Non-ligated Nickel Chloride-Catalyzed Cross-Coupling of Aromatic Grignard Reagents with Aryl Halides

Yoshiharu Ikoma,* Fumio Taya, Ei-ichi Ozaki, Shigeki Higuchi, Yoshitake Naoi, Kiyomi Fuji-i Yuki Gosei Kogyo Co., Ltd., The Tokyo Research Laboratory, Sakashita, Itabashi-ku, Tokyo 174, Japan

The reaction between aryl Grignard reagents and aryl halides in the presence of non-ligated nickel(II) chloride affords the cross-coupling products in high yields (60–98%).

Many reports on the homo- and cross-coupling reactions between aryl Grignard reagents and aryl halides using nickel complexes as catalysts have appeared.¹⁻³ Cases of aryl-aryl homo-coupling using nickel(II) chloride (NiCl₂) as a catalyst have been reported.⁴⁻⁶ In the case of cross-coupling, however, most of the reported reactions were carried out using NiL₂X₂ type catalysts and no example using NiX₂ type catalysts has hitherto been reported; there are a few examples using palladium(II) chloride (PdCl₂).⁷

We found that NiCl₂ can act as an active catalyst for aryl cross-coupling reactions. When aryl Grignard reagents were reacted with aryl halides in tetrahydrofuran, using NiCl₂ as a catalyst, the cross-coupling products were obtained (Table 1).

When bromobenzene (2a) was used as an aryl halide, the yield of the cross-coupling product was higher than that obtained in the case of chlorobenzene (2b).

The substituent effects in the aryl Grignard reagent on the cross-coupling reaction were also examined. When a methyl group was introduced at an o-position of the aryl Grignard reagent (1b), cross-coupling reaction occurred preferentially, and no homo-coupling product was obtained. On the other hand, a methyl group at meta- or para-position results in both cross- and homo-coupling; the ratio is 3:1 (3c/4c = 60:25, 3d/4d = 60:20). In each case, biphenyl was formed in 15% yield. These results clearly show that this cross-coupling reaction is sensitive to steric congestion at the reaction site.

$$R^2$$
 R^1
 R^3
 $+/or$
 R^3
 R^1
 R^2
 R^3
 R^2
 R^3
 R^2
 R^3
 R^2

1b, e + Br
$$\stackrel{\text{NiCl}_2/\text{THF}}{=}$$
 R^2 R^1 R^3 R^2 R^3 R^3 R^2 R^3 R^3 R^2 R^3

1, 3–5	\mathbb{R}^1	R ²	R ³	
a	CH ₃	Cl	Н	
b	CH ₃ CH ₃	H	Н	
c	Н	CH ₃	Н	
d	H	н	CH ₃	
e	Н	CH ₃	CH ₃	

Table 1. Non-ligated NiCl₂ Catalyzed Cross-Coupling

Grig- nard Rea- gent	Ha- lide	Prod- uct	Yield ^a (%)	bp (°C)/ Torr ^b	mp ^b (°C)	Lit. bp (°C)/ Torr mp (°C)
1a	2b	3a	24	106-108/2	_	
		4a	23	152/2	74.3-	
					75.0	
1a	2a	3a	88 (97)			
1b	2a	3b	(98)	254-256	-	67-68 ⁸ /
						0.27
1c	2a	3c	(60)	270-272	_	264-266°
		4c	(25)	138-139/5	8-9	8-910
1d	2a	3d	(60)	266-268	44-47	48-4911
		4d	(20)	_	121-122	12112
1b	2c	5b	41 (60)	_	145-146	145.5-146 ¹¹
1e	2c	5e	31 (37)	_	168-169	168-169 ¹³
1e	2d	6	39 (60)		72-73	72-7313

Isolated yield, GLC analytical yield based on 1 in parentheses.
 Uncorrected.

Table 2. Variation of Catalyst on Cross-Coupling of 1a and 2a

Catalyst	Yield (%)	а	
	3a	4a	
NiCl ₂	97 ^b	2	
Ni(acac) ₂	95	5	
NiCl ₂ (diphos)	94	2	
PdCl ₂	80	12	
Li ₂ CuCl ₄	25	75	
FeCl ₃	20	1	

^a GLC analytical yield, based on 1a.

This reaction can also be applied to the preparation of terphenyls. When dibromobenzene 2c and Grignard reagent 1b, e were used, terphenyls 5b and 5e were obtained in 41% and 31% yield, respectively. Crosscoupling of dibromobenzene 2d with Grignard reagent 1e gave the terphenyl 6 in 39% yield. The yields of terphenyls are about 20% lower than those obtained when 1,2-bis(diphenylphosphino)ethanenickel(II) chloride [NiCl₂(diphos)] is used as a catalyst.

The catalytic activity of NiCl₂ was compared with those of other metal compounds, such as nickel(II) acetylacetonate [Ni(acac)₂], NiCl₂(diphos), PdCl₂, dilithium tetrachlorocuprate(II) (Li₂CuCl₄), and iron(III) chloride (FeCl₃) using the cross-coupling of 1a-2a as a standard. The results are listed in Table 2. The highest activity for formation of 3a was observed for NiCl₂. The order of the catalytic activity is as follows: NiCl₂ \approx Ni(acac)₂ \approx NiCl₂(diphos) > PdCl₂ > FeCl₃. The cross-coupling product 3a is produced preferentially when NiCl₂, Ni(acac)₂, NiCl₂(diphos), PdCl₂, or FeCl₃ were used as catalyst. On the other hand, the homo-coupling product 4a was predominant when Li₂CuCl₄ was used (3a/4a = 25:75).

