Research Paper

Na₂CO₃-promoted thioesterification via N–C bond cleavage of amides to construct thioester derivatives

Journal of Chemical Research 1–7 © The Author(s) 2019 Article reuse guidelines: sagepub.com/journals-permissions DOI: 10.1177/1747519819873514 journals.sagepub.com/home/chl

SAGE

Jiasi Tao^{1,2}, Weijie Yu², Jin Luo³, Tao Wang^{1,2}, Wanling Ge², Ziwei Zhang², Bingjie Yang² and Fei Xiong^{1,2}

Abstract

A mild, efficient, and transition-metal-free catalytic strategy is developed to construct thioesters via selective N–C bond cleavage of Boc_2 -activated primary amides. This strategy is successfully carried out with stoichiometric Na_2CO_3 as the base and provides the corresponding products in moderate to excellent yields.

Keywords

selective N-C bond cleavage, stoichiometric Na₂CO₃, thioesters, transition-metal-free catalytic strategy

Date received: 24 April 2019; accepted: 10 August 2019

Introduction

The thioester group is a fundamental structural motif which is found widely in polymers, agrochemicals, pharmaceuticals, and natural products (Figure 1).¹⁻⁷ This class of compound is usually employed as key intermediates to synthesize some important skeletal units, such as β -lactams,⁸ β -lactones⁹ esters,^{10,11} aldehydes,¹² and ketones.13,14 Thioesters also play important roles in several biological processes.^{3,15,16} During the past decades, significant research efforts have focused on the synthesis of thioesters. The condensation reaction between carboxylic acid derivatives and thiols was the initial synthetic strategy toward thioesters (Scheme (1a)).^{15,17–20} In 1997, Xiao and Alper²¹ reported the first palladium-catalyzed method for the synthesis of thioesters via carbonylation of aryl iodides and *n*-BuSNa. Since then, transition-metal-catalyzed thiocarbonylation processes have attracted much attention and various methods have been explored to construct thioester compounds using aryl halides and S-nucleophiles (Scheme (1b)).^{22–31} Moreover, oxidative coupling between aldehydes and thiols (or disulfides) has also offered a reliable solution to obtain thioester compounds (Scheme (1c)).^{32,33} However, in principle, metal catalysts or stoichiometric oxidants were needed in the above reaction

Corresponding authors:

Jin Luo, Analytical and Testing Center, Jiangxi Normal University, Nanchang 330022, P.R. China. Email: jinluo@jxnu.edu.cn

Tao Wang, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P.R. China. Email: wangtao@jxnu.edu.cn

Fei Xiong, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P.R. China. Email: xiongfei@jxnu.edu.cn

¹College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, P.R. China

²National Research Center for Carbohydrate Synthesis and Key Laboratory of Chemical Biology of Jiangxi Province, Jiangxi Normal University, Nanchang, P.R. China

³Analytical and Testing Center, Jiangxi Normal University, Nanchang, P.R. China

80

33

N.D.

Figure 1. Examples of pharmaceuticals containing a thioester motif.

Scheme I. Synthesis of thioesters.

processes. In view of environmental concerns, metal-free and oxidant-free synthetic methods are highly desirable for the preparation of thioesters.

In recent years, significant breakthroughs have been exploited to construct C–C or C–X bonds via transitionmetal-catalyzed amide N–C bond cleavage.^{34–38} In 2015, Hie et al.³⁹ reported the first nickel-catalyzed conversion of amides into esters via selective N–C bond cleavage. Soon after, Suzuki,^{40–48} Negishi,^{49–51} borylation,^{52,53} Heck,^{53,54–60} Sonogashlira,⁶¹ and other cross-coupling reactions^{54,52,62–73} have been extended by this means.

However, the geometries of typical amide bonds are planar as a result of amidic resonance, which results in amides having very stable chemical bonds (15–20 kcal mol⁻¹).⁴⁰ Many studies have shown that distortion of amide bonds greatly affects the stability and reactivity of amides. In recent work, cross-coupling of twisted amides with arenes,⁶⁷ amines,^{74–77} alcohols,^{48,58} and phenols⁷⁸ have been successfully explored and the twisted amide bond is considered as a controlling factor in selective amide bond activation.^{79–81} Considering the reactivity of twisted amides, herein, we report a synthetic strategy for the preparation of thioesters using twisted amides and thiols without a transition-metal-catalyst.

Results and discussion

Initially, we carried out the reaction with *N*,*N*-*di*-Bocactivated amide^{82–85} **1a** and *p*-toluenethiol (**2a**) as substrates (Table 1), and Et₃N (2.0 equiv.) as the base in 1,4-dioxane

	O N ^{-Boc} + SH Boc	base (2.0 equiv)	o S S
~	1a 2a	80 °C, 18 h	3a
la	2a		3a
Entry	Base	Solvent	Yield (%) ^b
I	Et ₃ N	I,4-Dioxane	68
2	DABCO	1,4-Dioxane	63
3	DBU	1,4-Dioxane	60
4	Na ₂ CO ₃	I,4-Dioxane	95
5	K₃PO₄	1,4-Dioxane	85
6	Cs ₂ CO ₃	1,4-Dioxane	78
7	tBuONa	1,4-Dioxane	Trace
8	Na_2CO_3	CH3CN	70
9	Na ₂ CO ₃	THF	63
10	Na_2CO_3	DCE	78
11	Na_2CO_3	DMF	80
12 ^c	Na ₂ CO ₂	1,4-Dioxane	50

Table 1. Optimization of the Reaction Conditions.^a

DABCO: 1,4-diazabicyclo[2.2.2]octane; DBU: 1,8-diazabicyclo[5.4.0] undec-7-ene; THF: tetrahydrofuran; DCE: 1,2-dichoroethane; DMF: dimethylformamide; N.D.: not detected.

