

Available online at www.sciencedirect.com

Tetrahedron Letters 46 (2005) 2243-2246

Tetrahedron Letters

Asymmetric synthesis of 3-methylthio alcohols by intramolecular Michael addition reactions

Aurelio Ortiz,^{a,*} Hector Hernández,^a Guadalupe Mendoza,^a Leticia Quintero^a and Sylvain Bernès^{b,*}

^aCentro de investigación de la Facultad de Ciencias Químicas de la Benemérita Universidad Autónoma de Puebla, Puebla Pue. 72570, México

^bInstituto de Ciencias de la Benemérita Universidad Autónoma de Puebla, Puebla Pue. 72570, México

Received 24 January 2005; revised 2 February 2005; accepted 3 February 2005

Abstract—Chiral 3-methylthio alcohols have been synthesized through a known intramolecular sulfur transfer reaction that has been carried out in di- and trisubstituted α , β -unsaturated *N*-enoyl oxazolidinethiones as substrates, giving rise to *syn/anti*-diastereomers. The *anti*-diastereomer is favored and obtained via a highly diastereoselective protonation step. © 2005 Elsevier Ltd. All rights reserved.

The introduction of a thiol group in the α and β -positions of carboxylic acid derivatives, has been subject of extensive researches. $S_N 2$ substitution has been the method employed to prepare α -mercapto derivatives from α -hydroxy or α -halo acids with (RS⁻) as nucleophile.¹ On the other hand nucleophilic addition reactions, such as the Michael addition, have provided β -mercapto derivatives through the addition of thiols to achiral² or chiral³ α , β -unsaturated carboxylic acid derivatives.² Both methodologies used different kinds of thiols, which after their addition, were cleavaged for different reactions carried out in an atmosphere of dry, oxygen-free nitrogen.¹

A highly diastereoselective Michael addition of a thiol to α -substituted α , β -unsaturated derivatives has been described based on asymmetric protonation.⁴ On the other hand it has also been described that the addition of thiols to trisubstituted *E* and *Z* α , β -unsaturated carboxylic acid derivatives produces stereospecifically *erythro* and *threo* adducts, respectively.²

Palomo et al. have described highly diastereoselective preparation of such compounds through intramolecular

sulfur transfer in *N*-enoyl oxazolidinethiones.⁵ Recently, this methodology has been applied in the construction of C–S bonds with a quaternary stereocenter.⁶

We describe herein the preparation of a series of chiral methylthio alcohols, which are shown in Figure 1. Their synthesis was achieved by the intramolecular sulfur transfer reaction in di- and trisubstituted α , β -unsaturated *N*-enoyl oxazolidinethiones, followed by protection of the thiol and removal of the oxazolidinone by reduction with LiAlH₄.

Figure 1.

The chiral auxiliary oxazolidinethione employed was prepared from (S)-valine⁷ and the N-enoyl oxazolidinethiones (**1a–c**) were prepared as previously described^{5,7} in yields of 70–79%, all of them as *E*-isomers. The

^{*} Corresponding authors. Tel.: +52 222 2295500 7518; fax: +52 222 2295584 (A.O.); tel.: +52 222 2295500 7297; fax: +52 222 2295551 (S.B.); e-mail addresses: jaortizm@siu.buap.mx; sylvain_bernes@ hotmail.com

^{0040-4039/\$ -} see front matter @ 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2005.02.021

intramolecular sulfur transfer reaction of these *N*-enoyl oxazolidinethiones was performed using SnCl₄ and NbCl₅, as promoters, to afford the desired β -mercapto adducts (**2a**-c) as shown in Scheme 1. The results and reaction conditions are listed in Table 1.

Scheme 1. Reagents: (a) SnCl₄ or NbCl₅, CH₂Cl₂, H₂O.