These results show that non-ligated nickel(II) chloride is a useful catalyst in cross-coupling reactions, especially when there is steric hindrance at an *ortho*-position of the aryl Grignard reagents.

NiCl₂(diphos)¹⁴ and Li₂CuCl₄¹⁵ were prepared by reported procedures. All the other catalysts used are commercially available.

3-Chloro-2-methylphenylmagnesium Chloride (1 a); Typical Procedure:

A 500 mL-flask is charged with magnesium (24.3 g, 1.00 mol) and THF (20 mL). To this is added dropwise a solution of 2,6-dichlorotoluene (161 g, 1.00 mol) in THF (200 mL) and the mixture refluxed for 3 h. The flask is then cooled to r.t. and the Grignard reagent 1a used directly in the following experiment. Yield of mono-Grignard reagent is 70%.

3-Chloro-2-methylbiphenyl (3a); Typical Procedure:

A 1000 mL-flask is charged with NiCl₂ (1.0 g, 0.0011 mol), THF (30 mL), and bromobenzene (2a, 133 g, 0.85 mol). To this is added dropwise the Grignard reagent solution (1a contains 0.70 mol mono-Grignard reagent) while maintaining the temperature at 50-55 °C under an atmosphere of N₂, and the mixture is heated to 55 °C for 2 h. The flask is then cooled to r.t., and 1.4 N HCl (140 mL) is added. The organic layer is separated and dried (MgSO₄). The solvent is removed *in vacuo* and the residue is distilled under reduced pressure to give 3a; yield: 124 g (88 %), (Table 1).

C₁₃H₁₁Cl calc. C 77.04 H 5.47 (202.7) found 76.97 5.40

MS (70 eV): m/z (%) = 202 (M⁺, 100), 167 (95), 152 (20). ¹H-NMR (CDCl₃/TMS): δ = 2.3 (s, 3 H), 7.1–7.5 (m, 8 H).

3,3'-Dichloro-2,2'-dimethylbiphenyl (4a):

Prepared from a solution of 3-chloro-2-methylphenylmagnesium chloride (1a, 0.30 mol) in THF (95 mL), chlorobenzene (2b, 40.5 g, 0.36 mol) and NiCl₂ (0.43 g, 0.33 mmol) as described above. The compound 4a can be isolated from a mixture of 3a and 4a by distillation followed by recrystallization from MeOH; yield: 17 g (23%); (Table 1).

C₁₄H₁₂Cl₂ calc. C 66.95 H 4.82 (251.2) found 66.97 4.79

MS (70 eV): m/z (%) = 250 (M⁺, 100), 215 (88), 180 (78), 165 (67). ¹H-NMR (CDCl₃/TMS): δ = 2.1 (s, 6 H), 7.0-7.4 (m, 6 H).

Received: 6 March 1989; revised 19 July 1989

- Tamao, K.; Sumitani, K.; Kiso, Y.; Zenbayashi, M.; Fujioka, A.; Kodama, S.; Nakajima, I.; Minato, A.; Kumada, M. Bull. Chem. Soc. Jpn. 1976, 49, 1958.
- Negishi, E.; King, A.O.; Okukado, N. J. Org. Chem. 1977, 42, 1821.
- (3) Ibuki, E.; Ozasa, S.; Fujioka, Y.; Okada, M.; Terada, K. Bull. Chem. Soc. Jpn. 1980, 53, 821.
- (4) Kharasch, M.S.; Fields, E.K. J. Am. Chem. Soc. 1941, 63, 2316.
- (5) Yamamoto, T.; Hayashi, Y.; Yamamoto, A. Bull. Chem. Soc. Jpn. 1978, 51, 2091.
- (6) Yamamoto, T.; Sanechika, K.; Yamamoto, A. Bull. Chem. Soc. Jpn. 1983, 56, 1497.
- (7) Sekiya, A.; Ishikawa, N. J. Organometal. Chem. 1977, 125, 281.
- (8) Kosugi, M.; Ishikawa, T.; Nogami, T.; Migita, T. Nippon Kagaku Kaishi 1985, 520; C. A. 1986, 104, 68496.
- (9) Beilstein 5, 596.
- (10) Chao, C.S.; Cheng, C.H.; Chang, C.T. J. Org. Chem. 1983, 48, 4904.
- (11) Hart, H.; Harada, K.; Du, C-J.F. J. Org. Chem. 1985, 50, 3104
- (12) McKillop, A.; Elsom, L. F.; Taylor, E. C. J. Am. Chem. Soc. 1968, 90, 2423.
- (13) Kikuchi, T.; Fujita, T.; Saito, T. Eur. Patent 247731 (1987), Hitachi Chemical Co. Ltd.; C. A. 1988, 108, 168 529.
- (14) Kumada, M.; Tamao, K.; Sumitani, K.; in: Organic Syntheses, vol. 58, Sheppard, W.A. (ed.), John Wiley & Sons, New York, 1978, p. 127.
- (15) Tamura, M.; Kochi, J. Synthesis 1971, 303.

b Isolated yield 88%.