₂ and ^tBuOOH^{a)}

a) Alcohol 0.5 mmol, ZrO(OAc)₂ 0.025 mmol, ^tBuOOH 0.5 mmol, CCl₄ 5 ml, reflux, N₂.
b) Yields were determined by GLPC. c) 1.5 mmol of ^tBuOOH was used.

References

 For examples, see P. T. Lansbury, D. G. Hangauer, Jr., and J. P. Vacca, J. Am.
Chem. Soc., <u>102</u>, 3964 (1980); M. Matsumoto and S. Ito, J. Chem. Soc., Chem. Commun., <u>1981</u>, 907; S. Kaneko, K. Oshima, S. Matsubara, K. Takai, and H. Nozaki, Tetrahedron Lett., <u>24</u>, 2185 (1983). 2) K. Kaneda, Y. Kawanishi, K. Jitsukawa, and S. Teranishi, Tetrahedron Lett., <u>24</u>, 5009 (1983). 3) R. K. Mittal and R. C. Mehrotra, Z.
Anorg. Allg. Chem., <u>355</u>, 328 (1967). 4) Concerning Zr-assisted oxidation of organic compounds, there are only two reports: T. F. Blackburn and J. Schwarz, Tetrahedron Lett., <u>1975</u>, 3041; H. Yasuda, K. Nagasuna, K. Asami, and A. Nakamura, Chem. Lett., <u>1983</u>, 955.

(Received June 19, 1984)