Table 1. Intramolecular sulfur transfer reaction of the N-enoyloxazolidinethiones

Products	Promoter	T (°C)/ t (h) ^a	Yield ^b (%)	antilsyn ^d
2a/2a'	SnCl ₄	-78/14	40	98:2
2b/2b'	NbCl ₅	-30/72	93°	84:16 ^e
2b/2b'	SnCl ₄	0/60	70°	84:16 ^e
2c/2c'	SnCl ₄	-78/14	52	96:4

^a T = temperature, t = time.

^b Purified yield.

^c Yield of the diastereomeric mixture.

^d Diastereomeric isomer ratios were determined by HPLC on the crude products.

^e Ratio determined by NMR.

From the data in Table 1, for adducts 2b and 2b' the use of different reaction conditions provides the same diastereomeric ratio. This reaction at -78 °C and large reaction times provided starting material. The formation of new chiral centers in compounds 2a and 2c is highly diastereoselective and the *E*-isomers (1a-c) provide the *anti*-diastereomers (2a-c) mainly.

The configuration at the newly formed stereogenic centers (C-12, C-13) are *S* and *R*, respectively, for both compound **2a**, and **2c** as established by X-ray analysis (Figs. 2 and 3).^{8,9}

Figure 2. Molecular structure of the β -mercapto compound 2a.

Figure 3. Molecular structure of the β -mercapto compound 2c.

The intramolecular sulfur transfer reaction in **1b** provides an *anti/syn*-diastereomeric mixture in a ratio 84/ 16 for adducts **2b/2b'**. Their isolation gives *anti*-diastereomer **2b** as a liquid compound and *syn*-diastereomer **2b'** as a solid compound. For **2b'** the absolute configuration at the newly formed stereogenic centers (C-12, C-13) are *R* and *S*, respectively, as established by X-ray analysis (Fig. 4).¹¹

Figure 4. Molecular structure of the β -mercapto compound 2b'.

The sense of stereodirection is the same for principal compounds as shown in Table 2.

Fable 2. Physica	l properties	of the	β-mercapto	compounds
-------------------------	--------------	--------	------------	-----------

Compound	Mp (°C)	$[\alpha]_{\mathbf{D}}(c)^{\mathbf{a}}$
2a -(<i>S</i> , <i>R</i>)	70–72	-43.2 (1.25)
2b -(<i>S</i> , <i>S</i>)	_	-58.1 (1.60)
2b' - (R,S)	145	+14.1(1.05)
2c -(<i>S</i> , <i>R</i>)	92–93	-65.2 (1.10)

^a Determined in CHCl₃ at 25 °C.

This diastereoselective can be explained by cyclization between the sulfur atom and the C(β) atom of the α , β unsaturated system, to form a six-membered ring as shown in Figure 5. A posterior diastereoselective protonation gave the *anti*-diastereomer mainly.

Figure 5.

Subsequently, the compounds $2(\mathbf{a}-\mathbf{c})$ and $2(\mathbf{d}-\mathbf{e})^7$ were treated with CH₃I and Et₃N in MeOH to provide the methylthio adducts $3(\mathbf{a}-\mathbf{e})$ in excellent yields (93–99%). The removal of the oxazolidinone moiety was carried out with LiAlH₄^{3a} in THF at 0 °C, to give the chiral methylthioalcohols $4(\mathbf{a}-\mathbf{e})$ in good yields and to recover the oxazolidinone in yields of 80–82% as shown in Scheme 2.

Scheme 2.

The sulfoxide **5b** was prepared from *anti*-diastereomer **3b** as described elsewhere¹² using MCPBA to afford a diastereomeric mixture of **5b** as shown in Scheme 3. It was possible to isolate crystals of this mixture. X-ray crystallographic analysis permitted the assignment of absolute configuration at the newly formed stereogenic centers (C-12, C-13) as S and S, respectively, to compound **5b** (Fig. 6).¹³

In conclusion we have applied the intramolecular sulfur transfer reaction to trisubstituted α , β -unsaturated *N*-enoyl oxazolidine-2-thiones. This study shows that the *anti*-diastereomer is favored and obtained via a highly diastereoselective protonation step. Furthermore this methodology was applied to synthesize 3-methylthio alcohols. The absolute configuration to compound **2b** was confirmed from compound **5b**.

