

Bioorganic & Medicinal Chemistry Letters 11 (2001) 2723-2725

α-Alkyl-α-amino-β-sulphone Hydroxamates as Potent MMP Inhibitors that Spare MMP-1

Daniel P. Becker,^{a,*} Gary DeCrescenzo,^b John Freskos,^b Daniel P. Getman,^b Susan L. Hockerman,^a Madeleine Li,^a Pramod Mehta,^b Grace E. Munie^b and Craig Swearingen^b

^aDepartments of Medicinal Chemistry and Inflammation-Oncology, Pharmacia Research & Development, 4901 Searle Parkway, Skokie, IL 60077, USA

^bDepartments of Medicinal Chemistry and Inflammation-Oncology, Pharmacia Research & Development, 700 Chesterfield Village Parkway, St. Louis, MO 63198, USA

Received 8 December 2000; accepted 3 August 2001

Abstract—A series of α -alkyl- α -amino- β -sulphone hydroxamates was prepared and evaluated for potency versus MMP-2 and MMP-13, and for selectivity versus MMP-1. Low nanomolar potency was obtained with selectivity versus MMP-1 ranging from >10 to >1000. Selected compounds were orally bioavailable. © 2001 Elsevier Science Ltd. All rights reserved.

In our previous letter, we described a series of α -amino- β -sulphone hydroxamates that are potent inhibitors of MMP-13, which spare MMP-1.¹ Overexpressed MMPs play a crucial role in tumor growth and metastasis in cancer, and in the destruction of articular cartilage in osteoarthritis (OA) and rheumatoid arthritis (RA). Hence, the inhibition of the relevant MMP enzymes may prove to be clinically effective in halting the advance of these diseases.² The gelatinases A and B (MMP-2 and MMP-9) have been implicated in tumor progression,³ and MMP-13 has been implicated in the destruction of articular cartilage in arthritis.⁴ Herein, we report the preparation and preliminary SAR of a series of α -amino- α -alkyl- β -sulphones that are highly selective in sparing MMP-1, based on the hypothesis that the musculoskeletal side effect observed clinically with the broad-spectrum inhibitor marimastat⁵ is due to potent inhibition of MMP-1. Alkyl substituents alpha to the hydroxamate were employed to modulate pharmacokinetic properties including absorption and half-life, as well as physicochemical properties, while the P_1 ' substituent was varied to optimize potency and selectivity.

The targeted α -methyl- α -amino diphenyl ether hydroxamates of type 5 were prepared starting with a halide displacement of chloroacetone (1) with 4-phenoxythiophenol⁶ to afford 2 (Scheme 1). Strecker synthesis then gave the nitrile 3, which was hydrolyzed to the

Scheme 1.

^{*}Corresponding author. Fax: +1-847-982-4714; e-mail: daniel.p.becker@pharmacia.com

⁰⁹⁶⁰⁻⁸⁹⁴X/01/\$ - see front matter \odot 2001 Elsevier Science Ltd. All rights reserved. PII: S0960-894X(01)00557-1

carboxylic acid. Oxidation of the sulfide after protection of the amino group as the acetamide, and subsequent deprotection, then gave the amino acid **4**. Functionalization of the amino group was accomplished by alkylation, acylation or reductive amination as required, and standard EDC coupling with hydroxylamine afforded the diphenyl ether sulphone hydroxamates **5**.

The diaryl thioether 7 was prepared commencing with the reaction of chloroacetone (1) with 4-fluorothiophenol (R=F). Strecker synthesis gave nitrile 3 (R=F), which was hydrolyzed and protected as the acetamide (Scheme 2). Oxidation then afforded the corresponding 4-fluorophenylsulphone, and nucleophilic aromatic substitution with thiophenol gave carboxylic acid 6. Acetamide hydrolysis preceded amino functionalization with the appropriate R^2 reagent, and EDC coupling afforded the hydroxamates 7.

As illustrated in Scheme 3, α -pyrrolidine- β -sulphones were prepared from racemic *N*-Cbz-proline methyl ester (8). Alkylation of 8 with methylene diiodide⁷ gave the α iodomethyl derivative, which was used to alkylate 4phenoxythiophenol. The resulting aryl sulfide was oxidized to furnish sulphone 9. The Cbz protecting group was removed by hydrogenolysis, exposing the amine which was functionalized by alkylation with propargyl bromide. Saponification of the methyl ester and coupling with hydroxylamine then afforded the hydroxamate 10 (R² = propargyl).

The α -phenyl- α -amino derivative **15** (Scheme 4) was prepared from D,L-phenylglycine (**11**) by benzoylation and treatment with acetic anhydride to give the 2-phenyl-oxazolone **12**⁸ (Scheme 4). Alkylation of this azlactone

with methylene diiodide gave iodomethyl azlactone 13, and displacement of the iodide with 4-phenoxythiophenol and subsequent oxidation with *meta*chloroperbenzoic acid gave the sulphone 14. The oxazolone was then hydrolyzed and the resulting carboxylic acid coupled with TMS-protected hydroxylamine to afford 15 ($R^2=H$). Alternatively, the oxazolone ring was opened directly with hydroxylamine to afford the benzamide hydroxamate ($R^2=Bz$).

