A Convenient Protocol for the Alkylidenation of Lactams

Mark C. Elliott,* Stuart V. Wordingham

School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK Fax +44(29)20874030; E-mail: elliottmc@cardiff.ac.uk *Received 22 September 2005; revised 15 November 2005* Dedicated to Dr. M. J. E. Hewlins on the occasion of his retirement

Abstract: A convenient two-step preparation of alkylidenepyrrolidines is reported.

Key words: heterocycles, enamines, imides, enolates, aldol reactions

Alkylidenepyrrolidines have long been used as synthetic intermediates, particularly in the synthesis of pyrrolidines and porphyrins.¹ These compounds are generally prepared by reaction of a thioamide with a α -bromocarbonyl compound in a reaction commonly known as the Eschenmoser sulfide contraction.² The O-alkylation of lactams followed by treatment with a malonate-type nucleophile also gives the same compounds,³ although we have found this method to be somewhat capricious. During the course of studies directed towards the batzelladine alkaloids,⁴ we required a broad range of alkylidenepyrrolidines, and therefore sought a more convenient method for their preparation. It is well known that imides and carbamates derived from γ -lactams can be selectively attacked at the lactam carbonyl by a range of nucleophiles, including Grignard reagents,^{5,6} other organometallics,^{7,8} heteronucleophiles⁹ and stabilised anions^{10–13} (Equation 1). The products of this reaction have been cyclised to the corresponding pyrrolines and pyrrolidines in a number of instances,^{6,8,12} but we are aware of only a single example of the application of this general approach to alkylidenepyrrolidine synthesis, this being the preparation of sulfonyl alkylidenepyrrolidines.^{14,15} We have therefore undertaken a study of this approach, and now report an efficient and convenient two-step preparation of alkylidenepyrrolidines which can be carried out on a multi-gram scale.

Lactams 1, ¹⁶ 2^{17} and 3^{18} were prepared according to literature procedures. Compounds 1 and 2 underwent ready reaction with ketone and ester enolates to provide a range

SYNTHESIS 2006, No. 7, pp 1162–1170 Advanced online publication: 14.03.2006 DOI: 10.1055/s-2006-926390; Art ID: P15405SS © Georg Thieme Verlag Stuttgart · New York of compounds **4** and **5** as shown in Equation 2 (Table 1). As expected, the β -keto esters existed solely in the keto form, while the 1,3-diketones showed significant ($R^2 = CH_3$) to total ($R^2 = Ph$) enolisation. In all cases with ketone and ester enolates, the reactions were clean and high-yielding, and in many instances the crude products were essentially pure.

a, $R^2 = OEt$; **b**, $R^2 = OBn$; **c**, $R^2 = O-(-)$ -menthyl; **d**, $R^2 = CH_3$; **e**, $R^2 = Ph$

Equation 2

Table 1	Compounds 4	and 5 Prepared
---------	-------------	----------------

Compound	\mathbf{R}^1	R ²	Yield (%)
4a	Н	OEt	88
4b	Н	OBn	68
4c	Н	O-(–)-menthyl	84
4d	Н	Me	74
4e	Н	Ph	75
5a	CO ₂ Et	OEt	78
5b	CO ₂ Et	OBn	67
5c	CO ₂ Et	O-(–)-menthyl	71
5d	CO ₂ Et	Me	72
5e	CO ₂ Et	Ph	74

In reactions of compound **3**, the desired products could only be observed in the ¹H NMR spectrum of the crude reaction mixture, and upon standing overnight or rapid chromatography on silica gel, only the cyclised compounds **6** and **7** were isolated (Scheme 1). Compounds **4** and **5** underwent similar cyclisation, but at a much slower rate (several days standing in CDCl₃). Treatment of compound **6** with trifluoroacetic acid in dichloromethane removed both the nitrogen and oxygen protecting groups to give compound **8** in excellent yield (Scheme 2). The double-bond geometries of **6–8** seem likely, although these are not trivial to determine (see below).

Scheme 2

Cyclisation reactions of compounds **4** and **5** were investigated next. These occurred smoothly under similar conditions to the formation of compound **8** (Equation 3). The results of these reactions are summarised in Table 2.

Equation 3

It has previously been reported that ring-opening reactions of substrate **2** proceed without racemisation.^{10,11} We were able to confirm that this is indeed the case by use of racemic and optically pure menthyl acetates in the above reaction. Comparison of the ¹³C NMR data clearly showed the presence of two diastereoisomers from the ra-

Table 2	Compounds 9	and 1	0 Prepared
---------	-------------	-------	------------

Compound	R ¹	R ²	Yield %)
9a	Н	OEt	78
9b	Н	OBn	86
9c	Н	O-(–)-menthyl	80
9d	Н	Me	85
9e	Н	Ph	74
10a	CO ₂ Et	OEt	82
10b	CO ₂ Et	OBn	72
10c	CO ₂ Et	O-(–)-menthyl	75
10d	CO ₂ Et	Me	55
10e	CO ₂ Et	Ph	44

cemic menthyl acetate, and only one from optically pure menthyl acetate in both compounds 5c and 10c. We would therefore estimate the diastereomeric purity of compounds 5c and 10c to be >95%, and see no reason why the other compounds 10 should show any greater loss of stereochemical integrity.

Formation of sulfone **12** was carried out under the present reaction conditions (Scheme 3), and the overall yield for the two steps was found to be comparable for the previous formation of this compound.¹⁴

The double-bond geometry in alkylidenepyrrolidines such as **9** and **10** is not trivial to determine. Since both the NH and alkene CH (enamine) protons are exchangeable, the expected strong NOE enhancement between these protons is observed, and should not be used as an indication of double-bond geometry. During the course of the present study, we have only observed small NOE enhancements between the alkene CH and the allylic methylene group on the ring which would support the expected Z double-bond geometry.¹⁹ For steric reasons, compound **6** presumably possesses the *E* double-bond geometry shown. The ¹H NMR spectrum of this compound shows the 4-CH₂ of the pyrrolidine ring to be significantly deshielded compared to compound **8**, which we assume to have the *Z*-geometry. This chemical shift has been attributed to anisotropic effects,²⁰ although since the only way to assure the *E* double-bond geometry is to introduce a substitutent onto the nitrogen atom, it is almost impossible to compare data for both isomers of a single compound.²¹ The N–H stretches in the infrared spectra of compounds **9** and **10** show that the esters **9a–c** and **10a–c** are in the region of 3370 cm⁻¹, while the ketones **9d,e** and **10d,e** are all below 3300 cm⁻¹. The proton chemical shifts for the NH protons in this latter group of compounds are significantly deshielded with respect to the former.²² From this we can conclude that the same *Z* double-bond geometry is formed in all cases.

