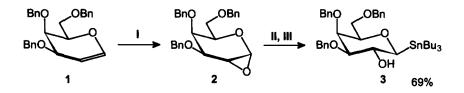


Tetrahedron Letters 39 (1998) 7699-7702

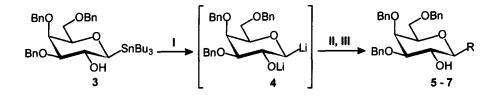
C-Glycosides: A Stereoselective Synthesis of α - and β -C-Galactosides with Glycosyl Dianions

Fred Burkhart, Matthias Hoffmann and Horst Kessler*


Institut für Organische Chemie und Biochemie der Technischen Universität München, Lichtenbergstr. 4, D-85747 Garching, Germany

Received 3 July 1998; accepted 5 August 1998

Abstract: α - or β -C-galactosides can be obtained from the configurationally stable anomeric glycosyl dianions which are prepared by transmetallation of a tin compound or by reductive lithiation of a chloride. Different electrophiles react selectively at the anomeric center © 1998 Elsevier Science Ltd. All rights reserved.


In previous work the use of glycosyl dianions as synthetic intermediates in the stereoselective synthesis of *C*-glycosides has been demonstrated for glucose¹, glucosamine² and galactosamine.³ Based on the same concept, we present the stereoselective synthesis of α - and β -*C*-galactosides. Only aldehydes were used as electrophiles for the *C*-glycoside synthesis as the conversion of glycosyl dianions with other electrophiles such as cyanides, halides or acyl chlorides resulted only in poor yields of the corresponding *C*-glycosides.

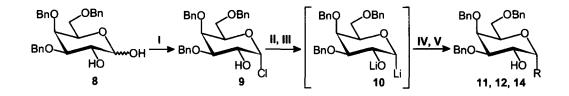
The β -C-galactosides were prepared by transmetallation of the β -galactosylstannane 3 and treatment of the generated dianion 4 with electrophiles. The stannane 3 was prepared as outlined in Scheme 1.

Scheme 1. Synthesis of the β -galactopyranosylstannane 3. Reagents and conditions: (1) dimethyldioxirane, acetone/CH₂Cl₂, 0°C, 1h (11) Bu₃SnLi, THF, 0°C, 10 min. (111) NH₄Cl_(aq)

Tribenzylgalactal 1 was converted to the corresponding epoxide 2 with dimethyldioxirane according to a procedure of Danishefsky and co-worker.⁴ Reaction of 2 with tributyltinlithium at 0°C followed by workup with a saturated aqueous NH₄Cl solution yielded 69% of stannane 3.⁵ For the transmetallation 3 was dissolved in THF and cooled to -80°C. After the addition of 5 eq. butyllithium, the solution was warmed to -55°C and stirred for 15 min. After the addition of the electrophile the reaction mixture was quenched with a saturated aqueous NH₄Cl solution (Scheme 2).

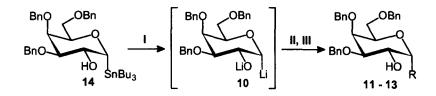
Scheme 2. Synthesis of the β -C-galactosides. Reagents and conditions: (1) 5 eq. BuLi, THF, -80°C \rightarrow -55°C, 15 min (II) electrophile, -55°C, 5 min (III) NH₄Cl_(aq).

Treatment of the dianion 4 with deuterated methanol gave the desired compound in 83% yield. The reaction of 4 with benzaldehyde and isobutyraldehyde gave diastereomeric mixtures (ratio 1:1) of **6a/b** and **7a/b** in 77 and 57% yield, respectively (**Table 1**).


Table 1. Results of β -*C*-glycosylation.

electrophile	product	R	yield %	a : b *	
MeOD	5	D	83		
PhCHO	6 a/b	CH(OH)Ph	77	1:1 1:1	
ⁱ PrCHO	7 a /b	CH(OH) ⁱ Pr	57		

