October 1990 SYNTHESIS 875

A Convenient Synthesis of Pyranoid Ene Lactones from Phenyl Glycosyl Sulfones

Dongxu Qiu, Richard R. Schmidt

Fakultät Chemie, Universität Konstanz, Postfach 5560, D-7750 Konstanz, Federal Republic of Germany Dedicated to Prof. Bestmann on the occasion of his 65th birthday

O-Benzyl protected pyranoid ene lactones (5.6-dihydro-2*H*-pyran-2-ones) $4\mathbf{a}-\mathbf{c}$, 8 were obtained in high yield in a two-step procedure. Treatment of the phenyl glycosyl sulfones $2\mathbf{a}-\mathbf{d}$, 6, which were readily prepared from their corresponding sulfides, with lithium diisopropylamide (LDA) at -90° C afforded the elimination products $3\mathbf{a}-\mathbf{c}$, 7. These intermediates were then treated with sodium methoxide in the presence of dicyclohexano-18-crown-6 to give the compounds $4\mathbf{a}-\mathbf{c}$, 8.

Pyranoid ene lactones (2,3-dideoxyhex- and -pent-2-enono-1,5-lactones) represent a class of simple sugar compounds that are of considerable synthetic utility as many natural products possess α,β -unsaturated δ -lactone moieties. There are various methods known for the preparation of this type of compound from monosaccharides; the majority resort to direct oxidation of glycals or their allylic rearrangement and subsequent oxidation. Pecently Lichtenthaler and co-workers reported a similar method, in which boron trifluoride-catalyzed peroxidation of glycals afforded such dihydropyran-2-ones in high yield. Herein we report a new and convenient method for the synthesis of pyranoid ene lactones from phenyl glycosyl sulfones.

O-Benzyl protected phenyl glycosyl sulfones $2\mathbf{a}-\mathbf{d}$, 6 (Schemes A and B) are readily obtained from the corresponding S-phenyl 1-thio-glycopyranosides $1\mathbf{a}-\mathbf{d}$, $5^{9,10}$

Bn = CH₂Ph

1	R ¹	R ²	2	R ¹	R ²
a	SPh	H	a	SO ₂ Ph	H
b	SPh	H	b	SO ₂ Ph	H
c	SPh	H	c	SO ₂ Ph	H
d	H	SPh	d	H	SO ₂ Ph

1-4	R ³	R ⁴	R ⁵
a	Н	OBn	CH ₂ OBn
b	OBn	Н	CH ₂ OBn
c	Н	OBn	Н
d	Н	OBn	Н

Scheme A

of D-glucose, D-galactose, D-xylose, and L-rhamnose, respectively, by oxidation with 3-chloroperoxybenzoic acid (MCPBA) at room temperature. Compounds $2\mathbf{a} - \mathbf{d}$, $\mathbf{6}$ are treated with one equivalent of lithium diisopropylamide (LDA) at -90° C to give the phenylsulfonyl glycals $3\mathbf{a} - \mathbf{c}$ and 7 in 78 - 91% yields ($3\mathbf{c}$ was obtained from $2\mathbf{c}$ or $2\mathbf{d}$). The intermediates $3\mathbf{a} - \mathbf{c}$ and 7 are also of interest in direct 2-C-lithiation of glycals. Treatment of these phenylsulfonyl glycals with sodium methoxide in presence of dicyclohexano-18-crown-6 in THF at reflux for 12 - 24 h afforded directly the required pyranoid ene lactones $4\mathbf{a} - \mathbf{c}$, 8 in 63 - 93% yields (see Tables 1, 2, 3).

Scheme B

The two-step reaction from 2 (or 6) to 4 (or 8) mentioned above can also be completed in one-pot when the sulfones 2, 6 were reacted under the same conditions as described for the second step. This is demonstrated for the sulfones 2a and 2b (Scheme C). As a result, pyranoid ene lactones 4a and 4b were obtained in 84% and 80% yield, respectively; in addition, small amounts of phenylsulfonyl glycals 3a and 3b (<5%) were isolated.

Scheme C

The reaction course for the second step (Scheme D) starts probably by addition of hydroxide which is present in trace amounts in the solution, to the phenylsulfonyl glycals 3 (or 7) followed by a shift of the double

bond to generate intermediate 9, which then eliminates phenylsulfinic acid providing the pyranoid ene lactones 4 (or 8).