Melting points were determined on a Gallenkamp melting point apparatus and are uncorrected. IR spectra were recorded on a Perkin-Elmer 1600 FTIR spectrophotometer. Mass spectra were recorded on a Fisons VG Platform II spectrometer and on a Micromass Q-TOF Micro spectrometer. NMR spectra were recorded on a Bruker DPX 400 spectrometer operating at 400 MHz for ¹H and at 100 MHz for ¹³C at 25 °C, or on a Bruker Avance 500 spectrometer operating at 500 MHz for ¹H and 125 MHz for ¹³C at 25 °C. All chemical shifts are reported in ppm downfield from TMS. Coupling constants (*J*) are reported in Hz. Multiplicity in ¹H NMR is reported as singlet (s), doublet (d), double doublet (dd), double triplet (dt), double quartet (dq), triplet (t), and multiplet (m). Multiplicity in ¹³C NMR was obtained using the DEPT pulse sequence. Flash chromatography was performed using Matrex silica 60 35–70 micron.

Ethyl 6-tert-Butoxycarbonylamino-3-oxohexanoate (4a)

A solution of lithium diisopropylamide (13.5 mL, 2 M in heptane, 27 mmol) in THF (100 mL) was cooled to -78 °C. EtOAc (2.58 mL, 27 mmol) in THF (3 mL) was added dropwise over 30 min, and the solution allowed to stir for a further 30 min. *N-tert*-Butoxycarbon-ylpyrrolidin-2-one (1; 5.0 g, 27 mmol) in THF (5 mL) was added over 30 min at -78 °C, and the solution warmed to 25 °C and left to stir for 18 h. Sat. aq NH₄Cl solution (100 mL) was added and the organic material extracted with CH₂Cl₂ (3 × 100 mL). The combined organic layers were washed with brine (2 × 150 mL), dried (MgSO₄) and the solvent removed in vacuo. Purification by flash column chromatography (eluent 2:1 hexane–EtOAc) gave the title compound (6.46 g, 88%) as a pale-yellow oil.

IR (neat): 3380, 2977, 2925, 1739, 1709, 1521 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 4.60 (br s, 1 H, NH), 4.12 (q, *J* = 7.1 Hz, 2 H, CH₂O), 3.41 (s, 2 H, COCH₂CO), 3.06 (app q, *J* = 6.5 Hz, 2 H, CH₂NHBoc), 2.53 (t, *J* = 7.1 Hz, 2 H, COCH₂), 1.72 (app quintet, *J* = 6.9 Hz, 2 H, CH₂CH₂CH₂), 1.37 [s, 9 H, C(CH₃)₃], 1.21 (t, *J* = 7.1 Hz, 3 H, CH₃CH₂O).

MS-ES: *m*/*z* (%) = 296 (M + Na, 83), 240 (7), 156 (100), 128 (16).

HRMS-ES: m/z [M + Na]⁺ calcd for C₁₃H₂₃NO₅ + Na: 296.1474; found: 296.1473.

Benzyl 6-tert-Butoxycarbonylamino-3-oxohexanoate (4b)

A solution of lithium diisopropylamide (2.7 mL, 2 M in heptane, 5.4 mmol) in THF (40 mL) was cooled to -78 °C. Benzyl acetate (810 mg, 5.4 mmol) in THF (3 mL) was added over 30 min. After stirring for 30 min at -78 °C, *N-tert*-butoxycarbonylpyrrolidin-2-one (**1**; 1.0 g, 5.4 mmol) in THF (8 mL) was added over 30 min at -78 °C, and the solution allowed to warm to 25 °C and stirred for 18 h. Sat. aq NH₄Cl (100 mL) was added and the organic material extracted with

 CH_2Cl_2 (3 × 50 mL). The combined organic layers were washed with brine (2 × 50 mL), dried (MgSO₄) and the solvent removed in vacuo to give a yellow oil. Purification by flash column chromatography (eluent: 5:1 hexane–EtOAc) gave the title compound (1.2 g, 68%) as a pale oil.

IR (neat): 3402, 2976, 2925, 1739, 1714, 1519, 1167, 751, 698 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 7.36–7.26 (m, 5 H_{arom}), 5.10 (s, 2 H, OCH₂), 4.50 (br s, 1 H, NH), 3.42 (s, 2 H, COCH₂CO), 3.01 (app q, *J* = 6.4 Hz, CH₂N), 2.50 (t, *J* = 7.1 Hz, 2 H, CH₂CO), 1.68 (app quintet, *J* = 6.8 Hz, 2 H, CH₂CH₂CH₂), 1.37 [s, 9 H, C(CH₃)₃].

¹³C NMR (125 MHz, CDCl₃): δ = 202.7 (ketone C=O), 167.1 (ester C=O), 156.1 (carbamate C=O), 135.2 (C_{arom}), 128.7 (CH_{arom}), 128.6 (CH_{arom}), 128.5 (CH_{arom}), 79.3 [(CH₃)₃CO], 67.2 (CH₂O), 49.2 (CH₂N), 45.0 (COCH₂CO), 39.6 (COCH₂), 28.4 [C(CH₃)₃], 23.8 (CH₂CH₂N).

MS-ES: *m*/*z* (%) = 358 (M + Na, 62), 218 (100).

HRMS-ES: m/z [M + Na]⁺ calcd for C₁₈H₂₅NO₅ + Na: 358.1630; found: 358.1623.

(-)-Menthyl 6-*tert*-Butoxycarbonylamino-3-oxohexanoate (4c) A solution of lithium diisopropylamide (1.5 mL, 2 M in heptane, 3 mmol) in THF (10 mL) was cooled to -78 °C. (-)-Menthyl acetate (595 mg, 3 mmol) in THF (3 mL) was added over 30 min. After stirring for 30 min at -78 °C, *N*-*tert*-butoxycarbonylpyrrolidin-2-one (1; 555 mg, 3 mmol) in THF (5 mL) was added over 30 min at -78 °C, and the solution warmed to 25 °C and left to stir for 18 h. Sat. aq NH₄Cl (100 mL) was added and the mixture extracted with CH₂Cl₂ (3 × 50 mL). The combined organic layers were washed with brine (2 × 50 mL), dried (MgSO₄) and the solvent removed in vacuo to give a yellow crystalline solid which was recrystallised from hexane–Et₂O to give the title compound (965 mg, 84%) as an off-white crystalline solid; mp 88–89 °C.

