Chemical Science

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: F. H. Lutter, L. Grokenberger, M. S. Hofmayer and P. Knochel, *Chem. Sci.*, 2019, DOI: 10.1039/C9SC01817D.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

rsc.li/chemical-science

View Article Online

View Journal

ARTICLE

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

Cobalt-Catalyzed Acylation-Reactions of (Hetero)Arylzinc Pivalates with Thiopyridyl Ester Derivatives

Ferdinand H. Lutter⁺, Lucie Grokenberger⁺, Maximilian S. Hofmayer⁺, and Paul Knochel^{*a}

A cobalt-catalyzed acylation reaction of various primary, secondary and tertiary alkyl, benzyl and (hetero)aryl *S*-pyridyl thioesters with (hetero)aryl zinc pivalates is reported. The thioesters were prepared directly from the corresponding carboxylic acids under mild conditions, thus tolerating sensitive functional groups. Acylations of α -chiral *S*-pyridyl esters proceeded with very high stereoretention leading to optically enriched α -chiral ketones.

Introduction

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence

Dpen Access Article. Published on 11 July 2019. Downloaded on 7/11/2019 9:30:13 AM

The carbonyl group is a central functionality in organic chemistry and the performance of acylation reactions employing organometallic reagents represents a general access to various ketones.¹ A major drawback of these reactions is the moderate chemoselectivity or the use of expensive catalysts.¹ Acid chlorides are the most common acylation reagents.¹⁻² However, their preparation requires harsh conditions, thus lowering the functional group tolerance. In contrast, the use of thioesters is a valuable alternative since Fukuyama showed in pioneering work that these acylating reagents react readily with organozinc halides in the presence of a palladium catalyst.³ Additionally, Seki,⁴ Rovis,⁵ Fleischer,⁶ and others⁷ showed that these reactions can be performed using transition metal catalysts. Recently, we have shown that organozinc pivalates (RZnOPiv) are an attractive class of zinc organometallics due to their enhanced air- and moisture stability and their excellent compatibility with various transition metal-catalyzed transformations.⁸ Especially, cobalt-catalyzed reactions have proven to be advantageous.9

Scheme 1 Preparation of thiopyridyl esters of type 1 from carboxylic acids 4 and cobaltcatalyzed acylation with organozinc pivalates 2, affording ketones of type 3. Py = 2-pyridyl. Herein, we wish to report a new cobalt-catalyzed acylation reaction of various saturated and unsaturated thioesters of type $R^1C(O)SPy$ (1) with aryl- and heteroarylzinc pivalates of type $R^2ZnOPiv$ (2), leading to a broad range of polyfunctional ketones of type 3. Although thioesters are readily available from the corresponding acid chlorides and thiols,¹⁰ the pyridyl thioesters 1 were prepared under exceedingly mild and neutral conditions from the corresponding carboxylic acid of type 4 using Mukaiyama's method (Scheme 1).¹¹

Results and discussion

In preliminary experiments, S-(pyridin-2-yl)-cyclohexanecarbothioate (1a) was treated with 4-(methoxyphenyl)zinc pivalate (2a) under various conditions (Table 1). In the absence of a catalyst, ketone 3a was obtained in only 9% yield (Table 1, entry 1). Although palladium and nickel are well-known metal catalysts for the Fukuyama acylation, the use of cheaper¹² and more abundant catalysts is highly desirable. Whereas, MnCl₂, CrCl₂, FeCl₂ or CuCl₂ gave unsatisfying results (entries 2-5), CoCl₂ proved to be an excellent catalyst for this transformation (entry 6). Its catalytic efficiency could be further improved by the addition of various ligands. After a short screening it became clear that 4,4'-di-tert-butyl-2,2'-dipyridyl (dtbbpy) gave the best results leading to the ketone 3a in 88% isolated yield (entry 11). At this point, we verified that no other metal contaminations are responsible for this catalysis. Thus, using CoCl₂ (99.99%) purity)13 led to 3a in 86% yield (entry 12). Furthermore, a screening showed that RC(O)SPy thioesters are superior to thioesters of type RC(O)SEt or RC(O)SPh.14

