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Abstract—Chiral 3-methylthio alcohols have been synthesized through a known intramolecular sulfur transfer reaction that has
been carried out in di- and trisubstituted a,b-unsaturated N-enoyl oxazolidinethiones as substrates, giving rise to syn/anti-diastereo-
mers. The anti-diastereomer is favored and obtained via a highly diastereoselective protonation step.
� 2005 Elsevier Ltd. All rights reserved.
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The introduction of a thiol group in the a and b-posi-
tions of carboxylic acid derivatives, has been subject of
extensive researches. SN2 substitution has been the
method employed to prepare a-mercapto derivatives
from a-hydroxy or a-halo acids with (RS�) as nucleo-
phile.1 On the other hand nucleophilic addition reac-
tions, such as the Michael addition, have provided b-
mercapto derivatives through the addition of thiols to
achiral2 or chiral3 a,b-unsaturated carboxylic acid deriva-
tives.2 Both methodologies used different kinds of thiols,
which after their addition, were cleavaged for different
reactions carried out in an atmosphere of dry, oxygen-
free nitrogen.1

A highly diastereoselective Michael addition of a thiol to
a-substituted a,b-unsaturated derivatives has been de-
scribed based on asymmetric protonation.4 On the other
hand it has also been described that the addition of thi-
ols to trisubstituted E and Z a,b-unsaturated carboxylic
acid derivatives produces stereospecifically erythro and
threo adducts, respectively.2

Palomo et al. have described highly diastereoselective
preparation of such compounds through intramolecular
0040-4039/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.

doi:10.1016/j.tetlet.2005.02.021

* Corresponding authors. Tel.: +52 222 2295500 7518; fax: +52 222

2295584 (A.O.); tel.: +52 222 2295500 7297; fax: +52 222 2295551

(S.B.); e-mail addresses: jaortizm@siu.buap.mx; sylvain_bernes@

hotmail.com
sulfur transfer in N-enoyl oxazolidinethiones.5 Recently,
this methodology has been applied in the construction
of C–S bonds with a quaternary stereocenter.6

We describe herein the preparation of a series of chiral
methylthio alcohols, which are shown in Figure 1. Their
synthesis was achieved by the intramolecular sulfur
transfer reaction in di- and trisubstituted a,b-unsatu-
rated N-enoyl oxazolidinethiones, followed by protec-
tion of the thiol and removal of the oxazolidinone by
reduction with LiAlH4.
The chiral auxiliary oxazolidinethione employed was
prepared from (S)-valine7 and the N-enoyl oxazolidine-
thiones (1a–c) were prepared as previously described5,7

in yields of 70–79%, all of them as E-isomers. The
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intramolecular sulfur transfer reaction of these N-enoyl
oxazolidinethiones was performed using SnCl4 and
NbCl5, as promoters, to afford the desired b-mercapto
adducts (2a–c) as shown in Scheme 1. The results and
reaction conditions are listed in Table 1.
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Scheme 1. Reagents: (a) SnCl4 or NbCl5, CH2Cl2, H2O.

Table 1. Intramolecular sulfur transfer reaction of the N-enoyl

oxazolidinethiones

Products Promoter T (�C)/t (h)a Yieldb (%) anti/synd

2a/2a0 SnCl4 �78/14 40 98:2

2b/2b0 NbCl5 �30/72 93c 84:16e

2b/2b0 SnCl4 0/60 70c 84:16e

2c/2c 0 SnCl4 �78/14 52 96:4

aT = temperature, t = time.
b Purified yield.
c Yield of the diastereomeric mixture.
d Diastereomeric isomer ratios were determined by HPLC on the crude

products.
e Ratio determined by NMR.

Figure 4. Molecular structure of the b-mercapto compound 2b 0.

Figure 3. Molecular structure of the b-mercapto compound 2c.
From the data in Table 1, for adducts 2b and 2b 0 the use
of different reaction conditions provides the same diaste-
reomeric ratio. This reaction at �78 �C and large reac-
tion times provided starting material. The formation
of new chiral centers in compounds 2a and 2c is highly
diastereoselective and the E-isomers (1a–c) provide the
anti-diastereomers (2a–c) mainly.

The configuration at the newly formed stereogenic cen-
ters (C-12, C-13) are S and R, respectively, for both
compound 2a, and 2c as established by X-ray analysis
(Figs. 2 and 3).8,9
Figure 2. Molecular structure of the b-mercapto compound 2a.
The intramolecular sulfur transfer reaction in 1b pro-
vides an anti/syn-diastereomeric mixture in a ratio 84/
16 for adducts 2b/2b 0. Their isolation gives anti-diaste-
reomer 2b as a liquid compound and syn-diastereomer
2b 0 as a solid compound. For 2b 0 the absolute configura-
tion at the newly formed stereogenic centers (C-12, C-
13) are R and S, respectively, as established by X-ray
analysis (Fig. 4).11
The sense of stereodirection is the same for principal
compounds as shown in Table 2.
Table 2. Physical properties of the b-mercapto compounds

Compound Mp (�C) [a]D (c)a

2a-(S,R) 70–72 �43.2 (1.25)

2b-(S,S) — �58.1 (1.60)

2b 0-(R,S) 145 +14.1 (1.05)

2c-(S,R) 92–93 �65.2 (1.10)

a Determined in CHCl3 at 25 �C.
This diastereoselective can be explained by cyclization
between the sulfur atom and the C(b) atom of the a,b-
unsaturated system, to form a six-membered ring as
shown in Figure 5. A posterior diastereoselective pro-
tonation gave the anti-diastereomer mainly.
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Subsequently, the compounds 2(a–c) and 2(d–e)7 were
treated with CH3I and Et3N in MeOH to provide the
methylthio adducts 3(a–e) in excellent yields (93–99%).
The removal of the oxazolidinone moiety was carried
out with LiAlH4

3a in THF at 0 �C, to give the chiral
methylthioalcohols 4(a–e) in good yields and to recover
the oxazolidinone in yields of 80–82% as shown in
Scheme 2.
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Figure 6. Molecular structure of the sulfoxide compound 5b.
The sulfoxide 5b was prepared from anti-diastereomer
3b as described elsewhere12 using MCPBA to afford a
diastereomeric mixture of 5b as shown in Scheme 3. It
was possible to isolate crystals of this mixture. X-ray
crystallographic analysis permitted the assignment of
absolute configuration at the newly formed stereogenic
centers (C-12, C-13) as S and S, respectively, to com-
pound 5b (Fig. 6).13
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In conclusion we have applied the intramolecular sulfur
transfer reaction to trisubstituted a,b-unsaturated N-en-
oyl oxazolidine-2-thiones. This study shows that the
anti-diastereomer is favored and obtained via a highly
diastereoselective protonation step. Furthermore this
methodology was applied to synthesize 3-methylthio
alcohols. The absolute configuration to compound 2b
was confirmed from compound 5b.
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