Asymmetric Reduction of Prochiral 3-Aryl-3-oxoesters with Lithium Borohydride using N,N'-Dibenzoylcystine as a Chiral Auxiliary

Kenso Soai,* Takashi Yamanoi, Hitoshi Hikima, and Hidekazu Oyamada

Department of Applied Chemistry, Faculty of Science, Science University of Tokyo, Kagurazaka, Shinjuku-ku, Tokyo 162, Japan

Optically active 3-aryl-3-hydroxyesters of high enantiomeric excess (80—92% e.e.) are obtained by the reduction of 3-aryl-3-oxoesters with lithium borohydride which has been chirally modified with *N,N'*-dibenzoylcystine and t-butyl alcohol.

Optically active 3-hydroxyesters (1) form an important class of compounds. Asymmetric reductions of 3-oxoesters (2) to (1) by microbial² or chemical (modified Raney nickel³) methods are known. However, very few examples of the reduction of (2; $R^1 = \text{aryl}$) have been reported. ^{2a}

During our continuing study on chemoselective⁴ and asymmetric⁵ reduction with complex borohydrides, we observed a highly enantioselective reduction of $(2; R^1 = aryl)$ by LiBH₄ partially decomposed with N, N'-dibenzoylcystine (3) and Bu¹OH. When ethyl benzoylacetate (2b) was reduced in the presence of (R, R')-(3), (R)-(+)-(1b) was obtained in 94% yield and in 87% enantiomeric excess (%e.e., Table 1, entry 2).† The chiral auxiliary was recovered in over 70% yield.

Esters of sec-, tert-alcohols (2c, e), and ethyl 1-naphthoylacetate (2i) were found to be slightly more effectively reduced, thus the %e.e.'s of (1c, e, i) reached 90% (entries 4, 6, and 10).

R1

OR2

(S,S') or
$$(R,R')$$
-(3)

LiBH₄, Bu⁴OH

THF

OR

(1)

a; R¹ = Ph, R² = Me
b; R¹ = Ph, R² = Et
c; R¹ = Ph, R² = Prⁱ
d; R¹ = Ph, R² = Buⁿ
e; R¹ = Ph, R² = Buⁿ
f; R¹ = Ph, R² = Buⁿ
f; R¹ = Ph, R² = n-Hexyl
g; R¹ = p-Tolyl, R² = Et
h; R¹ = 4-MeO-C₆H₄, R² = Et
i; R¹ = 1-Naphthyl, R² = Et

(3) = N, N'-Dibenzoylcystine, THF = tetrahydrofuran

^{† (}S)-(-)-(1b), produced *via* yeast reduction { $[\alpha]_D^{20}$ -25.8° (c 1.3, CHCl₃)}, ref. 2a, is claimed to be optically pure based on the lit. value of $[\alpha]_D^{20}$ +19.2° (c 1.0, CHCl₃) (J. Kenyon, H. Phillips, and G. R. Schutt, *J. Chem. Soc.*, 1935, 1663). However, the specific rotation of our (S)-(-)-(1b) had a larger value: $[\alpha]_D^{22}$ -40.8° (c 1.03, CHCl₃) (Table 1, entry 3).

Table 1. Asymmetric reduction of (2) to (1).a

			(1)		
Entry	(2)	Yield (%)	$[\alpha]_{\mathbf{D}^{22}}(c, \text{solvent})$	Enantiomeric excess (%e.e.) ^b	Config- uration
1	a	78	+16.0° (4.80, EtOH)	84(87c)	R^{c}
2	b	94	$+43.1^{\circ}(3.11, CHCl_3)$	87(79 ^d)	$R^{ extsf{d}}$
3e	b	93	-41.5° (3.40, CHCl ₃)	86(76d)	$S^{ m d}$
			-40.8° (1.03, CHCl ₃) ^f		
4	c	83	+38.7° (2.61, CHCl ₃)	91	
5	d	83	+35.2° (3.78, CHCl ₃)	80	
6	e	88	+9.6° (3.03, EtOH)	90	
7	f	66	+31.6° (4.87, CHCl ₃)	86	
8	g	88	+38.6° (4.59, CHCl ₃)	85	
9	ĥ	85	+35.7° (5.26, CHCl ₃)	84	
10	i	90	$+62.3^{\circ}(3.55, CHCl_3)$	92	