* a is the less polar isomer


The corresponding α -*C*-galactosides were synthesized by reductive lithiation of chloride **9** which was synthesized from tribenzylgalactose **8**⁶ by using a saturated solution of HCl in ether (**Scheme 3**). Contrary to the anomeric chloride of glucose (Ref. 1a) it is not possible to crystallize the galactosylchloride **9** which is also less stable than its glucose analogue. As a result of this **9** was directly converted to dianion **10** using 1.1 eq. butyllithium for deprotonation and 2.2 eq. lithium naphthalenide (LN) for reductive lithiation. After the addition of the electrophile the reaction mixture was quenched with a saturated aqueous NH₄Cl solution. The yields of *C*-glycosylation (**Table 2**) were lower than for the glucose analogue (Ref. 1a). The use of deuterated

methanol yielded 53% of the α -deuterated glycitol 11, 4 % of β -compound 5 and 16% of the corresponding undeuterated glycitol. The reaction of 10 with benzaldehyde gave only 37% of 12a/b (ratio 1.5:1). The use of tributyltinchloride as electrophile yielded stannane 14 in 35%.

Scheme 3. Synthesis of the α -C-galactosides via reductive lithiation of chloride 9. Reagents and conditions: (I) HCl, Et₂O, 0°C, 2.5 h (II) 1.1 eq. n-BuLi, -90°C, 2 min (III) 2.2 eq. lithium naphthalenide (LN), -90°C, 5 min (IV) electrophile (V) NH₄Cl_(aq).

However, the conversion of stannane 14 via deprotonation and transmetallation with butyllithium followed by the addition of an electrophile resulted in the formation of the corresponding α -C-galactosides (Scheme 4) in yields similar to those of the β -C-galactoside-synthesis (Table 2).

Scheme 4. Synthesis of the α -C-galactosides via transmetallation of stannane 14. Reagents and conditions: (I) 5 eq. BuLi, THF, -80°C \rightarrow -55°C, 15 min (II) electrophile, -55°C, 5 min (III) NH₄Cl_(aq).

Table 2. Results of α -C-glycosylation via reductive lithiation of chloride 9 [a] and transmetallation of stannane 14 [b].

electrophile	product	R	yield % [a]	a : b *	yield % [b]	a : b *
MeOD	11	D	53		94	
PhCHO	12a/b	CH(OH)Ph	37	1.5 : 1	77	1:1.8
ⁱ PrCHO	13a/b	CH(OH) ⁱ Pr			61	1:1.4
Bu ₃ SnCl	14	$SnBu_3$	35			

* a is the less polar isomer

The deuteration yielded 94% of 11 with no β -deuterated glycitol 5 being observed. The reaction of 10 with benzaldehyde and isobutyraldehyde gave the diastereomeric mixtures 12a/b (ratio 1:1.8) and 13a/b (ratio 1:1.3) in 77 and 61% yield, respectively.

In summary, we have described a method for the direct and stereoselective synthesis of either α - or β -C-galactosides. The galactosyl dianions **4** and **10** are configurationally stable under the conditions described. Although the yields of the α -C-glycosylation are moderate, the procedure allows the synthesis of α -C-galactosides in a multigram scale.

Acknowledgement

Financial support by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie is gratefully acknowledged.

References

L

- a) Wittmann, V.; Kessler, H. Angew. Chem. Int. Ed. Engl. 1993, 32, 1091-1093. b) Frey, O.; Hoffmann, M.; Wittmann, V.; Kessler, H.; Uhlmann, P.; Vasella, A. Helv. Chim. Acta 1994, 77, 2060-2069.
 c) Lesimple, P.; Beau, J. M. Bioorg. Med. Chem. 1994, 2, 1319-1330.
- ² a) Hoffmann, M.; Kessler, H. Tetrahedron Lett. 1994, 35, 6067-6070. b) Hoffmann, M.; Burkhart, F.; Hessler, G.; Kessler, H. Helv. Chim. Acta 1996, 79, 1519-1532. c) Hoffmann, M.; Kessler, H. Tetrahedron Lett. 1997, 38, 1903-1906.
- ³ Burkhart, F.; Kessler, H. Tetrahedron Lett. 1998, 39, 255-256.
- ⁴ Halcomb, R. L.; Danishefsky, S. J. J. Am. Chem. Soc. 1989, 111, 6661-6666.
- ⁵ In contrast to the synthesis of the β -glucopyranosylstannane described in **Ref. 1b** a solution of the epoxide **2** in THF was added dropwise to a solution of tributyltinlithium in THF at 0°C.
- ⁶ Wu, E.; Wu, Q. Carbohydr. Res. 1993, 250, 327-333.