1.4-Dioxane

I,4-Dioxane

I,4-Dioxane

Na₂CO₃

Na₂CO₃

^aReaction conditions: **I a** (0.22 mmol, I.I equiv.), **2a** (0.2 mmol), base (2.0 equiv.), solvent (2.0 mL), 80 °C, I8h. ^bIsolated yield. ^cBase (0.5 equiv.).

^dBase (1.0 equiv.).

ert.

13d

|4e

15

(2 mL) at 80 °C for 18h, which resulted in the formation of product 3a in 68% yield (Table 1, entry 1). Other amides **1b**-e were also tested under the same reaction conditions, but their reaction efficiencies were poor (Scheme 2). Second, various organic bases (1,4-diazabicyclo[2.2.2] octane (DABCO) and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU)) and inorganic bases (Na₂CO₃, K₃PO₄, Cs₂CO₃, ^tBuONa) were evaluated (Table 1, entries 2–7). When Et₃N was replaced with Na₂CO₃, the product **3a** was obtained in 95% isolated yield (Table 1, entry 4). Third, screening of the solvent indicated that other solvents (CH₃CN, tetrahydrofuran (THF), 1,2-dichoroethane (DCE), and dimethylformamide (DMF)) resulted in slightly decreased yields (Table 1, entries 8-11). Fourth, the yield of product 3a was obviously lower when the amount of base was decreased to 1.0 equiv. and 0.5 equiv. (Table 1, entries 12 and 13), and the reaction did not work without a base (Table 1, entry 15). In addition, the reaction efficiency was the best at 80 °C, while a poor yield was observed at rt (33%, Table 1, entry 14).

With optimized reaction conditions in hand, the substrate scope of the amides was evaluated. As shown in Scheme 3, the reactions of electron-rich amides were well-tolerated and afforded the corresponding thioesters **3b,c** in 77% and 75% yields. Delightfully, halogen substituents (such as F, Cl, and Br) were tolerated in this transformation and good yields were obtained (**3d,e,f**), which implied a potential possibility for further functionalization of thioesters. A slightly lower yield was obtained using a 4-trifluoromethyl-substituted

Scheme 2. Evaluating different amides.

Scheme 3. Substrate scope of amides.

amide as the substrate (3g). Other amides, including heterocycles, and polyarenes were also tolerated and afforded products 3h-j in acceptable yields.

Next, we tested the tolerance of thiols under the optimized conditions (Scheme 4). Both electron-donating and electron-withdrawing substituents on the phenyl afforded the desired products 4a-c.g in good yields. The halogen substituents (F, Cl, and Br) were tolerated under the standard conditions and afforded the desired products in excellent yields (4d-f). Multi-substituted thiophenols, such as 3,4-dimethyl and perfluoro, could be transformed into the corresponding thioesters 4h,i in acceptable yields. 2-Naphthalenethiol afforded the corresponding thioester 4j in 82% yield. Some alkyl-type thiols were also transformed into thioesters 4k-n under standard conditions in 44%-95% yields. Unfortunately, an aliphatic alkyl-type thiol 40 did not react under the optimized conditions. Finally, a one-pot reaction was carried out under the current conditions and product 3a was obtained in a 53% total yield (Scheme 5). This suggests that the synthetic strategy can be achieved with a common primary amide.

Scheme 4. Substrate scope of thiols.

Scheme 5. One-pot experiment.

Scheme 6. Scale-up experiment.

To check the practicality of this transformation, a gramscale reaction (10 mmol) was carried out (Scheme 6). The reaction afforded product 3a in 88% yield under standard conditions, which demonstrates that this protocol has potential application value in industrial production.

Conclusion

In summary, we have reported a transition-metal-free crosscoupling reaction for the preparation thioester compounds using commercial primary amides and thiols *via* activated N–C bond cleavage under exceedingly mild conditions. The transformation is accomplished efficiently with the assistance of stoichiometric Na₂CO₃ under an air atmosphere. A high-yielding gram-scale reaction demonstrated the potential value of the synthetic utility of this method.

General procedure

All reagents and solvents were commercially available and used without further purification. Unless otherwise noted, all reactions were run under a nitrogen atmosphere. Purification of all products was carried out by flash chromatography using brand 200-300 mesh silica gel. 1H, 13C, and 19F NMR spectra were recorded on a Bruker Ascend instrument at 400, 100 and 376 MHz, respectively. Chemical shifts were reported in δ (ppm) referenced to an internal tetramethylsilane (TMS) standard for ¹H NMR (δ 0.00), and CDCl₃ (δ 77.16) for ¹³C NMR. The following abbreviations were used to explain multiplicities: s=singlet, d=doublet, t=triplet, q=quartet, hept=heptaplet, m=multiplet, and br=broad. High-resolution mass spectra (HRMS) were obtained on an Agilent mass spectrometer using electrospray ionizationtime of flight (ESI-TOF). GC-MS spectra were recorded on a Shimdazu-GC-MS 2010QP-Ultra instrument.