Phenyl 2,3,4,6-Tetra-O-benzyl-1-thio- β -D-glucopyranosyl Sulfone (2a); Typical Procedure:

To a solution of S-phenyl-2,3,4,6-tetra-O-benzyl-1-thio- β -D-glucopyranoside^{9,10} (1a; 3.16 g, 5 mmol) in CH₂Cl₂ (50 mL) is added a dried (Na₂SO₄) solution of MCPBA (2.17 g, 12.6 mmol) in CH₂Cl₂ (50 mL). The mixture is stirred at r.t. for 5 h until 1a has totally disappeared. The mixture is washed with sat. aq NaHCO₃ and then with H₂O and dried (Na₂SO₄). The solvent is removed *in vacuo* and the residue is purified by flash chromatography on silica gel using

Scheme D

Table 1. Phenyl Glycosyl Sulfones 2a-d, 6 Prepared

Product	Yield ^a (%)	mp ^b (°C)	R _f ° (PE/EA)	$[\alpha]_D^{25}$ $(c = 1,$ $CHCCl_3)$	Molecular Formula ^d or Lit. mp (°C)	¹ H-NMR (CDCl ₃ /TMS) δ , J (Hz) ^e
2a ¹⁰	80	135–136	_	_	C ₄₀ H ₄₀ O ₇ S (664.8)	_
2 b	83	93–94	0.59 (2:1)	+ 0.5	C ₄₀ H ₄₀ O ₇ S (664.8)	3.64 (q, 1H, $J_{2,3} = 9.3$, $J_{3,4} = 2.6$, H-3), 3.84 (m, 3H, H-5, H-6), 4.32 (t, 1H, $J = 9.3$, H-2), 4.40 (d, 1H, $J = 9.3$, H-1), 4.25, 4.71 (2s, 4H, 2 × ArCH ₂), 4.53, 5.02 (2d, 2H, $J = 11.2$), 4.86, 4.90 (2d, 2H, $J = 9.2$, 2 × ArCH ₂), 7.13–7.95 (m, 25 H _{argm})
2c	87	97–98	0.60 (2:1)	+14.2	C ₃₂ H ₃₂ O ₆ S (544.6)	3.16 (q, 1H, $J_{2,3} = 9.0$, $J_{3,4} = 6.9$, H-3), 3.72 (t, 1H, $J = 9.0$, H-2), 3.92–4.02 (m, 2H, H-4, H-5), 4.39 (d, 1H, $J = 9.0$, H-1), 4.55, 4.65 (2d, 2H, $J = 11.6$, ArCH ₂), 4.84, 5.03 (2d, 2H, ArCH ₂), 4.87 (d, 2H, $J = 3$, ArCH ₂), 7.15–7.92 (m, 20H _{arm})
2d	80	81–82	0.42 (2:1)	+ 70.5	C ₃₂ H ₃₂ O ₆ S (544.6)	3.48 (m, 1H, H-4), 3.78 (q, 1H, $J_{2,3} = 7.3$, $J_{1,2} = 4.9$, H-2), 4.05 (m, 1H, H-5), 4.31 (t, 1H, $J = 7.3$, H-3), 4.78 (d, 1H, $J = 5.0$, H-1), 4.79 (2d, 4-H, $J = 8.5$, 2 × ArCH ₂), 4.58 (2d, 2H, $J = 8.5$, ArCH ₂), 7.13–7.90 (m, 20H, ArH)
6	60	oil	0.31 (2:1)	-42.5	C ₃₃ H ₃₄ O ₆ S (558.6)	1.20 (d, 3 H, $J = 6.2$, CH ₃), 3.58 (t, 1 H, $J = 8.5$, H-2), 4.20 (q, 1 H, $J_{2,3} = 4.3$, $J_{3,4} = 8.3$, H-3), 4.35 (m, 1 H, H-5), 4.73 (d, 1 H, $J = 2.3$, H-1), 4.53–4.71 (m, 7 H, H-2, $3 \times \text{ArCH}_2$), 7.25–7.87 (m, 20 H _{arom})

^a Yield of pure, isolated product.

^e Obtained on a Bruker WM 250 spectrometer at 250 MHz.

