CHEMISTRY LETTERS, pp. 1549-1552, 1986.

A Novel Route to Phenyl-substituted Pyridines by the Reaction of N-(l-Phenylvinyl)iminophosphoranes with α , β -Unsaturated Ketones¹⁾

Tomoshige KOBAYASHI and Makoto NITTA* Department of Chemistry, School of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 160

The N-(l-phenylvinyl)iminotriphenylphosphorane or N-(l-phenylvinyl)iminotributylphosphorane reacted with α,β -unsaturated ketones to undergo a novel C-C bond formation followed by aza-Wittig reaction to result in the formation of phenyl-substituted pyridines.

The reaction of tertiary phosphine with organic azide to produce an iminophosphorane after nitrogen evolution is known as the Staudinger reaction.²⁾ Recent studies on the synthetic utilities of iminophosphoranes have been hydrolysis to amines,³⁾ oxidation to nitro compounds,⁴⁾ and intermolecular⁵⁾ and intramolecular⁶⁾ aza-Wittig reactions with carbonyl groups. Compared with that of methylenephosphoranes,⁷⁾ however, the synthetic versatility of iminophosphoranes is still restricted. This fact would be ascribed in part to the poor variation of a substituent on the nitrogen atom of iminophosphoranes.²⁾

Previously, we have accomplished the preparation of N-(1-phenylvinyl)iminophosphoranes by the Staudinger reaction of α -azidostyrene with trimethyl phosphite, triphenylphosphine, or with tributylphosphine. These N-(1-phenylvinyl)iminophosphoranes were found to provide the convenient routes to phenyl-substituted $1,2-\lambda^5$ azaphosphorine,⁸⁾ 2-phenyl-1-azaazulenes,⁹⁾ and phenyl-substituted pyrroles.¹⁾ We describe here a novel annulation reaction of either N-(1-phenylvinyl)iminotriphenylphosphorane (<u>1a</u>) or N-(1-phenylvinyl)iminotributylphosphorane (<u>1b</u>) with α,β unsaturated ketones to result in the formation of the phenyl-substituted pyridines

Scheme 1.

 $(\underline{3a-d}, \underline{4e})$, pentane-1,5-diones $(\underline{5b},\underline{c})$, and 1,3-diphenylpropan-1-one $(\underline{6})$, in addition to acetophenone $(\underline{7})$ and triphenyl- or tributylphosphine oxide $(\underline{8a} \text{ or } \underline{8b})$ (Scheme 1).

The general procedure for the reaction was as follows: A solution of <u>1</u> (1 mmol) and α,β -unsaturated ketone <u>2</u> (1 mmol) in anhydrous benzene (10 cm³) was heated under reflux for 24 h under a nitrogen atmosphere. The separation of the products was performed through TLC on silica gel, and the isolated yields are summarized in Table 1.

In the reaction of <u>la,b</u> with <u>2a</u>, the pyridine <u>3a</u> was obtained in addition to <u>7</u> and <u>8a,b</u> (Entries 1 and 6 in Table 1). The compound <u>7</u> arose from the hydrolysis of the unreacted <u>la,b</u> on TLC plates. The low material balance for several reactions in Table 1 may be ascribed to the volatility of <u>7</u>. In the cases of <u>la,b</u> with <u>2b</u> or <u>2c</u>, 1,5-diketones <u>5b,c</u> were obtained (entries 2, 3, 7, and 8). The reaction of <u>la</u> with <u>2d</u> afforded <u>3d</u> in a very low yield (entry 4). Furthermore, the reactions of <u>2e</u> with <u>la</u> or <u>lb</u> afforded pyridine <u>4e</u> instead of <u>3e</u> (entries 5 and 10). The reaction of <u>2a</u> also occurred in one case to give <u>6</u> (entry 6). The structures of pyridines, <u>3a</u>, ¹⁰) <u>3b</u>, ¹¹) <u>3c</u>, <u>e</u>, ¹²) and <u>3d</u>¹³) were determined by comparison of their physical data with those reported in the literature. The compounds <u>5b</u>, <u>c</u>¹⁴) and <u>6</u> were easily confirmed.

In the present reactions, the Michael addition of the iminophosphoranes $\underline{la}, \underline{b}$ to the β -carbon atom of the enones $\underline{2a-d}$ occurs at γ -position first, followed by proton transfer to generate iminophosphoranes $\underline{9a-d}$ which then undergo an intramolecular aza-Wittig reaction to produce dihydropyridines $\underline{10a-d}$ (Scheme 2). This type of reaction sequences have been shown previously in the reaction of α,β -unsaturated ketones with allylidenephosphorane.¹⁵⁾ The compounds $\underline{10a-d}$ would be dehydrogenated to give $\underline{3a-d}$ under the reaction conditions. The compound $\underline{2a}$ seems to act as a hydride acceptor of $\underline{10a}$ to result in the formation of $\underline{6}$.¹⁶⁾ Although the steric or electronic factor does not seem to explain the prohibited aza-Wittig

					Product (Yield/%) Unreacted					
Entry	<u>1</u>	<u>2</u>	R ¹	R ²	<u>3</u>	4	<u>5</u>	<u>6</u>	<u>7</u>	<u>2</u> (%)
1	la	<u>2a</u>	Ph	Ph	57				8	8
2	<u>la</u>	<u>2b</u>	Ph	Me	25		26		56	10
3	<u>la</u>	<u>2c</u>	Ph	н	16		65		5	
4	<u>la</u>	<u>2d</u>	Me	Ph	1				54	86
5	<u>la</u>	<u>2e</u>	н	Ph		24			18	25
6	<u>1b</u>	<u>2a</u>			56			10	7	3
7	<u>1b</u>	<u>2b</u>			26		20		8	14
8	<u>1b</u>	<u>2c</u>			33		32		5	
9	<u>1b</u>	<u>2d</u>			38				12	46
10	<u>1b</u>	<u>2e</u>				8			5	14