IR (CHCl₃): 3398, 2958, 1735, 1715, 1170 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ = 4.65 (app dt, *J* = 4.4, 10.9 Hz, 1 H, menthyl 1-H), 4.59–4.52 (br s, 1 H, NH), 3.37 and 3.35 (AB quartet, *J* = 15.5 Hz, 2 H, COCH₂CO), 3.05 (app q, *J* = 6.3 Hz, 2 H, CH₂N), 2.52 (t, *J* = 7.1 Hz, 2 H, CH₂CO), 1.98–1.92 (m, 1 H, menthyl 6-H_{eq}), 1.82–1.75 [app doubled septet, *J* = 2.7, 7.0 Hz, 1 H, CH(CH₃)₂], 1.72 (app quintet, *J* = 6.9 Hz, 2 H, CH₂CH₂CH₂), 1.64–1.58 (m, 2 H, menthyl 3-H_{eq} and 4-H_{eq}), 1.48–1.40 (m, 1 H, menthyl 5-H_{ax}), 1.37 [s, 9 H, C(CH₃)₃], 1.35–1.27 (m, 1 H, menthyl 2-H_{ax}), 1.03–0.96 (m, 1 H, menthyl 3-H_{ax}), 0.92 (app q, *J* = 11.7 Hz, 1 H, menthyl 4-H_{ax}), 0.84 (d, *J* = 6.6 Hz, 3 H, CH₃), 0.82 (d, *J* = 7.1 Hz, 3 H, CH₃), 0.82–0.77 (m, 1 H, menthyl 4-H_{ax}), 0.70 (d, *J* = 7.0 Hz, 3 H, CH₃).

¹³C NMR (125 MHz, CDCl₃): δ = 202.5 (ketone C=O), 166.9 (ester C=O), 156.1 (carbamate C=O), 79.2 (C–O), 75.5 (menthyl 1-CH), 49.6 (COCH₂CO), 46.8 (menthyl 2-CH), 40.7 (menthyl 6-CH₂), 40.0 (CH₂), 39.7 (CH₂), 34.1 (menthyl 4-CH₂), 31.4 (menthyl 5-CH), 28.4 [(CH₃)₃CO], 26.1 (CH), 23.8 (menthyl 3-CH₂), 23.2 (CH₂), 22.0 (CH₃), 20.7 (CH₃), 16.1 (CH₃).

MS-ES: *m*/*z* (%) = 406 (M + Na, 100), 266 (73), 128 (32).

HRMS-ES: m/z [M + Na]⁺ calcd for C₂₁H₃₇NO₅ + Na: 406.2569; found: 406.2585.

N-tert-Butoxycarbonyl-4,6-dioxoheptylamine (4d)

A solution of lithium diisopropylamide (1.5 mL, 2 M in heptane, 3 mmol) in THF (10 mL) was cooled to -78 °C. Acetone (174 mg, 3 mmol) in THF (3 mL) was added over 30 min. After stirring for 30 min at -78 °C, *N-tert*-butoxycarbonylpyrrolidin-2-one (1; 555 mg, 3 mmol) in THF (5 mL) was added over 30 min at -78 °C, and the solution warmed to 25 °C and left to stir for 18 h. Sat. aq NH₄Cl (100 mL) was added and the solution extracted with CH₂Cl₂ (3 × 50

mL). The combined organic layers were washed with brine $(2 \times 50 \text{ mL})$, dried (MgSO₄) and the solvent removed in vacuo. The resulting yellow oil was purified by flash column chromatography (eluent: 4:1 hexane–EtOAc) to give the title compound (535 mg, 74%) as a colourless oil (5:1 mixture of enol and keto tautomers).

IR (CH₂Cl₂): 3357, 2976, 1703, 1619, 1170 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ (enol tautomer) = 5.44 (s, 1 H, enol CH), 4.58 (br s, 1 H, NH), 3.09 (app q, J = 6.5 Hz, 2 H, CH₂N), 2.25 (t, J = 7.3 Hz, COCH₂), 1.98 (s, 3 H, CH₃), 1.73 (app quintet, J = 7.5 Hz, 2 H, CH₂), 1.37 [s, 9 H, C(CH₃)₃].

¹³C NMR (125 MHz, CDCl₃): δ (enol tautomer) = 194.0 (C=O), 190.7 (enol C–O), 156.0 (C=O), 100.0 (enol CH), 79.3 (C–O), 40.0 (CH₂N), 35.7 (CH₂), 28.4 [C(CH₃)₃], 25.9 (CH₂), 24.8 (CH₃).

MS-ES: *m*/*z* (%) = 266 (M + Na, 100), 127 (28).

HRMS-ES: m/z [M + Na]⁺ calcd for C₁₂H₂₁NO₄ + Na: 266.1368; found: 266.1355.

N-tert-Butoxycarbonyl-4,6-dioxo-6-phenylhexylamine (4e)

A solution of lithium diisopropylamide (2.8 mL, 2 M solution in heptane, 5.6 mmol) in THF (10 mL) was cooled to -78 °C. Acetophenone (0.67 mL, 5.6 mmol) in THF (2 mL) was added over 20 min. After stirring for 25 min at -78 °C, *N-tert*-butoxycarbonylpyrrolidin-2-one (1; 1.0 g, 5.4 mmol) in THF (5 mL) was added over 30 min at -78 °C and the solution warmed to 25 °C and left to stir for 18 h. Sat. aq NH₄Cl (100 mL) was added and the mixture extracted with CH₂Cl₂ (3 × 100 mL). The combined organic layers were washed with brine (2 × 150 mL), dried (MgSO₄) and the solvent removed in vacuo to give an oily solid which was recrystallised from EtOAc–hexane to give the title compound (1.23 g, 75%), as a off-white crystalline solid existing exclusively as the enol tautomer; mp 72–73 °C.

IR (CHCl₃): 3360, 2975, 2929, 1702, 1601, 1169 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 7.81 (d, *J* = 7.3 Hz, 2 H_{arom}), 7.43 (t, *J* = 7.3 Hz, 1 H_{arom}), 7.34 (app t, *J* = 7.4 Hz, 2 H_{arom}), 6.12 (s, 1 H, enol CH), 4.60 (br s, 1 H, NH), 3.11 (app q, *J* = 6.5 Hz, 2 H, CH₂N), 2.40 (t, *J* = 7.4 Hz, 2 H, CH₂CO), 1.81 (app quintet, *J* = 7.2 Hz, 2 H, CH₂CH₂), 1.35 [s, 9 H, C(CH₃)₃].

¹³C NMR (125 MHz, CDCl₃): δ = 196.5 (ketone C=O), 182.9 (enol C–O), 156.0 (carbamate C=O), 134.8 (C_{arom}), 132.3 (CH_{arom}), 128.6 (CH_{arom}), 127.0 (CH_{arom}), 96.2 (enol CH), 78.9 [(CH₃)₃CO], 40.1 (CH₂N), 36.6 (CH₂), 28.4 [C(CH₃)₃], 26.0 (CH₂).

MS-ES: *m*/*z* (%) = 328 (M + Na, 89), 188 (100).

