Notes

Novel Access to Thioacylsilanes with Benzotriazole-Mediated Methodology

Alessandro Degl'Innocenti* and Antonella Capperucci

Centro C.N.R. Composti Eterociclici e loro Applicazioni and Dipartimento di Chimica Organica, via Ĝ. Capponi 9, 50121 Firenze, Italy

Daniela C. Oniciu

Alchem Laboratories Corporation, 13305 Rachael Boulevard, Alachua, Florida 32615

Alan R. Katritzky*

Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200

katritzky@chem.ufl.edu

Received July 31, 2000

Introduction

Thioformyl- and thioacetyl-silanes are successful intermediates for thiocarbonyl-containing compounds,¹⁻³ and useful building blocks for polyfunctionalized molecules. Besides being synthetic equivalents of thioaldehydes, thioacylsilanes⁴ are characterized by the high reactivity of the carbon-sulfur double bond toward nucleophiles, electrophiles, and cycloaddition reactions, which lead to various compounds containing the Si-C-S unit.5 Thus, thioacylsilanes react with organolithium reagents to yield vinyl sulfides,6 and cycloadd to 1,3dipoles,6a,7 dienes,4,6b,8 heterodienes,9 and, under photoinduced conditions, olefins.¹⁰ Silyl thioketones can be

(1) Capperucci, A.; Degl'Innocenti, A.; Scafato, P.; Spagnolo, P. Phosphorus, Sulfur Silicon 1997, 120&121, 165.

(3) Bonini, B. F.; Comes-Franchini, M.; Fochi, M.; Mazzanti, G.; Ricci, A. J. Organomet. Chem. 1998, 567, 181. Bonini, B. F.; Fochi, M. in Advances in Sulfur Chemistry; Rayner, C. M., Ed.; JAI: Stamford, 2000; Vol. 2, p 1.

(4) (a) Bonini, B. F.; Fochi, M. Rev. Heteroatom. Chem. 1997, 16, 46-67. (b) Bonini, B. F.; Comes-Franchini, M.; Fochi, M.; Mazzanti, G.; Ricci, A.; Varchi, G. Tetrahedron Lett. 1999, 40, 6473-6476.

(5) Bonini, B. F. Phosphorus, Sulfur, Silicon 1993, 74, 31-45.

 (6) (a) Bonini, B. F.; Mazzanti, G.; Zani, P.; Barbaro, G.; Battaglia,
 A.; Giorgianni, P.; Maccagnani, G.; Macciantelli, D. J. Chem. Soc., Perkin Trans. 1 1986, 381-385. (b) Bonini, B. F.; Mazzanti, G.; Zani, P.; Maccagnani, G. J. Chem. Soc., Perkin Trans. 1 1989, 2083–2088.
 (c) Bonini, B. F.; Maccagnani, G.; Masiero, S.; Mazzanti, G.; Zani, P. Tetrahedron Lett. 1989, 30, 2677–2680.

(7) Bonini, B. F.; Maccagnani, G.; Mazzanti, G.; Atwa, A. I. A.; Zani,

(7) Bonini, B. F.; Maccagnani, G.; Mazzanti, G.; Atwa, A. I. A.; Zani, P. *Heterocycles* 1990, *31*, 47–57.
(8) (a) Bonini, B. F.; Lenzi, A.; Maccagnani, G.; Barbaro, G.; Giorgianni, P.; Macciantelli, D. *J. Chem. Soc., Perkin Trans.* 1 1987, 2643–2646. (b) Bonini, B. F.; Mazzanti, G.; Zani, P.; Maccagnani, G. *J. Chem. Soc. Chem. Commun.* 1988, 365–367. (c) Bonini, B. F.; Busi, F.; de Laet, R. C.; Mazzanti, G.; Thuring, J. W. J. F.; Zani, P.; Zwanenburg, B. *J. Chem. Soc., Perkin Trans.* 1 1993, 1011–1018. (9) (a) Carisi, P.; Mazzanti, G.; Zani, P.; Barbaro, G.; Battaglia, A.; Giorgianni, P. *J. Chem. Soc., Perkin Trans.* 1 1987, 2647–2651. (b) Bonini, B. F.; Masiero, S.; Mazzanti, G. Zani, P. *Tetrabedron Lett*

Bonini, B. F.; Masiero, S.; Mazzanti, G.; Zani, P. *Tetrahedron Lett.* **1991**, *32*, 2971–2974.