Preparation of the starting materials

General procedure for N,N-Boc₂-amide synthesis. A previously published procedure was followed. An oven-dried round-bottomed flask (100 mL) equipped with a stir bar was charged with the primary amide (8.26 mmol, 1.0 equiv.), 4-dimethylaminopyridine (DMAP) (typically, 0.10 equiv.), and dichloromethane (typically, 25 mL), placed under a positive pressure of nitrogen, and subjected to three evacuation/backfilling cycles under high vacuum.84 Di-tert-butyl dicarbonate (typically, 2.0 equiv.) was added portion-wise to the reaction mixture with vigorous stirring at 0°C, and the reaction mixture was stirred overnight at room temperature. After the indicated time, the reaction mixture was concentrated and unless stated otherwise, purified directly by chromatography on silica gel (hexanes/ethyl acetate) to give analytically pure product. N,N-Boc₂-benzamide (1a). White solid. Yield 85.2%. MS = 321.2.

General procedure for synthesis of N-Boc amides from secondary amides (1b, 1c). An oven-dried round-bottomed flask (100 mL) was charged with a secondary amide substrate (5.0 mmol, 1.0 equiv.), DMAP (0.1 equiv.), and dichloromethane (typically, 0.20 M).86 Di-tert-butyl dicarbonate (1.0 equiv.) was added in one portion, and the reaction mixture was allowed to stir at room temperature for 15 h. After the indicated time, the reaction mixture was quenched with NaHCO₃ (aq, 10 mL), extracted with EtOAc $(3 \times 20 \text{ mL})$, washed with $H_2O(1 \times 20 \text{ mL})$, and brine $(1 \times 20 \text{ mL})$. The organic layer was dried, and concentrated. Unless stated otherwise, purification by flash chromatography (EtOAc/ hexanes) afforded the pure product. In our hands, the N-Boc activation of secondary amides typically proceeds in average yields of >80%. tert-Butyl benzoyl(phenyl)carbamate (1b). White solid. Yield 81%. MS=297.1. tert-Butyl benzoyl(benzyl)carbamate (1c). Colorless oil. Yield 76%. MS=311.1.

General procedure for N-acyl-glutarimide synthesis (1d). An oven-dried round-bottomed flask (100 mL) equipped with a stir bar was charged with amine (8.84 mmol, 1.0 equiv.), triethylamine (typically, 2.0 equiv.), DMAP (typically, 0.25 equiv.), and dichloromethane (typically, 50 mL), placed under a positive pressure of nitrogen, and subjected to three evacuation/backfilling cycles under high vacuum.87 Acyl chloride (typically, 1.1 equiv.) was added dropwise to the reaction mixture with vigorous stirring at 0°C, and the reaction mixture was stirred overnight at room temperature. After the indicated time, the reaction mixture was diluted with Et₂O (20mL) and filtered. The organic layer was washed with HCl (1.0N, 30mL) and brine (30mL), dried, and concentrated. Unless stated otherwise, the crude product was purified by recrystallization (toluene) to give analytically pure product. Benzoylpiperidine-2,6-dione (1d). White solid. Yield 87%. MS = 217.1.

General procedure for saccharinamide synthesis (1e). A previously published procedure was followed.88 An oven-dried flask (25 mL) equipped with a stir bar was charged with the amine (typically, 3.0 mmol, 1.0 equiv.), triethylamine (typically, 1.0 equiv.), and N,N-dimethylacetamide (DMAc, typically, 0.75 M), placed under a positive pressure of nitrogen, and subjected to three evacuation/backfilling cycles under high vacuum. The acyl chloride (typically, 1.0 equiv.) was added dropwise to the reaction mixture with vigorous stirring at 0°C, and the reaction mixture was stirred for 1 h at room temperature. After the indicated time, the reaction mixture was diluted with H_2O (5 mL). The resulting solid was collected by filtration, washed with Et_2O (1×10mL), and dried. The crude product was purified by recrystallization (methanol or toluene) to give analytically pure product. N-Benzoylsaccharin (1e). Yield 85%. MS=287.0.

General procedure for the synthesis of S-p-tolyl benzothioate (e.g. **3a**). A mixture of **1a** (0.22 mmol, 1.1 equiv.), **2a** (0.2 mmol, 1.0 equiv.), and Na₂CO₃ (0.4 mmol, 2.0 equiv.) in 1,4-dioxane (2 mL) for 12–18 h at 80 °C. After the disappearance of **2a** (detected by TLC), the reaction mixture was washed with ethyl acetate (3×5.0 mL), and the combined organic phase was concentrated in vacuo and the residue purified by column chromatography on silica gel (eluted with PE/EtOAc=50:1) to provide the desired product **3a**.

One-pot experiment. To a dry flask was added primary amide **1a** (0.22 mmol, 1.1 equiv.), DMAP (typically, 0.10 equiv.), and dichloromethane (typically, 2 mL), and the mixture placed under a positive pressure of nitrogen. Di-tert-butyl dicarbonate (typically, 2.0 equiv.) was added portion wise with vigorous stirring at 0 °C, and the reaction mixture was stirred overnight at room temperature. The combined organic phase was concentrated in vacuo, a mixture of 2a (0.2 mmol, 1.0 equiv.) and Na₂CO₃ (0.4 mmol, 2.0 equiv.) in 1,4-dioxane (2 mL) for 12-18 h at 80 °C. After the disappearance of 2a (detected by TLC), the reaction mixture was washed with ethyl acetate $(3 \times 5.0 \text{ mL})$, the combined organic phase was concentrated in vacuo and the residue was purified by column chromatography on silica gel (eluted with PE/EtOAc=50:1) to provide the desired product 3a (53%).