HRMS-ES: m/z [M + Na]⁺ calcd for C₁₇H₂₃NO₄ + Na: 328.1525; found: 328.1499.

(2S)-2-tert-Butoxycarbonylamino-5-oxoheptanedioic Acid Diethyl Ester (5a)¹¹

A solution of lithium diisopropylamide (3.9 mL, 2 M solution in heptane, 7.8 mmol) in THF (15 mL) was cooled to -78 °C. EtOAc (0.76 mL, 7.8 mmol) in THF (4 mL) was added over 25 min. After stirring for 20 min at -78 °C, compound **2** (2.0 g, 7.8 mmol) in THF (5 mL) was added over 30 min at -78 °C. The solution was then allowed to warm to 25 °C and left to stir for 18 h. Sat. aq NH₄Cl (100 mL) was added and the solution extracted with CH₂Cl₂ (3 × 100 mL). The combined organic layers were washed with brine (2 × 150 mL), dried (MgSO₄) and the solvent removed in vacuo. Filtration through a short plug of silica gel, eluting with EtOAc, gave the title compound (2.1 g, 78%), as a yellow oil.

IR (neat): 3368, 2979, 2934, 1741, 1713, 1512 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 5.07 (br d, *J* = 7.6 Hz, 1 H, NH), 4.23–4.05 (m, 1 H, C*H*NH), 4.12 (app q, *J* = 7.2 Hz, 4 H, CH₂O), 3.39 (s, 2 H, COCH₂CO), 2.70–2.50 (m, 2 H, m, CH₂CO), 2.16–2.05 (m, 1 H, one of CH₂CHN), 1.89–1.76 (m, 1 H, one of

CH₂CHN), 1.39 [s, 9 H, C(CH₃)₃], 1.21 (app t, J = 7.2 Hz, 6 H, 2 CH₂CH₃).

¹³C NMR (100 MHz, CDCl₃): δ = 201.7 (ketone C=O), 172.2 (ester C=O), 167.1 (ester C=O), 155.5 (carbamate C=O), 80.0 [OC(CH₃)₃], 61.6 (OCH₂), 61.5 (OCH₂), 52.7 (CHNH), 49.3 (CH₂NH), 38.8 (CH₂CO), 28.3 [C(CH₃)₃], 26.5 (CH₂) 14.2 (CH₂CH₃), 14.1 (CH₂CH₃).

MS-ES: m/z (%) = 384 (M + K, 34), 368 (M + Na, 100), 328 (17).

HRMS-ES: m/z [M + Na]⁺ calcd for C₁₆H₂₇NO₇ + Na: 368.1685; found: 368.1659.

(2S)-2-tert-Butoxycarbonylamino-5-oxoheptanedioic Acid 1-Ethyl Ester 7-Benzyl Ester (5b)

A solution of lithium diisopropylamide (5.93 mL, 2 M in heptane, 11.87 mmol) in THF (60 mL) was cooled to -78 °C. Benzyl acetate (1.78 g, 11.87 mmol) in THF (10 mL) was added over 30 min. After stirring for 30 min at -78 °C, compound **2** (3.05 g, 11.87 mmol) in THF (10 mL) was added over 30 min at -78 °C. The solution was allowed to warm to 25 °C and stirred for 18 h. Sat. aq NH₄Cl (100 mL) was added and the organic material extracted into CH₂Cl₂ (3 × 100 mL). The combined organic layers were washed with brine (2 × 100 mL), dried (MgSO₄), and the solvent removed in vacuo to give a yellow oil. Purification by flash column chromatography (eluent: 6:1 hexane–EtOAc) gave the title compound (3.1 g, 67%) as a pale oil.

IR (neat): 3384, 2977, 1740, 1710, 1368 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ = 7.36–7.27 (m, 5 H_{arom}), 5.12 (s, 2 H, OCH₂), 5.05 (br d, *J* = 6.5 Hz, 1 H, NH), 4.22–4.09 (m, 3 H, C*H*NH and CH₂O), 3.45 (s, 2 H, COCH₂CO), 2.67–2.50 (m, 2 H, m, CH₂CO), 2.18–2.06 (m, 1 H, one of *CH*₂CHN), 1.90–1.78 (m, 1 H, one of *CH*₂CHN), 1.39 [s, 9 H, C(*CH*₃)₃], 1.22 (t, *J* = 7.1 Hz, 3 H, CH₂C*H*₃).

¹³C NMR (125 MHz, CDCl₃): δ = 201.4 (ketone C=O), 172.2 (ester C=O), 166.9 (ester C=O), 155.5 (carbamate C=O), 135.3 (C_{arom}), 128.7 (CH_{arom}), 128.5 (CH_{arom}), 128.4 (CH_{arom}), 80.0 [OC(CH₃)₃], 67.2 (OCH₂), 61.6 (OCH₂), 52.7 (CHNH), 49.2 (CH₂NH), 38.9 (CH₂CO), 28.3 [C(CH₃)₃], 26.5 (CH₂) 14.2 (CH₂CH₃).

MS-ES: m/z (%) = 430 (M + Na, 18), 352 (40), 290 (100).

HRMS-ES: m/z [M + Na]⁺ calcd for C₂₁H₂₉NO₇ + Na: 430.1842; found: 430.1842.

(2S)-2-tert-Butoxycarbonylamino-5-oxoheptanedioic Acid 1-Ethyl Ester 7-(-)-Menthyl Ester (5c)

A solution of lithium diisopropylamide (1.5 mL, 2 M in heptane, 3 mmol) in THF (10 mL) was cooled to -78 °C. (–)-Menthyl acetate (1.23 g, 6.2 mmol) in THF (3 mL) was added over 30 min. After stirring for 30 min at -78 °C, compound **2** (1.6 g, 6.2 mmol) in THF (5 mL) was added over 30 min at -78 °C, and the solution warmed to 25 °C and allowed to stir for 18 h. Sat. aq NH₄Cl (100 mL) was added and the solution extracted with CH₂Cl₂ (3 × 100 mL). The combined organic layers were washed with brine (2 × 150 mL), dried (MgSO₄) and the solvent removed in vacuo. The resulting yellow oil was purified by flash column chromatography (eluent: 4:1 hexane–EtOAc) to give the title compound (2.0 g, 71%) as an off-white solid; mp 82–82.5 °C.