(10) Bonini, B. F.; Comes-Franchini, M.; Fochi, M.; Mazzanti, G.; Ricci, A.; Zani, P. *J. Chem. Soc., Perkin Trans.* 1 **1995**, 2039–2044.

transformed into silyl sulfines and thioaldehyde Soxides¹¹ and be used as spin-trapping agents.¹² Enethiolizable thioacylsilanes can afford 2-silyl thiacycloalkenes or Z- α -silvl sulfides, convertable by protiodesilvlation into Z-vinyl sulfides, which are precursors of thioannulated cyclopentenes and thiofunctionalized enones.¹³

Novel routes to thioacylsilanes are of considerable interest, and a general entry was recently reported, using a hexamethyldisilathiane-based thionation procedure.^{14,15} We now present an alternative method for the generation of thioacylsilanes using benzotriazole chemistry.

Results and Discussion

1-(Benzotriazol-1-yl)-1-phenoxyalkanes 1 and 2 were prepared as described previously (Scheme 1).¹⁶ 1-(Benzotriazol-1-yl)-1-methylthioalkanes 7a,b,f,g were obtained from (benzotriazol-1-yl)methyl methyl thioether (6a) by reactions with BuLi followed by alkyl halides or aldehydes, as described elsewhere.¹⁷ 1-(Benzotriazol-1-yl)-1thioalkane derivatives 7c and 7e were prepared according to known procedures.¹⁸⁻²⁰ Reactions of derivatives 2 and $7\mathbf{a}-\mathbf{e}$ with BuLi and subsequent treatment with trimethylchlorosilane afforded the -trimethylsilyl-benzotriazoles 3 and 8a-d, respectively (Schemes 1 and 2).

(11) Barbaro, G.; Battaglia, A.; Giorgianni, P.; Bonini, B. F.; Maccagnani, G.; Zani, P. J. Org. Chem. 1990, 55, 3744-3748.

(12) (a) Alberti, A.; Bonini, B. F.; Pedulli, G. F. *Tetrahedron Lett.* **1987**, *28*, 3737–3740. (b) Alberti, A.; Benaglia, M.; Bonini, B. F.; Pedulli, G. F. J. Chem. Soc., Faraday Trans. 1 **1988**, *84*, 3347–3358. (c) Alberti, A.; Benaglia, M.; Vismara, E. Res. Chem. Intermed. **1989**, 11. 117-126

(13) (a) Bonini, B. F.; Comes-Franchini, M.; Mazzanti, G.; Ricci, A.; Rosa-Fauzza, C.; Zani, P. *Tetrahedron* **1996**, 52, 4803–4816. (b) Bonini, B. F.; Comes-Franchini, M.; Fochi, M.; Mazzanti, G.; Ricci, A. *Tetrahedron Lett.* **1994**, *35*, 9227–9228. (c) Bonini, B. F.; Comes-Franchini, M.; Fochi, M.; Mazzanti, G.; Peri, F.; Ricci, A. J. Chem. Soc., Perkin Trans. 1 1995, 2039–2044. (d) Bonini, B. F.; Comes-Franchini, M.; Fochi, M.; Mazzanti, G.; Ricci, A. Tetrahedron 1997, 53, 7897-7910.

(14) (a) Degl'Innocenti, A.; Scafato, P.; Capperucci, A.; Bartoletti, L.; Spezzacatena, C.; Ruzziconi, R. *Synlett* **1997**, 361. (b) Ricci, A.; Degl'Innocenti, A.; Capperucci, A.; Reginato, G. J. Org. Chem. 1989, 54, 19-20.

(15) Degl'Innocenti, A.; Capperucci, A.; Scafato, P.; Mecca, T.;
Reginato, G.; Mordini, A. Synlett **1999**, 1739.
(16) Katritzky, A. R.; Lang, H.; Wang, Z.; Lie, Z. J. Org. Chem. **1996**,

61. 7551.

10.1021/jo0011585 CCC: \$19.00 © 2000 American Chemical Society Published on Web 12/07/2000

⁽²⁾ Capperucci, A.; Degl'Innocenti, A.; Scafato, P. in Recent Research Developments in Synthetic Organic Chemistry, Pandalai, S. G., Ed.; Transworld Research Network: India, 1998; p 171.

7,8,9,10b: R = Me, $R^1 = PhCH_2$ **7,8,9,10c**: R = i-Pr, $R^1 = cyclo-C_5H_9$ **7,8,9,10d**: R = Me, $R^1 = SiMe_3$ **7e**: R = Ph, $R^1 = H$ **7f**: R = Me, $R^1 = PhCHOH$ **7g**: R = Me, $R^1 = (cyclo-C_6H_1)CHOH$

Benzotriazole derivatives **3** and **8a**-**d** reacted with hexamethyldisilathiane (HMDST) in the presence of TfOTMS or cobalt dichloride hexahydrate as a Lewis acid to afford the corresponding thioacylsilanes **4** and **9a**-**d**, which were trapped with 2,3-dimethyl-1,3-butadiene as their adducts **5** and **10a**-**d** (Schemes 1 and 2).