S-(*p*-tolyl) benzothioate (**3a**)⁸⁹: A pale white crystalline solid; yield 95% (42.3 mg); m.p. 75–77 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.91 (d, *J*=7.6Hz, 2H), 7.46 (t, *J*=7.6Hz, 1H), 7.34 (t, *J*=7.6Hz, 2H), 7.29 (d, *J*=8.0Hz, 2H), 7.14 (d, *J*=8.0Hz, 2H), 2.28 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 190.5, 139.8, 136.8, 135.1, 133.6, 130.2, 128.8, 127.5, 123.9, 21.4 ppm. HRMS (ESI-TOF) calcd for C₁₄H₁₃OS [M + H]⁺: 229.0687; found: 229.0690.

S-(*p*-tolyl) 4-methylbenzothioate (**3b**)⁹⁰: A pale white crystalline solid; yield 77% (37.3 mg); m.p. 123.5–124.5 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.91 (d, *J*=8.0 Hz, 2H), 7.38 (d, *J*=8.0 Hz, 2H), 7.27–7.23 (m, 4H), 2.41 (s, 3H), 2.39 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 190.2, 144.6, 139.8, 135.2, 134.3, 130.2, 129.5, 127.7, 124.1, 21.8, 21.5 ppm. HRMS (ESI-TOF) calcd for C₁₅H₁₅OS [M + H]⁺; 243.0844; found: 243.0840.

S-(*p*-tolyl) 4-methoxybenzothioate (**3c**)⁹¹: A pale white crystalline solid; yield 75% (38.7 mg); m.p. 63–65 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.99 (d, *J*=8.8 Hz, 2H), 7.38 (d, *J*=8.0 Hz, 2H), 7.25 (d, *J*=8.0 Hz, 2H), 6.94 (d, *J*=8.8 Hz, 2H), 3.86 (s, 3H), 2.39 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 189.2, 166.1 (d, ¹*J*_{C-F}=255.2 Hz), 140.0, 135.1, 133.1 (d, ⁴*J*_{C-F}=2.6 Hz), 130.3, 130.1 (d, ³*J*_{C-F}=9.3 Hz), 123.6, 116.0 (d, ²*J*_{C-F}=22.1 Hz), 21.5 ppm. HRMS (ESI-TOF) calcd for C₁₅H₁₅O₂SNa [M+Na]⁺: 281.0612; found: 281.0599.

S-(*p*-tolyl) 4-fluorobenzothioate (**3d**): A pale white crystalline solid; yield 91% (44.8 mg); m.p. 71–73 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.06–8.02 (m, 2H), 7.38 (d, *J*=8.0 Hz, 2H), 7.27–7.24 (m, 2H), 7.14 (t, *J*=8.4 Hz, 2H), 2.39 (s, 3H) ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ –104.26 ppm. ¹³C NMR (100 MHz, CDCl₃): δ 189.2, 166.1 (d, *J*_{C-F}=255.2 Hz), 140.0, 135.1, 133.1 (d, *J*=2.6_{C-F}Hz), 130.3, 130.1 (d, *J*_{C-F}=9.3 Hz), 123.6, 116.0 (d, *J*_{C-F}=22.1 Hz), 21.5 ppm. HRMS (ESI-TOF) calcd for C₁₄H₁₂FOSNa [M + Na]⁺: 269.0412; found: 269.0394.

S-(*p*-tolyl) 4-chlorobenzothioate (**3e**): A pale white crystalline solid; yield 88% (46.1 mg); m.p. 84–86 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.95 (d, *J*=8.4 Hz, 2H), 7.43 (d, *J*=8.4 Hz, 2H), 7.37 (d, *J*=8.0 Hz, 2H), 7.30–7.22 (m, 2H), 2.39 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 189.5, 140.1, 140.0, 135.2, 135.1, 130.3, 129.1, 128.9, 123.5, 21.5 ppm. HRMS (ESI-TOF) calcd for C₁₄H₁₂ClOS [M + H]⁺: 263.0297; found: 263.0309.

S-(*p*-tolyl) 4-bromobenzothioate (**3f**): A pale white crystalline solid; yield 87% (53.1 mg); m.p. 93–95 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.79 (d, *J*=8.4 Hz, 2H), 7.53 (d, *J*=8.4 Hz, 2H), 7.29 (d, *J*=8.0 Hz, 2H), 7.24–7.12 (m, 2H), 2.32 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 189.7, 140.1, 135.6, 135.1, 132.1, 130.3, 129.0, 128.7, 123.4, 21.5 ppm. HRMS (ESI-TOF) calcd for C₁₄H₁₂BrOS [M + H]⁺: 306.9792; found: 306.9780.

S-(*p*-tolyl) 4-(trifluoromethyl)benzothioate (**3g**): A pale white crystalline solid; yield 76% (45.1 mg); m.p. 103–105 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.11 (d, *J*=8.0 Hz, 2H), 7.74 (d, *J*=8.0 Hz, 2H), 7.39 (d, *J*=7.6 Hz, 2H), 7.28 (d, *J*=7.6 Hz, 2H), 2.41 (s, 3H) ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ -63.09 ppm. ¹³C NMR (100 MHz, CDCl₃): δ 189.9, 140.3, 139.7, 135.1, 135.0 (q, ²*J*_{C-F}=32.8 Hz), 130.4, 127.9, 125.9 (q, ³*J*_{C-F}=3.6 Hz), 123.6 (q, ¹*J*_{C-F}=272.7 Hz),

123.1, 21.5 ppm. HRMS (ESI-TOF) calcd for C₁₅H₁₂F₃OS [M + H]⁺: 297.0561; found: 297.0542.