IR (CHCl₃): 3367, 2957, 1717 (v br), 1168 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ = 5.03 (br d, *J* = 6.3 Hz, 1 H, NH), 4.65 (app dt, *J* = 4.4, 10.9 Hz, 1 H, menthyl 1 H), 4.22–4.14 (m, 1 H, CHN), 4.11 (q, *J* = 7.1 Hz, 2 H, CH₂O), 3.38 and 3.35 (AB quartet, *J* = 15.5 Hz, 2 H, COCH₂CO), 2.65–2.50 (m, 2 H, CH₂CO), 1.98–1.92 (m, 1 H, menthyl 6-H_{eq}), 1.87–1.75 [m, 3 H, CH₂CH₂CO and CH(CH₃)₂], 1.64–1.58 (m, 2 H, menthyl 3-H_{eq} and 4-H_{eq}), 1.47–1.39 (m, 1 H, menthyl 5-H_{ax}), 1.37 [s, 9 H, C(CH₃)₃], 1.34–1.26 (m,

1 H, menthyl 2-H_{ax}), 1.21 (t, J = 7.1 Hz, 3 H, CH₃CH₂), 1.03–0.93 (m, 1 H, menthyl 3- H_{ax}), 0.92 (app q, J = 11.8 Hz, 1 H, menthyl 6- H_{ax}), 0.84 (d, J = 6.6 Hz, 3 H, CH_3), 0.82 (d, J = 7.0 Hz, 3 H, CH_3), 0.81-0.76 (m, 1 H, menthyl 4-H_{ax}), 0.69 (d, J = 7.0 Hz, 3 H, CH₃).

¹³C NMR (125 MHz, CDCl₃): $\delta = 201.7$ (ketone C=O), 172.2 (ester C=O), 166.7 (ester C=O), 155.5 (carbamate C=O), 80.0 [(CH₃)₃CO], 75.6 (menthyl 1-CH), 61.2 (CH₂O), 52.8 (CHN), 49.6 (CH₂), 46.9 (menthyl 2-CH), 40.7 (menthyl 6-CH₂), 38.8 (CH₂), 34.2 (menthyl 4-CH₂), 31.4 (menthyl 5-CH), 28.3 [C(CH₃)₃], 26.6 (CH₂), 26.2 (CH), 23.3 (menthyl 3-CH₂), 22.0 (CH₃), 20.7 (CH₃), 16.2 (CH₃), 14.2 (CH₃).

MS-ES: *m*/*z* (%) = 494 (M + K, 13), 478 (M + Na, 24), 338 (100).

HRMS-ES: m/z [M + Na]⁺ calcd for C₂₄H₄₁NO₇ + Na: 478.2781; found: 478.2795.

Ethyl (2S)-2-tert-Butoxycarbonylamino-5,7-dioxooctanoate (**5d**)

A solution of lithium diisopropylamide (2.5 mL, 2 M solution in heptane, 5 mmol) in THF (10 mL) was cooled to -78 °C. Acetone (0.31 mL, 4.3 mmol) in THF (2 mL) was added over 20 min. After stirring for 25 min at -78 °C, compound 2 (1.0 g, 3.9 mmol) in THF (5 mL) was added over 30 min at -78 °C. The solution was then allowed to warm to 25 °C and stirred for 18 h. Sat. aq NH₄Cl (100 mL) was added and the solution extracted with CH₂Cl₂ $(3 \times 100 \text{ mL})$. The combined organic layers were washed with brine $(2 \times 150 \text{ mL})$, dried (MgSO₄) and the solvent removed in vacuo. The residue was purified by flash column chromatography (eluent: 4:1 hexane-Et₂O) to give the title compound (900 mg, 72%) as a yellow oil, existing as the enol tautomer.

IR (CHCl₃): 3372, 2979, 1712 (v br), 1164 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 5.41 (s, 1 H, enol CH), 5.04 (br d, *J* = 7.3 Hz, 1 H, NH), 4.23 (m, 1 H, C*H*NH), 4.13 (q, *J* = 7.1 Hz, 2 H, CH₂O), 2.35–2.29 (m, 2 H, CH₂CH₂), 2.15–2.05 (m, 1 H, one of CH₂CHN), 1.97 (s, 3 H, CH₃CO), 1.93–1.83 (m, 1 H, one of CH₂CHN), 1.37 [s, 9 H, C(CH₃)₃], 1.21 (t, J = 7.1 Hz, 3 H, CH_2CH_3).

¹³C NMR (125 MHz, CDCl₃): δ = 194.0 (C=O), 189.7 (enol C–O), 172.3 (C=O), 155.4 (C=O), 100.0 (enol CH), 79.9 (C-O), 61.5 (CH₂O), 53.1 (CHN), 34.5 (CH₂), 28.3 [C(CH₃)₃], 28.0 (CH₂), 24.4 (CH₃), 14.1 (CH₃).

MS-ES: *m*/*z* (%) = 354 (M + K, 62), 338 (100), 282 (21).

HRMS-ES: m/z [M + Na]⁺ calcd for C₁₅H₂₅NO₆ + Na: 338.1580; found: 338.1569.

Ethyl (2S)-2-tert-Butoxycarbonylamino-5,7-dioxo-7-phenylheptanoate (5e)¹¹

A solution of lithium diisopropylamide (2.5 mL, 2 M solution in heptane, 5 mmol) in THF (10 mL) was cooled to -78 °C. Acetophenone (0.53 mL, 4.3 mmol) in THF (2 mL) was added over 20 min. After stirring for 25 min at -78 °C, compound 2 (1.0 g, 3.9 mmol) in THF (5 mL) was added over 30 min at -78 °C. The solution was then allowed to warm to 25 °C and left to stir for 18 h. Sat. aq NH₄Cl (100 mL) was added and the solution extracted with CH₂Cl₂ $(3 \times 100 \text{ mL})$. The combined organic layers were washed with brine $(2 \times 150 \text{ mL})$, dried (MgSO₄) and the solvent removed in vacuo to give a orange oil which was purified by flash column chromatography (eluent: 10:3 hexane-Et₂O) to give the title compound (1.1 g, 74%) as a yellow crystalline solid; mp 63-64 °C.

IR (CHCl₃): 3367, 2979, 1715 (v br), 1606, 1164 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ = 7.79 (app d, *J* = 7.2 Hz, 2 H_{arom}), 7.40 (app tt, J = 7.4, 1.2 Hz, 1 H_{arom}), 7.32 (app t, J = 7.6 Hz, 2 H_{arom}), 6.10 (s, 1 H, CH=CCOH), 5.11 (br d, J = 8.3 Hz, 1 H, NH), 4.28–4.22 (m, 1 H, CHNH), 4.09 (q, J = 7.2 Hz, 2 H, CH₂O), 2.52– 2.41 (m, 2 H, CH₂CH₂), 2.19-2.10 (m, 1 H, one of CH₂CHN), 1.99-1.90 (m, 1 H, one of CH₂CHN), 1.35 [s, 9 H, C(CH₃)₃], 1.21 (t, J = 7.2 Hz, 3 H, CH₂CH₃).