^a Molar ratio of (2): LiBH₄: (3): Bu^tOH = 1.0: 3.6: 1.2: 1.6. Temperature ($-78 \rightarrow -30^{\circ}$ C). Unless otherwise noted, (R,R')-(3) was used. ^b Determined by ¹H n.m.r. spectroscopic analyses of the corresponding (−)-α-methoxy-α-(trifluoromethyl)phenylacetic acid esters, J. A. Dale, D. L. Dull, and H. S. Mosher, J. Org. Chem., 1969, 34, 2543. ^c Based on the reported value of (R)-(1a) [α]_D²⁴ +18.3° (C 4.78, EtOH), C. Schoepf and W. Wuest, Ann., 1959, 626, 150. ^d Based on the reported value of (C)-(1b) [α]_D²² −54.9° (C 3.5, CHCl₃), S. G. Cohen and S. Y. Weinstein, J. Am. Chem. Soc., 1964, 86, 725. ^c (C)-(3) was used. ^f Data measured in different concentration. See footnote[†].

One of the advantages of the present procedure over microbial methods is its easy access to either enantiomer of (1). The reduction of (2b) using either (R,R')-(3) or (S,S')-(3) afforded the corresponding enantiomer of (1b) in almost the same yield and %e.e. (entries 2 and 3).

This work was partially supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture.

Received, 9th October 1984; Com. 1434

References

- M. Guette, J. Capillon, and J. Guette, Tetrahedron, 1973, 29, 3659; D. Seebach and W. Langer, Helv. Chim. Acta, 1979, 62, 1701;
 D. A. Evans and L. R. McGee, J. Am. Chem. Soc., 1981, 103, 2876;
 M. Bednarski, C. Maring, and S. Danishefsky, Tetrahedron Lett., 1983, 3451.
- 2 (a) B. S. Deol, D. D. Ridley, and G. W. Simpson, Aust. J. Chem., 1976, 29, 2459; (b) D. Seebach and A. Fiechter, Angew. Chem.,

- Int. Ed. Engl., 1984, 23, 151; (c) H. Akita, A. Furuichi, H. Koshiji, K. Horikoshi, and T. Oishi, Tetrahedron Lett., 1982, 4051; (d) B. Zhou, A. S. Gopalan, F. VanMiddlesworth, W-R. Shieu, and C. J. Sih, J. Am. Chem. Soc., 1983, 105, 5925; (e) K. Mori, Tetrahedron, 1981, 37, 1341.
- 3 M. Nakahata, M. Imaida, H. Ozaki, T. Harada, and A. Tai, Bull. Chem. Soc. Jpn., 1982, 55, 2186.
- 4 K. Soai, H. Oyamada, and A. Ookawa, Synth. Commun., 1982, 12, 463; K. Soai, A. Ookawa, H. Oyamada, and M. Takase, Heterocycles, 1982, 19, 1371; K. Soai, A. Ookawa, and H. Hayashi, J. Chem. Soc., Chem. Commun., 1983, 668; K. Soai and H. Oyamada, Synthesis, 1984, 605; K. Soai, H. Oyamada, M. Takase, and A. Ookawa, Bull. Chem. Soc. Jpn., 1984, 57, 1948; K. Soai, H. Oyamada, and M. Takase, ibid., p. 2327.
- 5 K. Soai, K. Komiya, Y. Shigematsu, H. Hasegawa, and A. Ookawa, J. Chem. Soc., Chem. Commun., 1982, 1282; K. Soai and H. Hasegawa, J. Chem. Soc., Perkin Trans. I, in the press; K. Soai, T. Yamanoi, and H. Oyamada, Chem. Lett., 1984, 251; K. Soai, H. Oyamada, and T. Yamanoi, J. Chem. Soc., Chem. Commun., 1984, 413