S-(*p*-tolyl) pyridine-3-carbothioate (**3h**): A pale white crystalline solid; yield 47% (21.5 mg); m.p. 80–82 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.74 (d, *J*=4.8 Hz, 1H), 7.95 (d, *J*=7.6 Hz, 1H), 7.86 (t, *J*=7.2 Hz, 1H), 7.57–7.52 (m, 1H), 7.41 (d, *J*=7.6 Hz, 2H), 7.27 (d, *J*=7.6 Hz, 2H), 2.40 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 192.4, 151.9, 149.3, 139.7, 137.5, 135.0, 130.2, 128.1, 124.7, 120.9, 21.5 ppm. HRMS (ESI-TOF) calcd for C₁₃H₁₂NOSNa [M + Na]⁺: 252.0459; found: 252.0455.

S-(*p*-tolyl) furan-2-carbothioate (**3i**): A pale white crystalline solid; yield 80% (34.9 mg); m.p. 74–76 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.60 (s, 1H), 7.38 (d, *J*=8.0 Hz, 2H), 7.29–7.17 (m, 3H), 6.55 (dd, *J*=3.2, 1.6 Hz, 1H), 2.39 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 179.2, 150.5, 146.5, 140.1, 135.2, 130.2, 122.7, 116.2, 112.5, 21.5 ppm. HRMS (ESI-TOF) calcd for C₁₂H₁₁O₂S [M+H]⁺: 219.0479; found: 219.0465.

S-(p-tolyl) naphthalene-2-carbothioate (**3j**): A pale white crystalline solid; yield 81% (45.1 mg); m.p. 119–121 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.59 (s, 1H), 8.01 (dd, *J*=8.4, 1.6 Hz, 1H), 7.96 (d, *J*=8.0 Hz, 1H), 7.87 (t, *J*=8.4 Hz, 2H), 7.63–7.48 (m, 2H), 7.43 (d, *J*=8.0 Hz, 2H), 7.27 (d, *J*=8.0 Hz, 2H), 2.40 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 190.6, 139.9, 136.0, 135.2, 134.1, 132.6, 130.2, 129.7, 129.0, 128.70, 128.67, 127.9, 127.1, 124.0, 123.4, 21.5 ppm. HRMS (ESI-TOF) calcd for C₁₈H₁₅OS [M + H]⁺: 279.0844; found: 279.0847.

S-(4-methoxyphenyl) benzothioate (**4a**)⁹²: A pale white crystalline solid; yield 65% (31.5 mg); m.p. 92–94 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.02 (d, *J*=7.2 Hz, 2H), 7.59 (t, *J*=7.2 Hz, 1H), 7.47 (t, *J*=7.8 Hz, 2H), 7.41 (d, *J*=8.8 Hz, 2H), 6.98 (d, *J*=8.8 Hz, 2H), 3.84 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 191.1, 160.9, 136.8, 136.7, 133.7, 128.8, 127.6, 118.0, 115.1, 55.5 ppm. HRMS (ESI-TOF) calcd for C₁₄H₁₃O₂SNa [M+Na]⁺: 267.0456; found: 267.0465.

S-(4-(tert-butyl)phenyl) benzothioate (**4b**): A pale white crystalline solid; yield 71% (38.4 mg); m.p. 77–79 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.03 (d, *J*=7.2 Hz, 2H), 7.59 (t, *J*=7.2 Hz, 1H), 7.46–7.43 (m, 6H), 1.34 (s, 9H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 190.6, 152.9, 136.9, 134.8, 133.7, 128.8, 127.6, 126.5, 124.0, 34.9, 31.4 ppm. HRMS (ESI-TOF) calcd for C₁₇H₁₉OS [M + H]⁺: 271.1157; found: 271.1157.

S-(*o*-tolyl) benzothioate (**4c**): A yellow oily liquid; yield 84% (38.4 mg); ¹H NMR (400 MHz, CDCl₃): δ 8.05 (d, *J*=7.2 Hz, 2H), 7.59 (t, *J*=7.2 Hz, 1H), 7.48 (t, *J*=7.6 Hz, 3H), 7.41–7.33 (m, 2H), 7.32–7.20 (m, 1H), 2.40 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 189.7, 142.8, 136.9, 136.5, 133.7, 130.9, 130.3, 128.8, 127.7, 126.9, 126.8, 20.9 ppm. HRMS (ESI-TOF) calcd for C₁₄H₁₃OS [M + H]⁺: 229.0687; found: 229.0685.

S-(4-fluorophenyl) benzothioate (4d)⁹¹: A pale white crystalline solid; yield 87% (40.4 mg); m.p. 51-52 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.01 (d, *J*=7.2 Hz, 2H), 7.61 (t, *J*=7.2 Hz, 1H), 7.51-7.45 (m, 4H), 7.15 (t, *J*=8.8 Hz, 2H) ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ -111.02 ppm. ¹³C NMR (100 MHz, CDCl₃): δ 190.2, 163.8 (d, ¹*J*_{CF}=250.1 Hz),

found: 233.0431. *S-(4-chlorophenyl) benzothioate* (**4e**)⁹⁰: A pale white crystalline solid; yield 95% (47.2 mg); m.p. 73–74 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.00 (d, *J*=7.2 Hz, 2H), 7.63– 7.55 (m, 3H), 7.48 (t, *J*=7.6 Hz, 2H), 7.36 (d, *J*=8.4 Hz, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 189.5, 136.6, 136.5, 134.0, 132.6, 128.9, 127.6, 126.6, 124.4 ppm. HRMS (ESI-TOF) calcd for C₁₃H₁₀ClOSNa [M + Na]⁺: 270.9960; found: 270.9950.