Reactions of the butyl, benzyl, and cyclopentyl derivatives 8a-c afforded the corresponding silylated cycloadducts 10a-c in good yields upon treatment with HMDST and 2,3-dimethyl-1,3-butadiene in the presence of CoCl₂ (Scheme 2). However, the O-derivative **3** required the addition of the more oxophilic TfOTMS to furnish the cycloadduct **5** in 51% yield. By contrast, the use of TfOTMS in the case of **8a** led to mixtures of di(1trimethylsilyl-1-pentenyl)sulfide (**11**) and isomers of 1-trimethylsilyl-1-methylthio-1-pentene (**12**).

Earlier attempts to prepare bis-trimethylsilylthioketone failed: no reactions of disilylated 1,3-dioxanes under previously reported conditions¹⁴ have afforded a bis-silyl thioketone. α -Bis(trimethylsilyl)benzotriazol-1-ylmethyl methyl thioether (**8d**) reacted smoothly with HMDST in the presence of 2,3-dimethyl-1,3-butadiene and various catalysts, such as CoCl₂, TfOTMS, TiCl₄, and even HCl in methanol as a solvent. GC/MS analyses of the reaction mixtures indicated that the bis(trimethylsilyl)dihydrothiopyran **10d** was the sole or main product, but workup led to its decomposition.

Interestingly, compound **13** was rather inert in the present reaction conditions. Thus, attempted reactions of **13** with HMDST in the presence of $CoCl_2$, TfOTMS, or even BF₃ etherate or TiCl₄ led only to recovery of

1

starting material. However, generation of the thioformylsilane **14** and its trapping with 2,3-dimethylbutadiene to give adduct **15** was achieved efficiently by using HCl in methanol as the solvent (Scheme 3).

As mentioned above, contrary to what was observed in other cases, cyclohexadiene was inefficient as a trapping agent in these reactions; in the case of the butyl derivative 8a, it led to the formation of sulfide 11 as the main product. Even the stronger Lewis acid TiCl₄ with 8a and cyclohexadiene gave the isomeric olefin 12, arising from benzotriazole elimination, as the only product isolated. Scheme 4 depicts our rationalization of this occurrence: reaction of the Bt-derivative 8a in the present conditions affords initially thioacylsilane 9a, which further reacts as its enethiol **9a**', through a carbophilic pathway, with more **9a** to afford adduct **16**. This pathway was previously described in the literature.^{4a} Compound **16**, upon loss of H₂S, gives the isolated divinyl sulfide 11. The isomers of 1-trimethylsilyl-1-methylthio-1-pentene (12) arise from benzotriazole elimination in the starting material (Scheme 4).

As documented in the Experimental Section, upon standing, the 1-(benzotriazol-1-yl) pent-1-yl ether **8a** partially rearranged into the corresponding (1-benzotriazol-2-yl)pent-2-yl analogue. Such rearrangement between isomeric pairs of compounds of type RX-CH(R¹)-Bt¹ \leftrightarrows RX-CH(R¹)-Bt² are common.^{21–25} However, such

⁽¹⁷⁾ Katritzky, A. R.; Oniciu, D. C.; Ghiviriga, I.; Soti, F. J. Org. Chem. **1998**, 63, 2110.

⁽¹⁸⁾ Katritzky, A. R.; Ghiviriga, I.; Oniciu, D. C.; Soti, F. J. Heterocycl. Chem. **1996**, 33, 1927.

⁽¹⁹⁾ Katritzky, A. R.; Perumal, S.; Kuzmierkiewicz, W.; Lue, P.; Greenhill, J. V. *Helv. Chim. Acta* **1991**, *74*, 1924.

⁽²⁰⁾ Katritzky, A. R.; Afridi, A. S.; Kuzmierkiewicz, W. *Helv. Chim.* Acta **1991**, *74*, 1931.

⁽²¹⁾ Smith, J. L. R.; Saad, J. S. J. Chem. Soc., Perkin Trans. 1 1975, 1181.

aYield of isolated product. b GC yield.

isomerization is of little significance from a purely preparative point of view, as Bt^1 and Bt^2 isomers of type RX-CH(R¹)-Bt show essentially similar reactivity, particularly in reactions involving ion pair intermediates of type RX^+ =CHR¹Bt⁻.