Figure 6. Molecular structure of the sulfoxide compound 5b.

Acknowledgements

We thank CONACyT (Project J35098-E), grant to H.H. from Promep, and Professors C. Palomo and M. Oiarbide (U.P.V.) for their help.

References and notes

- (a) Strijtveen, B.; Kellogg, R. M. J. Org. Chem. 1986, 51, 3664–3671; (b) Chen, J. G.; Zhu, J.; Skonezny, P. M.; Rosso, V.; Venit, J. J. Org. Lett. 2004, 6, 3233–3235; (c) Ward, R. S.; Pelter, A.; Goubet, D.; Pritchard, M. C. Tetrahedron: Asymmetry 1995, 6, 469–498; (d) Sohda, T.; Mizuno, K.; Tawada, H.; Sugiyama, Y.; Fujita, T.; Kawamatsu, Y. Chem. Pharm. Bull. 1982, 30, 3563– 3573; (e) Sohda, T.; Mizuno, K.; Imamiya, E.; Sugiyama, Y.; Fujita, T.; Kawaamatsu, Y. Chem. Pharm. Bull. 1982, 30, 3580–3600.
- (a) Field, L.; Giles, P. M., Jr. J. Med. Chem. 1970, 13, 317– 319; (b) Miyata, O.; Shinada, T.; Ninomiya, I.; Naito, T.; Date, T.; Okamura, K.; Inagaki, S. J. Org. Chem. 1991, 56, 6556–6564.
- (a) Wu, M.-J.; Wu, C.-C.; Tseng, T.-C. J. Org. Chem. 1994, 59, 7188–7189; (b) Tseng, T.-C.; Wu, M.-J. Tetrahedron: Asymmetry 1995, 6, 1633–1640.
- Nishide, K.; Ohsugi, S.-I.; Shiraki, H.; Tamakita, H.; Node, M. Org. Lett. 2001, 3, 3121–3124.
- Palomo, C.; Oiarbide, M.; Dias, F.; Ortiz, A.; Linden, A. J. Am. Chem. Soc. 2001, 123, 5602–5603.
- Palomo, C.; Oiarbide, M.; Dias, F.; López, R.; Linden, A. Angew. Chem., Int. Ed. 2004, 43, 3307–3310.
- Preparation of (S)-4-isopropyl-5,5-dimethyl-1,3-oxazolidinethione is described in: Ortiz, A.; Quintero, L.; Hernández, H.; Maldonado, S.; Mendoza, G.; Bernès, S. *Tetrahedron Lett.* 2003, 44, 1129–1132.
- 8. Crystal data for **2a**: $C_{13}H_{23}NO_3S$, M = 273.38, colorless irregular block, $0.65 \times 0.60 \times 0.36 \text{ mm}^3$, space group $P_{2_12_12_1}$, cell parameters a = 7.2713 (7), b = 11.4320 (7), c = 18.4288 (12) Å, Z = 4, $D_c = 1.185 \text{ g cm}^{-3}$. Reflections (4683) collected on a Bruker P4 diffractometer at room temp, with the Mo-K α radiation ($\lambda = 0.71073$ Å) in the range $2\theta = 4.20$ –59.98°, of which 4019 are unique ($R_{\text{int}} = 0.0192$). Variables (163) refined:¹⁰ $R_1 = 0.0679$ [2731 data with $I > 2\sigma(I)$] and $wR_2 = 0.2197$ [all data]. Absolute configuration was determined starting from

the known configuration at C4 and confirmed by the refinement of a Flack parameter, x = -0.22 (18), 1470 Friedel pairs measured. Complete data have been deposited with the CCDC, reference 257397. Structure factors and raw files are available on request to authors.