¹³C NMR (125 MHz, CDCl₃): δ = 196.4 (PhC=O), 182.0 (enol ether C-O), 172.3 (ester C=O), 155.5 (carbamate C=O), 134.4 (C_{arom}), 132.5 (CH_{arom}), 128.6 (CH_{arom}), 126.9 (CH_{arom}), 79.7 (Me₃CO), 61.4 (OCH₂), 53.1 (NCH), 35.4 (CH₂COH), 28.2 [C(CH₃)₃], 28.0 (CH₂CHN), 14.1 (CH₃).

MS-ES: *m*/*z* (%) = 416 (M + K, 75), 400 (M + Na, 100), 378 (M⁺, 24).

HRMS-ES: m/z [M + Na]⁺ calcd for C₂₀H₂₇NO₆ + Na: 400.1736; found: 400.1729.

(2S)-2-(tert-Butyldimethylsilyloxymethyl)-5-[(E)-1-ethoxycarbonylmethylidene]pyrrolidine-1-carboxylic Acid tert-Butyl Ester (6)23

A solution of lithium diisopropylamide (0.25 mL, 2 M in heptane, 0.5 mmol) in THF (5 mL) was cooled to -78 °C. EtOAc (43 mg, 0.5 mmol) in THF (3 mL) was added over 20 min. After stirring for 25 min at -78 °C, compound 3 (164 mg, 0.5 mmol) in THF (2 mL) was added over 20 min at -78 °C. The solution was allowed to warm to 25 °C and left to stir for 18 h. Sat. aq NH₄Cl (20 mL) was added and the solution extracted with CH_2Cl_2 (3 × 15 mL). The combined organic layers were washed with brine $(2 \times 15 \text{ mL})$, dried (MgSO₄) and the solvent removed in vacuo. The resulting yellow oil was purified by flash column chromatography (eluent: 4:1 hexane-EtOAc) to give the title compound (123 mg, 63%) as a yellow oil.

IR (neat): 3368, 2955, 2857, 1739, 1709, 1501, 1471 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ = 6.42 (br s, 1 H, C=CH), 4.19–4.15 (m, 1 H, CHN), 4.08 (q, J = 7.1 Hz, 2 H, CH₂O), 3.68-3.62 (m, 2 H, CH_2OSi), 3.36 (app ddt, J = 18.4, 9.5, 1.5 Hz, 1 H, one of $CH_2C=C$), 2.96 (dddd, J = 18.4, 11.3, 9.1, 2.3 Hz, 1 H, one of CH₂C=C), 2.03– 1.85 (m, 2 H, CH₂), 1.50 [s, 9 H, (CH₃)₃CO], 1.21 (t, J = 7.1 Hz, 3 H, CH₃CH₂), 0.83 [s, 9 H, (CH₃)₃CSi], 0.00 [s, 3 H, one of (CH₃)₂Si], -0.02 [s, 3 H, one of (CH₃)₂Si].

¹³C NMR (125 MHz, CDCl₃): δ = 169.0 (ester C=O), 158.4 (carbamate C=O), 151.6 (C=CH), 96.1 (C=CH), 82.1 [(CH₃)₃CO], 63.7 (CH₂OSi), 62.2 (CHN), 59.1 (CH₂O), 31.0 (CH₂), 28.3 [(CH₃)₃CO], 25.8 [(CH₃)₃CSi], 23.8 (CH₂), 18.2 (CSi), 14.5 (CH₃CH₂), -5.4 [one of (CH₃)₂Si], -5.5 [one of (CH₃)₂Si].

MS-ES: m/z (%) = 400 (MH⁺, 9), 300 (100).

HRMS-ES: m/z [M + H]⁺ calcd for C₂₀H₃₈NO₅Si: 400.2519; found: 400.2510.

(2S)-2-(tert-Butyldimethylsilyloxymethyl)-5-[(E)-2-oxopropylidene]pyrrolidine-1-carboxylic Acid tert-Butyl Ester (7)

A solution of lithium diisopropylamide (0.85 mL, 2 M in heptane, 1.7 mmol) in THF (10 mL) was cooled to -78 °C. Acetone (98 mg, 1.7 mmol) in THF (3 mL) was added over 30 min. After stirring for 30 min at -78 °C, compound 3 (555 mg, 1.7 mmol) in THF (6 mL) was added over 25 min at -78 °C. The solution was allowed to warm to 25 °C and left to stir for 18 h. Sat. aq NH₄Cl (100 mL) was added and the solution extracted with CH_2Cl_2 (3 × 50mL). The combined organic layers were washed with brine $(2 \times 50 \text{ mL})$, dried (MgSO₄) and the solvent removed in vacuo. The resulting yellow oil was purified by flash column chromatography (eluent: 4:1 hexane-EtOAc) to give the title compound (367 mg, 62%) as a pale-yellow oil.

IR (neat): 2928, 2845, 1718, 1578, 1144 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ = 6.92 (s, 1 H, C=CH), 4.20–4.13 (m, 1 H, CHN), 3.67 (dd, J = 10.2, 4.9 Hz, 1 H, one of CH₂OSi), 3.64 (dd, J = 10.2, 3.4 Hz, 1 H, one of CH₂OSi), 3.38 (app ddt, J = 20.1, 9.6, 1.4 Hz, 1 H, one of CH₂C=C), 2.95 (dddd, J = 20.1, 11.2, 9.3, 2.2 Hz, 1 H, one of CH₂C=C), 2.15 (s, 3 H, CH₃CO), 2.02–1.87 (m, 2 H, CH₂), 1.52 [s, 9 H, (CH₃)₃CO], 0.82 [s, 9 H, (CH₃)₃CSi], 0.00 [s, 3 H, one of (CH₃)₂Si], -0.02 [s, 3 H, one of (CH₃)₂Si].

¹³C NMR (125 MHz, CDCl₃): δ = 198.5 (ketone C=O), 158.6 (carbamate C=O), 151.5 (*C*=CH), 104.1 (C=CH), 82.3 [(CH₃)₃CO], 63.8 (CH₂OSi), 62.1 (CHN), 32.0 (CH₃CO), 31.7 (CH₂), 28.3 [(CH₃)₃CO], 25.8 [(CH₃)₃CSi], 23.9 (CH₂), 21.2 (CSi), -5.2 [one of (CH₃)₂Si], -5.5 [one of (CH₃)₂Si].

MS-ES: *m*/*z* (%) = 370 (MH⁺, 27), 270 (100).

HRMS-ES: m/z [M + H]⁺ calcd for C₁₉H₃₆NO₄Si: 370.2414; found: 370.2403.