Conclusions

Table 1 summarizes the experimental results. The methodology described in this paper provides a general method for the synthesis of silylated thiocarbonyl compounds, and represents an extension to the synthesis of silylated thioaldehydes by the reaction of hexamethyl-disilathiane with silyl acetals.¹⁴ The pathway described above enables the direct preparation of silylated thioketones and eliminates the tedious synthesis of their silyl acetal precursors. Other significant advantages of the present methodology over previous methods include the readily available starting materials and simple procedures.

Experimental Section

General. Melting points were determined with a hot-stage apparatus and are uncorrected. NMR spectra were recorded in $CDCl_3$ with tetramethylsilane as the internal standard for ¹H

(60 and 200 MHz) or the solvent as the internal standard for 13 C (22.5 and 50 MHz). Tetrahydrofuran was distilled under nitrogen immediately prior to use from sodium/benzophenone. All reactions with air-sensitive compounds were carried out under an argon atmosphere. Column chromatography was conducted with silica gel 230 mesh. TLC was performed on precoated silica gel 60 F₂₅₄ plates. Benzotriazol-1-ylalkyl phenyl ethers **1**–**3** and **13** were prepared according to the literature procedures.¹⁶ (Benzotriazol-1-yl)methyl methyl thioether (**6a**)¹⁷ and benzotriazole derivatives **7a**–**g**^{18–20} were prepared by the procedures previously reported.

2-Methyl-2-trimethylsilyl-4,5-dimethyl-3,6-dihydro-2Hthiopyran (5). A mixture of 1-(benzotriazol-1-yl)-1-phenoxy-1trimethylsilylethane (3) (30 mg, 0.1 mmol), 2,3-dimethyl-1,3butadiene (41 mg, 0.5 mmol), and HMDST (36 mg, 0.2 mmol) in 0.5 mL of CH₃CN was treated at room temperature with CF₃- SO_3SiMe_3 (0.02 mmol, 5 μ L) under inert atmosphere. Progress of the reaction was monitored by GC/MS analysis. After 6 h the reaction mixture was quenched with saturated NH₄Cl, extracted with diethyl ether, and dried over Na₂SO₄. After removal of the solvent, the product was purified by chromatography on silica gel (cyclohexane) affording 11 mg of pure product (51%). ¹H NMR (CDCl₃, 200 MHz) δ : 0.08 (s, 9 H), 1.28 (s, 3 H), 1.66 (bs, 3 H), 1.72 (bs, 3 H), 1.76 (bd, 1 H, partially overlapped with peak at 1.72 ppm), 2.44 (bd, 1 H), 2.71 (bd, 1 H), 3.26 (bd, 1 H). ¹³C NMR (CDCl₃, 50 MHz) δ : -4.3, 19.7, 20.8, 21.6, 26.4, 36.9, 39.9, 122.1, 125.2. MS m/z (%): 214 (M⁺, 1), 199 (2), 141 (9), 109 (25), 108 (100), 92 (28), 73 (80). Anal. Calcd for $C_{11}H_{22}SSi: C, 61.61; H$, 10.34. Found: C, 61.52; H, 10.42.

General Procedure for the Silylation of α -Benzotriazolylalkyl Thioethers 7a–d. To a solution of the appropriate (benzotriazol-1-yl)methyl derivative (50 mmol) in THF (200 mL) at –78 °C under nitrogen was added BuLi (2.22 M in hexane, 23.6 mL, 52.5 mmol) over a period of 5 min. After 10 min, a solution of trimethylchlorosilane (60 mmol) in THF (10 mL) was added. The mixture was stirred at –78 °C for 2 h and then was allowed to warm to room temperature and stirred for an additional 12 h. The reaction was quenched with saturated ammonium chloride (100 mL) and extracted with methylene chloride (3 × 50 mL), and the combined extracts were washed with water (2 100 mL) and dried (MgSO₄). After the solvent was removed by rotary evaporation, the residue was subjected to column chromatography to give the pure product.