In a typical experiment palmitic acid (**4b**) was treated with 2,2'dipyridyl disulfide (1.1 equiv) and PPh₃ (1.5 equiv) in acetonitrile (0.3 M) under reflux for 3 h. Short purification using flash column chromatography afforded **1b** in 98% yield. The required zinc pivalate **2b** was prepared by treating 1-bromo-3,4-(methylenedioxy)benzene (**5b**) with Mg (1.2 equiv) and anhydrous LiCl (1.2 equiv) for 2 h at 0 °C leading to the corresponding arylmagnesium derivative (91% yield).¹⁵ Transmetalation with

^{a.}Ludwig-Maximilians-Universität München, Department Chemie Butenandtstraße 5-13, Haus F, 81377 München (Germany)

E-mail: paul.knochel@cup.uni-muenchen.de

⁺ These authors contributed equally to this work

Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/x0xx00000x

(hetero)arylzinc pivalates 2.[a]

Journal Name

DOI: 10.1039/C9SC01817D

Zn(OPiv)₂ (1.0 equiv) afforded the zinc organometallic **2b** in 93% yield.¹⁵ The thioester **1b** reacted with 3,4-(methylene-dioxy)-1-phenylzinc pivalate (**2b**) in the presence of 10 % CoCl₂ and 10% dtbbpy in THF (25 °C, 4 h) furnishing after standard workup and chromatographic purification the ketone **3b** in 90% yield (Table 2, entry 1).

Table 1 Optimization of the reaction conditions for the acylation of thioester 1a with

Entry	Catalyst	Ligand	Yield of 3a ^[a] [%]
1	-	-	9
2	MnCl ₂	-	traces
3	CrCl ₂	-	traces
4	FeCl ₂	-	50
5	CuCl ₂	-	29
6	CoCl ₂	-	67
7	CoCl ₂	PPh ₃ ^[b]	63
8	CoCl ₂	TMEDA	64
9	CoCl ₂	neocuproine	49
10	CoCl ₂	bipy ^[c]	71
11	CoCl ₂	dtbbpy ^[d]	90 (88) ^[e] (87) ^[f]
12	CoCl ₂ ^[g]	dtbbpy ^[d]	86

[a] Reactions were performed on a 0.5 mmol scale. Determined by GC-analysis. Tetradecane ($C_{14}H_{30}$) was used as internal standard. [b] 20% of the ligand was used. [c] 2,2'-Bipyridine. [d] 4,4'-Di-*tert*-butyl-2,2'-dipyridyl. [e] Isolated yield. [f] Reaction was performed on a 5 mmol scale. [g] CoCl₂ (99.99% purity) was used.

According to this procedure various ketones of type **3** were prepared. Hence, the heterocyclic indolylzinc pivalate (**2c**) was acylated with palmitic *S*-pyridyl thioate (**1b**) furnishing ketone **3c** in 74% yield (entry 2). Additionally, secondary thioesters derived from cyclobutane- (**4c**) and cyclohexanecarboxylic acid (**4a**) were employed to this acylation procedure leading to the corresponding ketones (**3d-3g**) in 60-95% yield (entries 3-6). Tertiary *S*-pyridyl thioesters **1d** and **1e** derived from 1adamantanecarboxylic acid (**4d**) and the lipid regulating drug gemfibrozil¹⁶ (**4e**) reacted smoothly with various functionalized arylzinc pivalates affording acylation products (**3h-3k**) in 61-81% yield (entries 7-10).

Table 2 Ketones 3 obtained by the acylation of various alkylthiopyridyl, estens 1 with

[a] The reactions were performed on a 0.5 mmol scale [b] Isolated yield of the *S*-pyridyl thioester prepared from the corresponding carboxylic acid, PySSPy (1.1 equiv), PPh₃ (1.5 equiv), MeCN, reflux, 3 h. [c] Isolated yield. [d] Prepared using *i*PrMgCl•LiCl (1.1 equiv), THF, -20 °C, 2 h.

ARTICLE

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

Open Access Article. Published on 11 July 2019. Downloaded on 7/11/2019 9:30:13 AM

Journal Name

Furthermore, the acylation reaction was extended to aryl- and heteroaryl-S-pyridyl thioesters (Table 3). Thus, (4-(ethoxycarbonyl)-phenyl)-zinc pivalate (**2k**) prepared via I/Mg-exchange using *i*PrMgCl•LiCl followed by transmetalation with $Zn(OPiv)_2^{8d}$ was readily acylated with *S*-pyridyl thioester **1f** affording the benzophenone **3l** in 71% yield (entry 1).