(2*S*)-2-(Hydroxymethyl)-5-[(*Z*)-1-ethoxycarbonylmethylidene]pyrrolidine (8)

To a solution of compound **6** (200 mg, 0.50 mmol) in CH₂Cl₂ (3 mL) was added TFA (115 mg, 1.0 mmol) and the solution stirred for 3 h at 25 °C. Sat. aq Na₂CO₃ was added until neutral to pH paper, and the organic material extracted into CH₂Cl₂ (3×20 mL). The organic layer was dried (MgSO₄) and the solvent removed in vacuo to give a yellow oil which was purified by flash column chromatography (eluent: 5:1 hexane–EtOAc) to give the title compound (81 mg, 87%) as a colourless oil.

IR (neat): 3402, 2955, 1714, 1689, 1171 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 8.00 (br s, 1 H, NH), 4.46 (s, 1 H, C=CH), 4.01 (q, *J* = 7.1 Hz, 2 H, CH₂CH₃), 3.87 (app quintet, *J* = 5.6 Hz, 1 H, CHNH), 3.62 (dd, *J* = 11.2, 3.9 Hz, 1 H, one of CH₂OH), 3.45 (dd, *J* = 11.2, 6.3 Hz, 1 H, one of CH₂OH), 2.53 (m, 2 H, CH₂C=C), 1.99 (m, 1 H, one of CH₂CHN), 1.69 (m, 1 H, one of CH₂CHN), 1.19 (t, *J* = 7.1 Hz, 3 H, CH₂CH₃).

¹³C NMR (100 MHz, CDCl₃): δ = 171.9 (C=O), 167.3 (C=CH), 77.7 (C=CH), 65.9 (CH₂O), 61.4 (CH), 59.0 (CH), 32.0 (CH₂CO), 24.0 (CH₂), 14.8 (CH₃).

MS-ES: m/z (%) = 186 (MH⁺, 100).

HRMS-ES: m/z [M + H]⁺ calcd for C₉H₁₆NO₃: 186.1130; found: 186.1125.

(Z)-Pyrrolidinylideneacetic Acid Ethyl Ester (9a)

Ethyl 6-*tert*-butoxycarbonylamino-3-oxohexanoate (**4a**; 0.5 g, 1.8 mmol) was dissolved in TFA (0.3 mL, 3.6 mmol) and the resulting solution stirred for 3 h at 25 °C. Sat. aq NaHCO₃ was added until neutral to pH paper, and the organic materials extracted with CH₂Cl₂ (3×20 mL). The combined organic layers were dried (MgSO₄) and the solvent removed in vacuo. The resulting yellow solid was purified by flash column chromatography (eluent: 4:1 hexane–EtOAc) to give the title compound (0.22 g, 78%) as a yellow/orange crystalline solid; mp 62–62.5 °C (Lit.²⁴ mp 60–62 °C).

IR (CH₂Cl₂): 3360, 2983, 1652, 1590, 1143 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 7.85 (br s, 1 H, NH), 4.49 (br s, 1 H, alkene CH), 4.05 (q, *J* = 7.1 Hz, 2 H, CH₂O), 3.45 (t, *J* = 6.9 Hz, 2 H, CH₂N), 2.51 (t, *J* = 7.8 Hz, 2 H, CH₂CO), 1.91 (app quintet, *J* = 7.3 Hz, 2 H CH₂CH₂CH₂), 1.19 (q, *J* = 7.1 Hz, 3 H, CH₃CH₂).

¹³C NMR (125 MHz, CDCl₃): δ = 170.8 (C=O), 166.6 (*C*=CH), 76.5 (C=CH), 58.4 (CH₂O), 47.1 (CH₂N), 32.2 (CH₂), 22.0 (CH₂), 14.7 (CH₃).

MS-ES: m/z (%) = 156 (MH⁺, 100), 128 (37).

HRMS-ES: m/z [M + Na]⁺ calcd for C₈H₁₄NO₂ + Na: 156.1025; found: 156.1015.

(Z)-Pyrrolidinylideneacetic Acid Benzyl Ester (9b)

Benzyl 6-*tert*-butoxycarbonylamino-3-oxohexanoate (**4b**; 2.0 g, 7.42 mmol) was dissolved in TFA (5.11 g, 44.5 mmol) and stirred for 3 h at 25 °C. Sat. aq NaHCO₃ was added until neutral to pH pa-

per, and the organic material extracted into CH_2Cl_2 (3 × 80 mL). The combined organic layers were dried (MgSO₄) and the solvent removed in vacuo. The resulting yellow oil was purified by flash column chromatography (eluent: 4:1 hexane–EtOAc) to give the ti-tle compound (1.5 g, 86%) as a waxy solid; mp 57–58 °C (Lit.²⁵ mp 75–76 °C).

IR (neat): 3372, 2946, 1651, 1600, 1495, 1454, 1235, 1141, 740, 697 $\rm cm^{-1}.$

¹H NMR (500 MHz, CDCl₃): δ = 7.85 (br s, 1 H, NH), 5.04 (s, 2 H, CH₂O), 4.54 (br s, 1 H, C=CH), 3.45 (t, *J* = 6.9 Hz, 2 H, CH₂N), 2.52 (t, *J* = 7.8 Hz, 2 H, CH₂CO), 1.90 (app quintet, *J* = 7.3 Hz, 2 H, CH₂CH₂CH₂).

¹³C NMR (125 MHz, CDCl₃): δ = 170.4 (C=O), 167.0 (C=CH), 137.7 (C_{arom}), 128.4 (CH_{arom}), 127.8 (CH_{arom}), 127.6 (CH_{arom}), 76.3 (C=CH), 64.4 (CH₂O), 47.1 (CH₂N), 32.3 (CH₂), 22.0 (CH₂).

MS-ES: *m*/*z* (%) = 218 (MH⁺, 100), 91 (36).

HRMS-ES: m/z [M + H]⁺ calcd for C₁₃H₁₅NO₂ + Na: 240.1000; found: 240.0995.

(2Z)-Pyrrolidinylideneacetic Acid (–)-Menthyl Ester (9c)

(–)-Menthyl 6-*tert*-butoxycarbonylamino-3-oxohexanoate (**4c**; 900 mg, 2.3 mmol) was dissolved in TFA (0.35 mL, 4.6 mmol) and stirred for 3 h at 25 °C. Sat. aq NaHCO₃ was added until neutral to pH paper, and the organic material was extracted into CH_2Cl_2 (3 × 20 mL). The combined organic layers were dried (MgSO₄) and the solvent removed in vacuo. The resulting yellow solid was purified by flash column chromatography (eluent: 4:1 hexane–EtOAc) to give the title compound (485 mg, 80%) as a yellow oil.