1-(Benzotriazol-1-yl)-1-trimethylsilylpent-1-yl Methyl Thioether (8a). 1-(Benzotriazol-1-yl)pent-1-yl methyl thioether (7a) (2.35 g, 10 mmol) was dissolved in 50 mL of THF, and a solution of BuLi 2 N in hexane (5.25 mL, 10.5 mmol) was added at $-78\ ^\circ\text{C}$ under nitrogen and with stirring. Ten minutes later, trimethylsilyl chloride (1.20 g, 1.40 mL, 11 mmol) was added, and the reaction mixture was stirred at -78 °C for 2 h and at rt for 12 h. The reaction was quenched with 100 mL of sodium chloride 5%. The layers were separated, and the aqueous layer was extracted with diethyl ether (3 25 mL). The combined organic extracts were dried over magnesium sulfate, and the solvent was removed in vacuo. The residue (3.01 g) was flash chromatographed on silica gel (175 g) eluting with benzene:ethyl acetate 95:5. The expected product was separated as an oil (2.54 g) in 84% yield. It partially rearranged on standing at room temperature to the Bt-2 isomer: ¹H NMR 0.35 (s, 9 H), 0.95 (t, J = 7.4 Hz, 3 H), 1.20–1.50 (m, 4 H), 2.10 (s, 3 H), 2.15–2.25 (m, 2 H), 7.30-7.40 (m, 2 H), 7.70-7.80 (m, 2 H). Distinct signals of the Bt-1 isomer (20%): 0.45 (s, 1 H), 0.80 (t, J = 7.2 Hz, 3 H), 7.35–7.45 (m, 2 H), 8. 10 (d, J = 8.2 Hz, 2 H), 8. 20 (d, J = 8.2Hz, 2 H); ¹³C NMR 0.91, 13.1, 15.5, 24.7, 29.7, 38.1, 70.6, 115.5, 119.7, 121.8, 127.4, 135.2, 145.2

General Procedure for the Synthesis of Thioacylsilane Adducts 10a-d Starting from 1-(Benzotriazol-1-yl)-1-trimethylsilylmethyl Thioethers 8a-d. A solution containing the appropriate 1-(benzotriazol-1-yl)-1-trimethylsilyl methyl thioether (0.1 mmol), 2,3-dimethyl-1,3-butadiene (0.5 mmol), and HMDST (0.2-0.4 mmol) in CH₃CN (0.5 mL) was treated at room temperature in inert atmosphere with a solution of CoCl₂·6H₂O (0.1 mmol) in CH₃CN (0.5 mL). Progress of the reaction was monitored by GC/MS analysis. The reaction mixture was quenched with saturated NH₄Cl, extracted with diethyl ether, and dried (Na₂SO₄) and the solvent removed under vacuum. The

⁽²²⁾ Katritzky, A. R.; Yannakopoulou, K.; Kuzmierkiewicz, W.;Aurrecoechea, J. M.; Palenik, G. J.; Koziol, A. E.; Szczesniak, M.; Skarjune, R. *J. Chem. Soc., Perkin Trans.* 1 **1989**, 225.

⁽²³⁾ Katritzky, A. R.; Rachwal, S.; Rachwal, B.; Steel, P. J. J. Org. Chem. **1992**, *57*, 4932.

⁽²⁴⁾ Katritzky, A. R.; Kuzmierkiewicz, W.; Perumal, S. *Helv. Chim. Acta* **1991**, *74*, 1936.

⁽²⁵⁾ Katritzky, A. R.; Perumal, S.; Fan, W.-Q. J. Chem. Soc., Perkin Trans. 2 1990, 2059.

crude product was then purified by preparative TLC on silica gel using hexane as an eluent.

2-Butyl-2-trimethylsilyl-4,5-dimethyl-3,6-dihydro-2*H***-thiopyran (10a)**. Following the general procedure, starting from 30 mg (0.1 mmol) of **8a**, 16 mg of pure **10a** were obtained (64%). ¹H NMR (CDCl₃, 200 MHz) δ: 0.09 (s, 9H), 0.89 (bt, 3H), 1.25– 1.33 (m, 4H), 1.51–1.55 (m, 2H), 1.67 (bs, 3H), 1.71 (bs, 3H), 1.89 (bd, 1H), 2.41 (bd, 1H), 2.68 (bd, 1H), 3.12 (bd, 1H). ¹³C NMR (CDCl₃, 50 MHz) δ: -2.7, 14.0, 19.4, 20.7, 23.5, 26.9, 28.8, 30.2, 35.3, 38.6, 122.3, 125.5. MS *m*/*z* (%): 256 (M⁺, 0.1), 183 (4), 150 (19), 107 (31), 95 (35), 73 (100). Anal. Calcd for $C_{14}H_{28}\text{-}$ SSi: C, 65.55; H, 11.00. Found: C, 65.40; H, 11.12.

Supporting Information Available: Experimental procedures and ¹H and ¹³C NMR and GC/MS spectral data for compounds **8b–d**, **10b–d**, **13**, and **15**. This material is available free of charge via the Internet at http://pubs.acs.org. JO0011585