S-(4-bromophenyl) benzothioate (4f)⁹³: A pale white crystalline solid; yield 96% (56.1 mg); m.p. 68–70 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.01 (d, *J*=7.3 Hz, 2H), 7.61 (t, *J*=7.4 Hz, 1H), 7.48 (t, *J*=7.8 Hz,2H), 7.45–7.40 (m, 4H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 189.7, 136.5, 136.4, 136.1, 134.0, 129.6, 128.9, 127.6, 126.0 ppm. HRMS (ESI-TOF) calcd for C₁₃H₁₀BrOS [M + H]⁺: 292.9636; found: 292.9623.

S-(4-(trifluoromethyl)phenyl) benzothioate (4g)⁹⁴: A pale white crystalline solid; yield 86% (48.5 mg); m.p. 105–106 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.02 (d, *J*=7.4 Hz, 2H), 7.70 (d, *J*=8.2 Hz, 2H), 7.65–7.61 (m, 3H), 7.50 (t, *J*=7.6 Hz, 2H) ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ –62.83 ppm. ¹³C NMR (100 MHz, CDCl₃): δ 189.0, 136.4, 135.3, 134.2, 132.3, 131.6 (q, ²*J*_{C-F}=32.6 Hz), 129.0, 127.7, 126.1 (q, ³*J*_{C-F}=3.7 Hz), 124.0 (q, ¹*J*_{C-F}=272.5 Hz) ppm. HRMS (ESI-TOF) calcd for C₁₄H₁₀F₃OS [M + H]⁺: 283.0404; found: 283.0405.

S-(3,4-dimethylphenyl) benzothioate (**4h**): A pale white crystalline solid; yield 46% (22.3 mg); m.p. 78–80 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.02 (d, *J*=7.2 Hz, 2H), 7.58 (t, *J*=7.6 Hz, 1H), 7.46 (t, *J*=7.6 Hz, 2H), 7.23–7.20 (m, 3H), 2.294 (s, 3H), 2.286 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 190.9, 138.7, 137.9, 136.9, 136.2, 133.6, 132.7, 130.7, 128.8, 127.6, 123.9, 19.9, 19.8 ppm. HRMS (ESI-TOF) calcd for C₁₅H₁₅O [M + H]+: 243.0843; found: 243.0832.

S-(perfluorophenyl) benzothioate (**4i**)⁹⁵: A pale white crystalline solid; yield 33% (20.1 mg); m.p. 47–49 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.03 (d, *J*=7.6 Hz, 2H), 7.66 (t, *J*=7.6 Hz, 1H), 7.53 (t, *J*=8.0 Hz, 2H) ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ –62.82 ppm. ¹³C NMR (100 MHz, CDCl₃): δ 185.7, 139.0, 136.2, 135.8, 134.6, 132.7, 129.2, 129.0, 128.0 ppm. HRMS (ESI-TOF) calcd for C₁₃H₆F₅OS [M + H]⁺: 305.0060; found: 305.0047.

S-(*naphthalen-2-yl*) *benzothioate* $(4j)^{91}$: A pale yellow crystalline solid; yield 82% (42.3 mg); m.p. 116–118 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.05 (d, *J*=7.6Hz, 3H), 7.91–7.80 (m, 3H), 7.59 (t, *J*=7.2Hz, 1H), 7.56–7.44 (m, 5H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 190.4, 136.8, 135.0, 133.8, 133.7, 133.6, 131.5, 128.9, 128.9, 128.1, 127.9, 127.6, 127.3, 126.7, 124.8 ppm. HRMS (ESI-TOF) calcd for C₁₇H₁₃OS [M + H]⁺: 265.0687; found: 265.0675.

S-cyclopentyl benzothioate (**4k**): A white oily liquid; yield 50% (20.6 mg); ¹H NMR (400 MHz, CDCl₃): δ 7.94 (d, *J*=7.6 Hz, 2H), 7.55 (t, *J*=7.2 Hz, 1H), 7.43 (t, *J*=7.6 Hz, 2H), 4.00–3.85 (m, 1H), 2.20 (d, *J*=5.6 Hz, 2H), 1.85–1.58 (m, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 192.8, 137.5,

133.2, 128.6, 127.3, 42.8, 33.5, 25.0 ppm. HRMS (ESI-TOF) calcd for $C_{12}H_{15}OS [M + H]^+$: 207.0844; found: 207.0827.

S-cyclohexyl benzothioate (**4**]): A white oily liquid; yield 44% (19.4 mg); ¹H NMR (400 MHz, CDCl₃): δ 7.95 (d, *J*=7.6 Hz, 2H), 7.55 (t, *J*=7.2 Hz, 1H), 7.43 (t, *J*=7.6 Hz, 2H), 3.73 (s, 1H), 2.02 (d, *J*=9.2 Hz, 2H), 1.77 (s, 2H), 1.69–1.42 (m, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 192.0, 137.6, 133.2, 128.7, 127.3, 42.7, 33.3, 26.2, 25.8 ppm. HRMS (ESI-TOF) calcd for C₁₃H₁₇OS [M + H]⁺: 221.1000; found: 221.0998.