- 9. Crystal data for 2c: $C_{15}H_{25}NO_3S$, M = 299.42, colorless block, $0.60 \times 0.40 \times 0.28 \text{ mm}^3$, space group P_{21} , cell parameters a = 6.7361 (4), b = 8.3096 (5), c = 15.2470(10) Å, $\beta = 95.207$ (6)°, Z = 2, $D_c = 1.170 \text{ g cm}^{-3}$. Reflections (5907) collected on a Bruker P4 diffractometer at room temp, with the Mo-K α radiation ($\lambda = 0.71073$ Å) in the range $2\theta = 5.36-59.96^\circ$, of which 2956 are unique ($R_{int} = 0.0194$). Variables (182) refined: ¹⁰ $R_1 = 0.0413$ [2290 data with $I > 2\sigma(I)$] and $wR_2 = 0.1224$ [all data]. Absolute configuration was determined starting from the known configuration at C4 and confirmed by the refinement of a Flack parameter, x = 0.22 (13), 317 Friedel pairs measured. Complete data have been deposited with the CCDC, reference 257398. Structure factors and raw files are available on request to authors.
- 10. Sheldrick, G. M. SHELXL97, University of Göttingen, Germany, 1997.
- 11. Crystal data for **2b**': C₁₈H₂₅NO₃S, M = 335.45, colorless plate, $0.40 \times 0.20 \times 0.08 \text{ mm}^3$, space group C2, cell parameters a = 19.831 (3), b = 6.4460 (10), c = 16.786 (2) Å $\beta = 117.522$ (9)°, Z = 4, $D_c = 1.171$ g cm⁻³. Reflections (3400) collected on a Bruker P4 diffractometer at room temp, with the Mo-K α radiation ($\lambda = 0.71073$ Å) in the range $2\theta = 4.16-50.00^\circ$, of which 2753 are unique ($R_{\text{int}} = 0.0194$). Variables (211) refined:¹⁰ $R_1 = 0.0455$ [2034 data with $I > 2\sigma(I)$] and $wR_2 = 0.1094$ [all data].

Absolute configuration was determined starting from the known configuration at C4 and confirmed by the refinement of a Flack parameter, x = 0.09 (12), 903 Friedel pairs measured. Complete data have been deposited with the CCDC, reference 257399. Structure factors and raw files are available on request to authors.

- Crich, D.; Mataka, J.; Zakharov, L. N.; Rheingold, A. L.; Wink, D. J. Am. Chem. Soc. 2002, 124, 6028– 6036.
- 13. Crystal data for 5b: Crystallization of this compound revealed to be problematic. After several attempts, we only produced poor-quality single-crystals, which were however suitable for a low resolution (1.0 Å) X-ray study, allowing the determination of the absolute configuration for chiral centers with a good level of confidence. $C_{19}H_{27}NO_4S$, M = 365.48, colorless irregular. $0.42 \times 0.40 \times 0.08 \text{ mm}^3$, space group $P2_12_12_1$, cell parameters a = 7.0592 (16), b = 11.460 (4), c = 24.972 (10) Å, Z = 4, $D_c = 1.202$ g cm⁻³. Reflections (3559) collected on a Bruker P4 diffractometer at room temp, with the Mo-Ka radiation ($\lambda = 0.71073$ Å) in the range $2\theta = 3.92-42.06^\circ$, of which 2174 are unique ($R_{int} = 0.0573$). Variables (255) refined:¹⁰ $R_1 = 0.0546$ [1547 data with $I > 2\sigma(I)$] and $wR_2 = 0.1353$ [all data]. Absolute configuration was determined starting from the known configuration at C4 and confirmed by the refinement of a Flack parameter,¹⁴ x = -0.2 (2), 881 Friedel pairs measured. Complete data have been deposited with the CCDC, reference 257400. Structure factors and raw files are available on request to authors.
- 14. Flack, H. D. Acta Crystallogr. 1983, A39, 876-881.