Table 2. Compounds 3a-c, 7 Prepared

Prod- uct	Yield ^a (%)	mp ^b (°C)	R _f ° (PE/EA)	$ \begin{array}{c} [\alpha]_{\mathbf{D}}^{25} \\ (c = 1, \text{CHCl}_3) \end{array} $	Molecular Formula ^d	1 H-NMR (CDCl ₃ /TMS) δ , J (Hz) e
3a	89	83–84	0.6 (2:1)	- 57.3	C ₃₃ H ₃₂ O ₆ S (556.6)	3.64–3.67 (m, 2H, H-4, H-5), 3.83 (q, 1H, $J_{2,3} = 3.1$, $J_{3,4} = 6.0$, H-3), 4.11–4.22 (m, 2H, H-6), 4.30–4.72 (m, 6H, 3×ArCH ₂), 6.21 (d, 1H, $J = 3.1$, H-2), 7.13–7.95 (m, 20H _{argm})
3b	91	7879	0.61 (2:1)	-112.1	$C_{33}H_{32}O_6S$ (556.6)	3.53–3.62 (m, 2H, H-6), 3.96 (m, 1H, H-5), 4.26–4.91 (m, 8H, H-3, H-4, $3 \times ArCH_2$ –), 6.20 (q, 1H, $J_{2,3} = 1.5, J_{2,4} = 1.0, H-2), 7.11–7.90$ (m, $20H_{arom}$)
3c	91 ^f 78 ^g	102–103	0.44 (2:1)	-127.8	$C_{25}H_{24}O_5S$ (436.5)	3.65 (m, 1H, H-4), $4.01-4.25$ (m, 3H, H-3, H-5), $4.45-4.65$ (m, 4H, ArCH ₂), 6.25 (q, 1H, $J=3.6$, H-2), $7.10-7.95$ (m, $15H_{arom}$)
7	81	oil	0.56 (2:1)	+156.7	C ₂₆ H ₂₇ O ₅ S (451.5)	1.29 (d, 3 H, $J = 6.5$, CH ₃), 3.45 (q, 1 H, $J_{3,4} = 6.1$, $J_{4,5} = 8.4$, H-4), 4.08 (m, 2 H, H-5), 4.26 (q, 1 H, $J_{2,3} = 2.9$, $J_{3,4} = 6.1$, H-3), 4.56–4.81 (m, 4H, 2 × ArCH ₂), 6.22 (d, 1 H, $J = 2.9$, H-2), 7.22–7.95 (m, 15 H _{arom})

b Melting points are taken from samples purified for elemental analysis, measured on a BÜCHI (Swizerland) melting point apparatus, uncorrected.

^c The R_f values for all compounds are obtained on Merck Silica gel 60 F₂₅₄, 0.2 mm; petroleum ether (PE, bp 30–60°C) and EtOAc (EA) are distilled.

 $^{^{}d}$ Satisfactory microanalyses obtained: C $\pm\,0.41,\,H\,\pm\,0.40.$

Table 3. Pyranoid Ene Lactones 4a-c, 8 Prepared

Prod- uct	Yield ^a (%)	mp ^b (°C)	R _f ^c (PE/EA)	$[\alpha]_{D}^{25}$ $(c = 1,$ $CHCl_{3})$	Molecular Formula ^d	IR (CHCl ₃) v (cm ⁻¹)	1 H-NMR (CDCl ₃ /TMS) δ , J (Hz) e
4a	90	oil	0.75 (2:1)	+68.7	C ₂₀ H ₂₀ O ₄ (324.4)	1690	3.73 (d, 2H, $J = 3.2$, H-6), 4.14–5.01 (m, 6H, H-4, H-5, 2 × ArCH ₂ —), 5.31 (d, 1 H, $J = 4.8$, H-2), 7.14–7.31 (m, 11 H, H-3, 2 × ArH)
4b	93	oil	0.73 (2:1)	-18.1	$C_{20}H_{20}O_4$ (324.4)	1674	3.62 (m, 1H, H-4), 3.64–3.70 (m, 2H, H-6), 4.37–4.61 (m, 5H, H-5, $2 \times ArCH_2$), 5.37 (q, 1H, $J_{2,3}$ = 4.5, $J_{2,4}$ = 1.5, H-2), 7.18–7.23 (m, 11H, H-3, $2 \times ArH$)
4c	63	oil	0.38 (2:1)	+13.0	$C_{12}H_{12}O_3$ (204.2)	1682	3.83 (m, 1H, H-4), 4.43 (m, 1H, H-5), 4.85, 4.63 (2d, 2H, $J = 11.9$, ArCH ₂ -), 5.43 (q, 1H, $J_{2.3} = 6.0$, $J_{2.4} = 0.9$, H-2), 7.19-7.38 (m, 6H, H-3, ArH)
8	69	oil	0.60 (2:1)	-341.8	C ₁₃ H ₁₄ O ₃ (218.3)	1682	1.43 (d, 3H, $J = 6.4$, CH ₃), 3.72 (d, 1H, $J = 9.8$, H-4), 4.48 (m, 1H, H-5), 4.64, 5.04 (2d, $J = 11.6$, ArCH ₂ -), 5.37 (d, 1H, $J = 3.6$, H-2), 7.35 (m, 6H, H-3, ArH)

a-e See Table 1.

petroleum ether (bp $30-60\,^{\circ}\text{C}$)/EtOAc (from 10:1 to 7:3) as eluents (Table 1). Compounds 2a-c can be recrystallized from EtOH.