S-benzyl benzothioate $(4m)^{92}$: A pale white crystalline solid; yield 95% (43.3 mg); m.p. 36–38 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.96 (d, *J*=7.2 Hz, 2H), 7.54 (t, *J*=7.2 Hz, 1H), 7.42 (t, *J*=7.6 Hz, 2H), 7.37 (d, *J*=7.6 Hz, 2H), 7.30 (t, *J*=7.6 Hz, 2H), 7.27–7.21 (m, 1H), 4.31 (s, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 191.4, 137.6, 136.9, 133.5, 129.1, 128.8, 128.7, 127.4, 127.4, 33.5 ppm. HRMS (ESI-TOF) calcd for C₁₄H₁₃OS [M + H]⁺: 229.0687; found: 229.0693.

S-phenethyl benzothioate $(4n)^{92}$: A white oily liquid; yield 51% (24.7 mg); ¹H NMR (400 MHz, CDCl₃): δ 7.96 (d, J=7.6 Hz, 2H), 7.55 (t, J=7.3 Hz, 1H), 7.43 (t, J=7.3 Hz, 2H), 7.33–7.18 (m, 5H), 3.31 (t, J=7.5 Hz, 2H), 2.97 (t, J=7.7 Hz, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 191.9, 140.2, 137.3, 133.4, 128.8, 128.7, 128.7, 127.3, 126.7, 36.1, 30.6 ppm. HRMS (ESI-TOF) calcd for C₁₅H₁₅OS [M + H]⁺: 243.0844; found: 243.0854.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this paper.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this paper: We gratefully acknowledge the NSFC (21562026, 21762025) and the Natural Science Foundation of Jiangxi Province (20161BAB203085) for financial support.

ORCID iD

Jin Luo Dhttps://orcid.org/0000-0003-4001-1356

Supplemental material

Supplemental material for this paper is available online.

References

- 1. Wilkinson BL, Stone RS and Capicciotti CJ. *Angew Chem Int Ed* 2012; 51: 3606.
- Horst BT, Feringa BL and Minnaard AJ. Chem Commun 2007; 0: 489.
- 3. Staunton J and Weissman KJ. Nat Prod Rep 2001; 18: 380.
- Mehrsheikh ME, Clizbe LA and Singh H. J Labelled Compd Radiopharm 1990; 28: 437.
- Kumar KS, Bavikar SN and Spasser L. Angew Chem Int Ed 2011; 50: 6137.
- 6. Fuwa H, Nakajima M and Shi J. Org Lett 2011; 13: 1106.
- 7. Dawson PE, Muir TW and Kent SB. Science 1994; 266: 776.
- Benaglia M, Cinquini M and Cozzi M. Eur J Org Chem 2000; 11: 563.

- 9. Danheiser RL and Nowick JS. J Org Chem 1991; 56: 1176.
- Um PJ and Drueckhammer DG. J Am Chem Soc 1998; 120: 5605.
- 11. Masamune S, Hayase Y and Schilling M. J Am Chem Soc 1977; 99: 6756.
- 12. Nambu H, Hata K and Matsugi M. Chem Eur J 2005; 11: 719.
- 13. Savarin M, Srogl J and Liebeskind LS. *Org Lett* 2000; 2: 3229.
- 14. Conrow R and Portoghese PS. J Org Chem 1986; 51: 938.
- Iimura S, Manabe K and Kobayashi S. *Chem Commun* 2002; 9: 95.
- Keating TA and Walsh CT. Curr Opin Chem Biol 1999; 3: 598.
- 17. Meshram HM, Reddy GS, Bindu KH, et al. Synlett 1998; 8: 877.
- 18. Magens M and Plietker B. Chem Eur J 2011; 17: 8807.
- Katritzky AR, Shestopalov AA and Suzuki K. Synthesis 2004; 11: 1806.
- 20. Ahmad S and Iqbal J. Tetrahedron Lett 1986; 27: 3791.
- 21. Xiao WJ and Alper H. J Org Chem 1997; 62: 3422.
- 22. Zeng F and Alper H. Org Lett 2011; 13: 2868.
- 23. Xiao WJ, Vasapollo G and Alper H. *J Org Chem* 2000; 65: 4138.
- 24. Xiao WJ, Vasapollo G and Alper H. *J Org Chem* 1999; 64: 2080.
- 25. Xiao WJ, Vasapollo G and Alper H. *J Org Chem* 1998; 63: 2609.
- 26. Xiao WJ and Alper H. J Org Chem 2005; 70: 1802.
- 27. Xiao WJ and Alper H. J Org Chem 2001; 66: 6229.
- 28. Xiao WJ and Alper H. J Org Chem 1999; 64: 9646.
- 29. Xiao WJ and Alper H. J Org Chem 1998; 63: 7939.
- 30. Li CF, Xiao WJ and Alper H. J Org Chem 2009; 74: 888.
- 31. Cao H, Xiao WJ and Alper H. *Adv Synth Catal* 2006; 348: 1807.
- 32. Zeng JW, Liu YC and Hsieh PA. *Green Chem* 2014; 16: 2644.
- 33. Bandgar SB, Bandgar BP and Korbad BL. *Tetrahedron Lett* 2007; 48: 1287.
- 34. Takise R, Muto K and Yamaguchi J. *Chem Soc Rev* 2017; 46: 5864.
- 35. Shi S, Nolan SP and Szostak M. Acc Chem Res 2018; 51: 2589.
- 36. Liu C and Szostak M. Org Biomol Chem 2018; 16: 7998.
- Lee SC, Liao HH and Chatupheeraphat A. *Chem Eur J* 2018; 24: 3608.
- 38. Buchspies J and Szostak M. Catalysts 2019; 9: 53.
- 39. Hie L, Houk KN and Garg NK. *Nature* 2015; 524: 79.
- 40. Shi S, Meng G and Szostak M. *Angew Chem Int Ed* 2016; 55: 6959.
- 41. Shi S, Lei P and Szostak M. Organometallics 2017; 36: 3784.
- 42. Meng G and Szostak M. Org Biomol Chem 2016; 14: 5690.
- 43. Meng G and Szostak M. Org Lett 2015; 17: 4364.
- 44. Lei P, Meng M and Szostak M. ACS Catal 2017; 7: 1960.
- 45. Lei P, Meng M, Ling Y, et al. J Org Chem 2017; 82: 6638.
- 46. Ji CL and Hong X. J Am Chem Soc 2017; 139: 15522.
- 47. Dardir AH, Melvin PR, Davis RM, et al. *J Org Chem* 2018; 83: 469.
- 48. Dander JE and Garg NK. ACS Catal 2017; 7: 1413.
- 49. Weires NA, Dander JE and Garg NK. *ACS Catal* 2016; 6: 3176.
- 50. Shi S and Szostak M. Chem Eur J 2016; 22: 10420.
- 51. Shi S and Szostak M. Org Lett 2016; 18: 5872.