Table 3 Ketones 3 obtained by the acylation of (hetero)aryl-S-pyridyl thioesters 1 with (hetero)arylzinc pivalates 2.^[a]

Also, 2-benzothiophenylzinc pivalate **2I** generated, via, directed metalation of benzothiophene using $\Box TMPMgCI = 2iCD^{12}dired$ subsequent transmetalation with $Zn(OPiv)_2^{8d}$ underwent a cobalt catalyzed acylation reaction with **1f** leading to the ketone **3m** in 68% yield (entry 2). Various substituted aryl thioesters and ferrocenyl derivatives reacted successfully with functionalized (hetero)arylzinc pivalates affording the diaryl ketones **3n**-**3r** in 81-96% yield (entries 3-7). Additionally, 4-trifluoro-methoxyphenylzinc pivalate (**2o**) was acylated using quinoline thioester **1j** furnishing ketone **3s** in 68% yield (entry 8).¹⁷

The synthesis of α -chiral ketones is of great interest^{3, 5, 7c, 7f, 18} but often challenging under basic conditions due to epimerization. Also, reactions under pH-neutral conditions have been reported by Liebeskind et al. for the synthesis of highly enantiopure peptidyl ketones.¹⁹

Table 4 Preparation of $\alpha\text{-chiral}$ ketones 3 by acylation of thiopyridyl esters 1 with (hetero)arylzinc pivalates 2. $^{[a]}$

[a] The reactions were performed on a 0.5 mmol scale and at 0 °C instead of 25 °C. [b] Isolated yield of the *S*-pyridyl thioester prepared from the corresponding carboxylic acid, PySSPy (1.0 equiv), PPh₃ (1.0 equiv), MeCN, 0 °C to 25 °C, 16 h. [c] Isolated yield. [d] Prepared using *i*PrMgCl•LiCl (1.1 equiv), THF, 0 °C, 2 h.

We also tested the applicability of this cobalt-catalyzed acylation to the synthesis of optically enriched α -chiral ketones. Using α -chiral *S*-pyridyl thioesters at 0 °C afforded several α -chiral ketones with high stereoretention (Table 4). Thus, *S*-pyridyl thioester **1k** prepared from *N*-Boc protected (*S*)-proline

3.

4.

5.

Journal Name

View Article Online DOI: 10.1039/C9SC01817D

was treated with arylzinc reagents **2a** and **2b** leading to the corresponding α -chiral ketones in 72-82% yield and >99% *ee* (entries 1-2).

Furthermore, thioester **1I** derived from enantiopure (*S*)-ibuprofen reacted smoothly with the functionalized arylzinc pivalates **2p** and **2n** in 71-89% yield and 94-97% *ee* (entries 3-4). Also, arylzinc pivalates **2q** and **2r** bearing an amide or dimethylamino functionality were acylated using optically pure *S*-(pyridin-2-yl)-(*S*)-2-methylbutanethioate furnishing the α -chiral ketones in 69-84% yield and 95-98% *ee* (entries 5-6).

To gain insights into the reaction mechanism, radical trapping experiments were carried out. Thus, to a standard acylation setup of the developed protocol using *S*-pyridyl thioester **1a** and organozinc pivalate **2a**, various amounts of the radical trapping agent 2,2,6,6-tetramethylpiperidinyloxyl (TEMPO) were added. With 10% of the trapping reagent a decrease of the yield by 19% was observed for the acylation product **3a**. However, using 1.5 equiv of TEMPO the product formation is almost completely suppressed. This may indicate the involvement of radical intermediates within this acylation reaction.¹⁴

The utility of this acylation was demonstrated in the synthesis, the anitlipedemic drug fenofibrate²⁰ (**3**z) was synthesized (Scheme 2). Alkylation of 4-iodophenol (**6**) with isopropyl 2-bromo-2-methyl-propanoate (**7**) affords the corresponding iodo-aryl ether **8** in 70% yield. **8** was treated with Mg, LiCl and $Zn(OPiv)_2$ generating the arylzinc pivalate **2s** in 72% yield.^{8a} Using the new cobalt-catalyzed acylation procedure, fenofibrate (**3**z) was obtained in 65% yield.