Table 1 summarizes the potency versus MMP-2, MMP-13, and MMP-1 for compounds of generic structures 5, 7, and 15. The diaryl ethers (X=O) were an order of magnitude more potent than the corresponding thioethers (X = S), although occasionally the thioethers were noted to be somewhat more selective in sparing MMP-1 (5b vs 7b). Amides of the α -amino group (5a, 5j, 7a, and 15a) were significantly less potent for both MMP-2 and MMP-13, whereas simple alkyl and aralkyl amines were potent for both of these enzymes. Disubstitution on the amine led to a loss of potency (5c). The α -phenyl amine 15b was potent for MMP-13 and MMP-2, but was also somewhat more potent for MMP-1. Almost all compounds exhibited excellent selectivity versus MMP-1, in several cases exceeding $1000 \times$ for the ratio of IC₅₀ values (MMP-1/MMP-2 and MMP-1/MMP-13), in contrast to the broad-spectrum inhibitors CGS 27023A and marimastat.

Table 2 shows the enzyme potency of proline-derived analogue 10. Since the racemate 10 was found to be quite potent, the material was resolved into its enantiomers via chiral chromatography.⁹ The first eluter, hydroxamate 10a, was found to be the more potent enantiomer (eutomer) by at least two orders of

Scheme 2.

Table 1. IC₅₀ (nM)¹⁰ values for α -alkyl- α -amino- β -sulphone hydroxamates

Table 2. $IC_{50}~(nM)^{10}$ values for $\alpha\mbox{-pyrrolidine-}\beta\mbox{-sulphone}$ hydroxamates

Compd	R ²	MMP-13	MMP-2	MMP-1	MMP-1/1.
10 (racemic)	Propargyl	1.3	0.2	400	308
10a (eutomer)	Propargyl	< 0.1	<0.1	300	> 3000
10b (distomer)	Propargyl	60.0	19.3	>10,000	> 167

magnitude against both MMP-13 and MMP-2 as compared to the less potent enantiomer (distomer) 10b. Compound 10a was also highly selective in sparing MMP-1 ($3000 \times$).

Selected analogues were dosed orally in rats at 20 mpk to assess absorption by measuring C_{max} , and the concentration remaining at 6 h was used as an initial rough indicator of the half-life. The α -methyl- α -amino analogue **5b** showed a high C_{max} of 6.43 µg/mL, somewhat greater than the corresponding thioether **7b** ($C_{\text{max}} = 1.54$ µg/mL). *N*-Ethyl and *N*-benzyl analogues **5d** and **5e** were moderately well absorbed ($C_{\text{max}} = 0.561$ and 0.216 µg/mL, respectively), and *N*-propargyl amine **5i** exhibited a C_{max} of 1.37 µg/mL. The propargyl substituent was selected for inclusion with the expectation of increasing the oral exposure, based on in-house experience. However, all of the compounds tested were less than 15 ng/mL in plasma at the 6 h time point.

In summary, we have described a promising series of α alkyl- α -amino- β -sulphone hydroxamates that are potent inhibitors of both MMP-2 and MMP-13, and that spare MMP-1. Several analogues showed good absorption when administered orally in the rat. The efficacy of these compounds in animal models of cancer and arthritis will be disclosed in due course.

References and Notes

1. Becker, D. P.; Barta, T. E.; Bedell, L.; DeCrescenzo, G.; Freskos, J.; Getman, D. P.; Hockerman, S. L.; Li, M.; Mehta, P.; Mischke, B.; Munie, G. E.; Swearingen, C.; Villamil, C. I.

- Bioorg. Med. Chem. Lett. 2001, 11, 2719.
- 2. Cawston, T. E. Pharmacol. Ther. 1996, 70, 163.
- 3. Nelson, A. R.; Gingleton, B.; Rothenberg, M. L.; Matrisian, L. M. J. Clin. Oncol. 2000, 18, 1135.
- 4. Freemont, A. J.; Byers, R. J.; Taiwo, Y. O.; Hoyland, J. A. *Ann. Rheum. Dis.* **1999**, *58*, 357.
- 5. Wojtowicz-Praga, S.; Torri, J.; Johnson, M.; Steen, V.; Marshall, J.; Ness, E.; Dickson, R.; Sale, M.; Rasmussen, H. S.; Chiodo, R. A.; Hawkins, M. J. Clin. Oncol. **1998**, *16*, 2150.

6. Freskos, J. N.; Mischke, B. V.; DeCrescenzo, G. A.; Heintz, R.; Getman, D. P.; Howard, S. C.; Kishore, N. N.; McDonald, J. J.; Munie, G. E.; Rangwala, S.; Swearingen, C. A.; Voliva, C.; Welsch, D. J. *Bioorg. Med. Chem. Lett.* **1999**, *9*, 943.

7. Chan, C. O.; Cooksey, C. J.; Crich, D. J. Chem. Soc., Perkin Trans. 1 1992, 7, 777.

8. Obrecht, D.; Spiegler, C.; Schoenholzer, P.; Mueller, K.; Heimgartner, H.; Stierli, F. *Helv. Chim. Acta* **1992**, *75*, 1666.

9. The resolution of **30** was accomplished using a Chiralpak AD column (4.6 mm \times 25 cm) at a flow rate of 1.0 mL/min eluting with a mobile phase of 35:65 ethanol/heptane with 0.2% trifluoroacetic acid. Tony Yan is gratefully acknowledged for performing the chiral separation.

10. Inhibitors were assayed against purified hMMP-13, hMMP-1 and hMMP-2 using an enzyme assay based on cleavage of the fluorogenic peptide MCA-Pro-Leu-Gly-Leu-Dpa-Ala-Arg-NH₂. This is similar to conditions described by Knight, C. G. et al. *FEBS Lett.* **1992**, *296*, 263, except that 0.02% final concentration of 2-mercaptoethanol was used in the MMP-13 and MMP-1 assays. All basic compounds were tested as their hydrochloride salts except for **10a** and **10b**, which were tested as the trifluoroacetate salts.