Phenyl 2,3,4-Tri-O-benzyl-6-deoxy-1-thio-β-D-glucopyranosyl Sulfone (6); this compound is prepared according to the typical procedure for 2a (Table 1).

1,5-Anhydro-3,4,6-tri-*O*-benzyl-1,2-dideoxy-1-phenylsulfonyl-D-arabino-hex-1-enitol (3a); Typical Procedure:

To a solution of 2a (0.5 g, 0.76 mmol) in dry THF (50 mL) is added dropwise at $-90\,^{\circ}$ C a solution of LDA (0.76 mmol) in dry THF (50 mL). The mixture is stirred at $-90\,^{\circ}$ C for 1.5 h and then warmed slowly to r.t. The mixture is added to H_2O and extracted with CH_2Cl_2 (2 × 50 mL). The organic phase is washed with dilute HCl and H_2O and dried (Na_2SO_4). The solvent is removed *in vacuo* and the residue is purified by flash chromatography on silica gel using petroleum ether (bp $30-60\,^{\circ}$ C)/EtOAc (from 10:1 to 7:3) as eluents (Table 2).

1,5-Anhydro-3,4-di-O-benzyl-1,2,6-trideoxy-1-phenylsulfonyl-D-arabino-hex-1-enitol (7); compound 7 is prepared according to the typical procedure for 3a (Table 2).

(+)-(5S,6R)-5-Benzyloxy-6-benzyloxymethyl-5,6-dihydro-2*H*-pyran-2-one (4a); Typical Procedure:

A solution of **3a** (56 mg, 0.1 mmol), 0.5 N NaOMe (0.1 mol) and 7.4 mg of dicyclohexano-18-crown-6 (0.02 mmol) in THF (5 mL) is refluxed at $+65\,^{\circ}$ C for 10 h (for **4b**: 10 h, for **4c**, **8**: 24 h). Then the mixture is cooled to r.t., Et₂O (10 mL) is added, and the organic phase is washed with 10 % HCl (2 mL), sat. NaHCO₃ and H₂O and dried (Na₂SO₄). The solvent is removed *in vacuo* and the residue is purified by flash chromatography on silica gel using petroleum ether (bp 30–60 °C)/EtOAc (from 10:1 to 7:3) (Table 3).

(-)-(5R,6S)-5-Benzyloxy-6-methyl-5,6-dihydro-2H-pyran-2-one (8); compound 8 is prepared according to the typical procedure for 4a (Table 3).

The authors are indebted to the Deutsche Forschungsgemeinschaft and to the Fonds der Chemischen Industrie for financial support. – D.Q. is grateful for an Alexander von Humboldt Fellowship.

Received: 26 June 1990

- (1) Lichtenthaler, F.W. Pure Appl. Chem. 1978, 50, 1343.
- (2) Lichtenthaler, F.W., in: Natural Products Chemistry, Atta-Rahman (ed.), Springer Verlag, Heidelberg, 1986, pp 227-254.
- (3) Rollin, P.; Sinay, P. Carbohydr. Res. 1981, 98, 139.
- (4) Grynkiewicz, G.; Priebe, W.; Zamojski, A. Carbohydr. Res. 1979, 68, 33.
- (5) Hollenbeak, K.H.; Kuehne, M.E. Tetrahedron 1974, 30, 2307.
- (6) Ferrier, R.J.; Prasad, N. J. Chem. Soc. (C) 1969, 570.
- (7) Mieczkowski, J.; Chmielewski, M.; Zamojski, A. Carbohydr. Res. 1977, 56, 180.
- (8) Lichtenthaler, F.W.; Rönninger, S.; Jarglis, P. Liebigs Ann. Chem. 1989, 1153.
- (9) Kast, J. Diplomarbeit, Universität Konstanz, 1982.
- (10) Ferrier, R.J.; Furneaux, R.H. Carbohydr. Res. 1976, 52, 63.
- (11) Preuss, R.; Schmidt, R.R. Liebigs Ann. Chem. 1989, 429; Tetrahedron Lett. 1989, 30, 3409.