Scheme 2 Synthesis of fenofibrate (3z) using the Co-catalyzed acylation.

Conclusion

In conclusion, we have reported a cobalt-catalyzed acylation procedure of a variety of functionalized (hetero)aryl zinc pivalates utilizing primary, secondary and tertiary alkyl, benzyl and (hetero)aryl S-pyridyl thioesters as mild acylating agents. These thioesters were readily prepared under neutral conditions from the corresponding carboxylic acid thus allowing their synthesis in the presence of various sensitives functional groups. Several α -chiral ketones were prepared with high stereoretention (94% to >99% *ee*). Further investigations are currently underway in our laboratories.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

We thank the DFG for financial support. We also thank Albemarle (Hoechst, Germany) and BASF SE (Ludwigshafen, Germany) for the generous gift of chemicals. We also thank Vanessa Braun, Constantin Nuber, and Arne Stolpmann for the preparation of starting materials.

Notes and references

- 1. (a) R. K. Dieter, *Tetrahedron*, 1999, **55**, 4177-4236; (b) D. A. Shirley, *Organic Reactions*, Wiley-VCH: Weinheim, 2011.
- (a) P. Knochel and R. D. Singer, *Chem. Rev.*, 1993, 93, 2117-2188; (b) C. K. Reddy and P. Knochel, *Angewandte Chemie International Edition in English*, 1996, 35, 1700-1701; (c) H. Fillon, C. Gosmini and J. Périchon, *Tetrahedron*, 2003, 59, 8199-8202; (d) *Handbook of Functionalized Organometallics*, Wiley-VCH: Weinheim, 2005; (e) S.-H. Kim and R. D. Rieke, *Tetrahedron Lett.*, 2011, 52, 1523-1526.
 - H. Tokuyama, S. Yokoshima, T. Yamashita and T. Fukuyama, Tetrahedron Lett., 1998, **39**, 3189-3192.
 - T. Shimizu and M. Seki, *Tetrahedron Lett.*, 2002, **43**, 1039-1042.
 - Y. Zhang and T. Rovis, *J. Am. Chem. Soc.*, 2004, **126**, 15964-15965.
 - P. H. Gehrtz, P. Kathe and I. Fleischer, Chem. Eur. J., 2018, 24, 8774-8778.
 - (a) M. Onaka, Y. Matsuoka and T. Mukaiyama, *Chem. Lett.*, 1981, **10**, 531-534; (b) C. Cardellicchio, V. Fiandanese, G. Marchese and L. Ronzini, *Tetrahedron Lett.*, 1985, **26**, 3595-3598; (c) W. Oppolzer, C. Darcel, P. Rochet, S. Rosset and J. De Brabander, *Helv. Chim. Acta*, 1997, **80**, 1319-1337; (d) B. Li, R. A. Buzon, C. K. F. Chiu, S. T. Colgan, M. L. Jorgensen and N. Kasthurikrishnan, *Tetrahedron Lett.*, 2004, **45**, 6887-6890; (e) K. Kunchithapatham, C. C. Eichman and J. P. Stambuli, *Chem. Commun.*, 2011, **47**, 12679-12681; (f) A. H. Cherney and S. E. Reisman, *Tetrahedron*, 2014, **70**, 3259-3265; (g) R. Haraguchi, S.-g. Tanazawa, N. Tokunaga and S.-i. Fukuzawa, *Org. Lett.*, 2017, **19**, 1646-1649.
 - (a) S. Bernhardt, G. Manolikakes, T. Kunz and P. Knochel, Angew. Chem. Int. Ed., 2011, 50, 9205-9209; (b) C. I.
 Stathakis, S. Bernhardt, V. Quint and P. Knochel, Angew. Chem. Int. Ed., 2012, 51, 9428-9432; (c) J. R. Colombe, S.
 Bernhardt, C. Stathakis, S. L. Buchwald and P. Knochel, Org. Lett., 2013, 15, 5754-5757; (d) S. M. Manolikakes, M.
 Ellwart, C. I. Stathakis and P. Knochel, Chem. - Eur. J., 2014, 20, 12289-12297; (e) M. Ellwart and P. Knochel, Angew. Chem. Int. Ed., 2015, 54, 10662-10665; (f) Y.-H. Chen, C. P.
 Tüllmann, M. Ellwart and P. Knochel, Angew. Chem. Int. Ed., 2017, 56, 9236-9239; (g) C. P. Tüllmann, Y.-H. Chen, R.
 J. Schuster and P. Knochel, Org. Lett., 2018, 20, 4601-4605; (h) M. S. Hofmayer, F. H. Lutter, L. Grokenberger, J. M. Hammann and P. Knochel, Org. Lett., 2019, 21, 36-39.
 - (a) J. M. Hammann, F. H. Lutter, D. Haas and P. Knochel, Angew. Chem. Int. Ed., 2017, **56**, 1082-1086; (b) M. S.