- 52. Lee SC, Guo L, Yue H, et al. Synlett 2017; 28: 2594.
- 53. Hu J, Zhao Y, Liu J, et al. *Angew Chem Int Ed* 2016; 55: 8718.
- 54. Yue H, Guo L and Lee SC. *Angew Chem Int Ed* 2017; 56: 3972.
- 55. Scharnagl FK, Bose SK and Marder TB. Org Biomol Chem 2017; 15: 1738.
- Numano M, Nagami N, Nakatsuka S, et al. *Chem Eur J* 2016; 22: 11574.
- 57. Liu MY, Hong SB, Zhang W, et al. *Chin Chem Lett* 2015; 26: 373.
- Hie L, Baker EL and Garg GK. Angew Chem Int Ed 2016; 55: 15129.
- 59. He J, Shao Q, Wu Q, et al. J Am Chem Soc 2017; 139: 3344.
- Ben Halima T, Shkoor M and Newman SG. ACS Catal 2017; 7: 2176.
- 61. Chatupheeraphat A, Liao HH and Rueping M. Org Lett 2017; 19: 3091.
- Yue H, Guo L and Rueping M. *Angew Chem Int Ed* 2017; 56: 4282.
- 63. Yue H, Guo L and Rueping M. Angew Chem 2017; 129: 4030.
- 64. Shi S and Szostak M. Org Lett 2017; 19: 3095.
- 65. Ni S, Zhang W, Mei H, et al. Org Lett 2017; 19: 2536.
- 66. Meng G and Szostak M. Org Lett 2016; 18: 796.
- 67. Liu Y, Meng G, Liu R, et al. Chem Commun 2016; 52: 6841.
- Liu Y, Liu R and Szostak M. Org Biomol Chem 2017; 15: 1780.
- 69. Liu C and Szostak M. Angew Chem Int Ed 2017; 56: 12718.
- 70. Lei P, Meng M, Ling Y, et al. Org Lett 2017; 19: 6510.
- John A, Miranda MO and Tolman WB. Organometallics 2016; 35: 2391.
- Chatupheeraphat A, Liao HH, Lee SC, et al. Org Lett 2017; 19: 4255.
- 73. Amani J, Alam R, Badir R, et al. Org Lett 2017; 19: 2426.
- 74. Liu Y, Shi S, Achtenhagen M, et al. Org Lett 2017; 19: 1614.
- 75. Dander JE, Baker EL and Garg NK. Chem Sci 2017; 8: 6433.
- 76. Li G and Szostak M. Nat Commun 2018; 9: 4165.
- Liu L, Achtenhagen M, Liu R, et al. *Org Biomol Chem* 2018; 16: 1322.
- 78. Li G, Lei P and Szostak M. Org Lett 2018; 20: 5622.
- Meng M, Shi S, Lalancette R, et al. J Am Chem Soc 2018; 140: 727.
- 80. Szostak R and Szostak M. Molecules 2019; 24: 274.
- 81. Liu C and Szostak M. Chem Eur J 2017; 23: 7157.
- 82. Meng G and Szostak M. ACS Catal 2017; 7: 7251.
- 83. Lei P, Meng G and Szostak G. Org Lett 2017; 19: 6510.
- 84. Meng G, Shi S and Szostak M. ACS Catal 2016; 6: 7335.
- 85. Meng G, Shi S, Lalancette R, et al. J Am Chem Soc 2018; 140: 727.
- 86. Li G, Lei P and Szostak M. Org Lett 2018; 20: 5625.
- 87. Szostak R and Szostak M. Org Lett 2018; 20: 1342.
- 88. Liu C, Meng G and Szostak M. J Org Chem 2016; 81: 12023.
- Arisawa M, Yamada T and Yamaguchi M. *Tetrahedron Lett* 2010; 51: 6090.
- 90. Kim M, Yu S and Kim JG. Org Chem Front 2018; 5: 2447.
- 91. Rong G, Mao J and Liu D. RSC Adv 2015; 5: 26461.
- 92. Nambu H, Hata K and Kita Y. Chem. Eur J 2005; 11: 719.
- 93. He C, Qian X and Sun P. Org Biomol Chem 2014; 12: 6072.
- Zeng J-W, Badsara SS and Lee C-F. *Green Chem* 2014; 16: 2644.
- 95. Ali W, Guin S and Patel BK. *Adv Synth Catal* 2014; 356: 3099.