Table 1. Reactions of N-(l-phenylvinyl)iminophosphoranes (<u>la</u>,<u>b</u>) with α , β -unsaturated ketones (<u>2a-e</u>)^a)

a) Reactions were carried out in anhydrous benzene solution under reflux for 24 h. In all cases, triphenylphosphine oxide (<u>8a</u>) or tributylphosphine oxide (<u>8b</u>) was obtained in good yields.

reaction of <u>9b</u>,<u>c</u>, the formation of <u>5b</u>,<u>c</u>, which derive from hydrolysis of <u>9b</u>,<u>c</u>, seems to support the postulated Michael addition of <u>1</u> with <u>2</u>.

On the other hand, the compound $\underline{2e}$ does not undergo the Michael addition. In this case, the addition of γ -carbon atom of $\underline{1a}, \underline{b}$ to the carbonyl-carbon of $\underline{2e}$ occurs, followed by a possible elimination of <u>8a,b</u> and a concomitant cyclization to generate <u>12e</u>. The compound <u>12e</u> is dehydrogenated to give <u>4e</u> under reaction conditions. The Michael addition is frontier orbital controlled and thus favored with $\underline{2a-d}$.¹⁷⁾ However, <u>2e</u>, which has no methyl or no phenyl group on the carbonyl-carbon atom, favors the charge-controlled reaction to generate <u>11e</u>. Although, the yields of the products varied from the reaction of <u>1a</u> to <u>1b</u>, no definitive difference of the reactivity between <u>1a</u> and <u>1b</u> is clarified at this stage.

The present study clarified a reactivity of <u>la</u>,<u>b</u> toward α , β -unsaturated ketones. The present reaction might serve as a convenient route to the phenyl-substituted pyridines. Further studies concerning the preparations and synthetic applications of N-vinyliminophosphoranes are in progress.

This work was supported by a Scientific Research Grant-in-Aid from the Ministry of Education, Science and Culture and an Annual Project organized by Waseda University.

References

- Part 4 of the reaction of N-vinyliminophosphoranes. Part 3: Y. Iino, T. Kobayashi, and M. Nitta, Heterocycles, 24, No. 9, in press.
- 2) Y. Gololobov, I. N. Zhmurova, and L. F. Kasukin, Tetrahedron, 37, 437 (1981).
- 3) J. B. Hendrickson, K. W. Bair, and P. M. Keehn, J. Org. Chem., <u>42</u>, 2935 (1977);
 N. Knouzi, M. Vaultier, and R. Carrié, Bull. Soc. Chim. Fr., 1985, 815;

A. Koziara, K. Osowska-Pacewicka, S. Zawadzki, and A. Zierzak, Synthesis, <u>1985</u>, 202.

- 4) E. J. Corey, B. Samuelsson, and F. A. Luzzio, J. Am. Chem. Soc., <u>106</u>, 3682 (1984).
- 5) J. A. Kloek and K. L. Leshinsky, J. Org. Chem., <u>43</u>, 1460 (1978); O. Tsuge, S. Kanemasa, and K. Matsuda, J. Org. Chem., 49, 2688 (1984).
- 6) P. H. Lambert, M. Vaultier, and R. Carrié, J. Chem. Soc., Chem. Commun., <u>1982</u>, 1224; T. Sasaki, S. Eguchi, and T. Okano, J. Am. Chem. Soc., <u>105</u>, 5912 (1983);
 D. M. B. Hickey, R. MacKenzie, C. J. Moody, and C. W. Rees, J. Chem. Soc., Chem. Commun., <u>1984</u>, 776; L. Bruché, L. Garanti, and G. Zecchi, Synthesis, <u>1985</u>, 304;
 H. B. Stegmann, D. Klotz, and J. E. Weiss, Chem. Ber., <u>118</u>, 4632 (1985).
- 7) K. B. Becker, Tetrahedron, <u>36</u>, 1717 (1980).
- 8) T. Kobayashi and M. Nitta, Chem. Lett., 1985, 1459.
- 9) M. Nitta and T. Kobayashi, Chem. Lett., 1986, 463.
- 10) A. R. Katritzky, D. E. Leaby, A. Maguestiau, and R. Flamming, J. Chem. Soc., Perkin Trans. 1, 1983, 45.
- 11) J. A. Durden and D. G. Crosby, J. Org. Chem., 30, 1684 (1965).
- 12) M. Simalty-Siemiatycki, Bull. Soc. Chim. Fr., 1965, 1944.
- 13) M. Y. Kornilov, L. M. Shulezhko, and A. I. Tolmacher, Theor. Exp. Chem. (Engl. Trasl.), <u>10</u>, 397 (1975).
- 14) M. N. Tilichenko, Zh. Obshch. Khim., <u>25</u>, 2503 (1955), Chem. Abstr., <u>50</u>, 9327a.
- 15) W. G. Dauben, D. J. Hart, J. Ipaktschi, and A. P. Kozikowski, Tetrahedron Lett., 1973, 4425.
- 16) J. A. VanAllan and G. A. Reynolds, J. Org. Chem., 33, 1102 (1968).
- 17) I. Fleming, "Frontier Orbitals and Organic Chemical Reactions," John Wiley and Sons, London (1976); T. -L. Ho, "Hard and Soft Acids and Bases Principle in Organic Chemistry," Academic Press, New York (1977).

(Received June 5, 1986)