9

Journal Name

Hofmayer, J. M. Hammann, F. H. Lutter and P. Knochel, *Synthesis*, 2017, **49**, 3925-3930; (c) J. M. Hammann, L. Thomas, Y.-H. Chen, D. Haas and P. Knochel, *Org. Lett.*, 2017, **19**, 3847-3850; (d) Y.-H. Chen, S. Graßl and P. Knochel, *Angew. Chem. Int. Ed.*, 2018, **57**, 1108-1111; (e) L. Thomas, F. H. Lutter, M. S. Hofmayer, K. Karaghiosoff and P. Knochel, *Org. Lett.*, 2018, **20**, 2441-2444; (f) F. H. Lutter, S. Graßl, L. Grokenberger, M. S. Hofmayer, Y.-H. Chen and P. Knochel, *ChemCatChem*, DOI: 10.1002/cctc.201900070.

- B. P. Bandgar, P. E. More, V. T. Kamble and S. S. Sawant, Aust. J. Chem., 2008, 61, 1006-1010.
- (a) T. Endo, S. Ikenaga and T. Mukaiyama, *Bull. Chem. Soc. Jpn.*, 1970, **43**, 2632-2633; (b) T. Mukaiyama, M. Araki and H. Takei, *J. Am. Chem. Soc.*, 1973, **95**, 4763-4765; (c) T. Hofmann and P. Schieberle, *J. Agric. Food. Chem.*, 1998, **46**, 616-619.
- World market prices: Pd ca. 33938 €/kg and 3594 €/mol, Co ca 49 €/kg and 3 €/mol; http://www.infomine.com/; retrieved Dezember 2018.
- A new stirring bar and flask was used for the reaction, see:
 E. O. Pentsak, D. B. Eremin, E. G. Gordeev, V. P. Ananikov, ACS Catal., 2019, DOI: 10.1021/acscatal.1029b00294.
- 14. For further details, see supporting information.
- 15. The yield was determined by iodometric titration, see: A. Krasovskiy, P. Knochel, *Synthesis*, 2006, 890.
- 16. P. A. Todd and A. Ward, *Drugs*, 1988, **36**, 314-339.
- 17. For unsuccessful acylation reactions with (hetero)aryl zinc pivalates including several electron poor *N*-heterocyclic and sterically hindered organozinc reagents see supporting information.
- (a) G. T. Crisp and T. P. Bubner, *Synth. Commun.*, 1990, 20, 1665-1670; (b) G. Cahiez and E. Metais, *Tetrahedron Lett.*, 1995, 36, 6449-6452; (c) T. Fukuyama and H. Tokuyama, *Aldrichimica Acta*, 2004, 37, 100-101; (d) A. H. Cherney, N. T. Kadunce and S. E. Reisman, *J. Am. Chem. Soc.*, 2013, 135, 7442-7445; (e) R. Oost, A. Misale and N. Maulide, *Angew. Chem. Int. Ed.*, 2016, 55, 4587-4590.
- (a) H. Li, H. Yang and L. S. Liebeskind, Org. Lett., 2008, 10, 4375-4378; (b) L. S. Liebeskind, H. Yang and H. Li, Angew. Chem. Int. Ed., 2009, 48, 1417-1421.
- 20. G. M. Keating and K. F. Croom, Drugs, 2007, 67, 121-153.

View Article Online DOI: 10.1039/C9SC01817D A cobalt-catalyzed acylation reaction of (hetero)aryl zinc pivalates using primary, secondary and tertiary alkyl, benzyl and (hetero)aryl S-pyridyl thioesters has been developed.