IR (CHCl₃): 3365, 2951, 2868, 1651, 1603, 1236 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ = 7.82 (br s, 1 H, NH), 4.58 (app dt, J = 4.2, 10.8 Hz, 1 H, menthyl 1-H), 4.50–4.35 (br s, 1 H, alkene CH), 3.43 (t, J = 6.8 Hz, 2 H, CH₂N), 2.50 (t, J = 7.6 Hz, 2 H, CH₂C=C), 1.97–1.82 [m, 4 H, CH₂CH₂CH₂ + menthyl 6-H_{eq} + CH(CH₃)₂], 1.63–1.55 (m, 2 H, menthyl 3-H_{eq} + 4-H_{eq}), 1.47–1.36 (m, 1 H, menthyl 5-H_{ax}), 1.27 (app br t, J = 11.5 Hz, 1 H, menthyl 2-H_{ax}), 0.99 (app dq, J = 2.7, 12.7 Hz, 1 H, menthyl 3-H_{ax}), 0.88 (app q, J = 11.7 Hz, 1 H, menthyl 6-H_{ax}), 0.87–0.76 (m, 1 H, menthyl 4-H_{ax}), 0.81 (d, J = 6.5 Hz, 3 H, CH₃), 0.80 (d, J = 7.0 Hz, 3 H, CH₃), 0.70 (d, J = 7.0 Hz, 3 H, CH₃).

¹³C NMR (125 MHz, CDCl₃): δ = 170.5 (C=O), 166.4 (CN), 76.8 (C=CH), 71.7 (CHO), 47.3 (CH), 47.1 (CH₂N), 41.6 (CH₂), 34.5 (CH₂), 32.2 (CH₂), 31.5 (CH), 26.3 (CH), 23.7 (CH₂), 22.1 (CH₃), 22.0 (CH₂), 20.8 (CH₃), 16.6 (CH₃).

MS-ES: *m*/*z* (%) = 266 (MH⁺, 100), 128 (39).

HRMS-ES: m/z [M + H]⁺ calcd for C₁₆H₂₈NO₂: 266.2120; found: 266.2139.

(Z)-1-Pyrrolidinylidenepropan-2-one (9d)²⁶

N-tert-Butoxycarbonyl-4,6-dioxoheptylamine (**4d**; 530 mg, 2.2 mmol) was dissolved in TFA (0.34 mL, 4.4 mmol) and stirred for 3 h at 25 °C. Sat. aq NaHCO₃ was added until neutral to pH paper, and the organic material extracted into CH_2Cl_2 (3 × 50 mL). The combined organic layers were dried (MgSO₄) and the solvent removed in vacuo. The resulting yellow solid was purified by recrystallisation from hexane–Et₂O to give the title compound (233 mg, 85%) as a yellow crystalline solid; mp 52–52.5 °C.

IR (CHCl₃): 3272, 1618, 1556, 1505, 1258 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ = 9.72 (br s, 1 H, NH), 5.04 (s, 1 H, C=CH), 3.50 (t, *J* = 7.0 Hz, CH₂N), 2.52 (t, *J* = 7.8 Hz, CH₂), 1.96 (s, 3 H, CH₃CO), 1.91 (app quintet, *J* = 7.4 Hz, CH₂).

¹³C NMR (125 MHz, CDCl₃): δ = 195.0 (C=O), 167.4 (CN), 89.8 (C=CH), 47.5 (CH₂N), 32.3 (CH₂), 28.7 (CH₃), 21.4 (CH₂).

MS-ES: m/z (%) = 126 (MH⁺, 100).

HRMS-ES: m/z [M + H]⁺ calcd for C₇H₁₂NO: 126.0919; found: 126.0917.

(Z)-1-Phenyl-2-pyrrolidinylideneethanone (9e)²⁶

To a solution of **4e** (200 mg, 0.65 mmol) in CH₂Cl₂ (5 mL) was added TFA (0.10 mL, 1.3 mmol) and the resulting solution stirred for 3 h at 25 °C. The volatiles were removed in vacuo and the resulting oil dissolved in CH₂Cl₂ (2 mL). Sat. aq Na₂CO₃ was added until neutral to pH paper, and the organic material extracted into CH₂Cl₂ (3 × 50 mL). The combined organic layers were dried (MgSO₄) and the solvent removed in vacuo. Purification by flash column chromatography (eluent: 5:1 hexane–EtOAc) gave the title compound (90 mg, 74%) as a yellow solid; mp 108–109 °C (Lit.²⁷ mp 108– 109 °C).

IR (CHCl₃): 3278, 2956, 1700, 1610, 1521, 1260 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 10.23 (br s, 1 H, NH), 7.80 (dd, *J* = 7.6, 1.9 Hz, CH_{arom}), 7.35–7.29 (m, 3 H, CH_{arom}), 5.70 (s, 1 H, C=CH), 3.56 (t, *J* = 7.0 Hz, 2 H, CH₂NH), 2.65 (t, *J* = 7.9 Hz, 2 H, CH₂CCH), 1.95 (app quintet, *J* = 7.5 Hz, 2 H, CH₂CH₂CH₂).

¹³C NMR (125 MHz, CDCl₃): δ = 188.1 (C=O), 169.4 (CN), 140.3 (C_{arom}), 130.5 (CH_{arom}), 128.2 (CH_{arom}), 127.0 (CH_{arom}), 86.6 (C=CH), 47.8 (CH₂N), 33.0 (CH₂), 21.4 (CH₂).

MS-ES: m/z (%) = 188 (MH⁺, 100).

HRMS-ES: m/z [M + H]⁺ calcd for C₁₂H₁₄NO: 188.1075; found: 188.1062.

(2S)-5-[(Z)-1-Ethoxycarbonylmethylidene]pyrrolidine-2-carboxylic Acid Ethyl Ester (10a)

A solution of **5a** (4.9 g, 14.2 mmol) in TFA (2.1 mL, 28 mmol) was stirred for 3 h at 25 °C. Excess TFA was removed in vacuo and the resulting oil dissolved in CH_2Cl_2 (5 mL). Sat. aq Na_2CO_3 was added until neutral to pH paper, and the organic material extracted into CH_2Cl_2 (3 × 150 mL). The combined organic layers were dried (MgSO₄) and the solvent removed in vacuo. The resulting yellow oil was purified by flash column chromatography (eluent: 4:1 hexane–EtOAc) to give the title compound (2.6 g, 82%) as a pale-yellow oil.

IR (CHCl₃): 3372, 2980, 1738, 1664, 1604, 1196 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ = 8.05 (br s, 1 H, NH), 4.53 (br s, 1 H, C=CH), 4.29 (dd, *J* = 8.3, 5.2 Hz, CHN), 4.16–4.11 (m, 2 H, CH₂O), 4.03 (q, *J* = 7.1 Hz, CH₂O), 2.63 (ddd, *J* = 16.7, 8.1, 7.0 Hz, 1 H, one of CH₂C=C), 2.57–2.50 (m, 1 H, one of CH₂C=C), 2.23 (app ddt, *J* = 12.9, 7.1, 8.6 Hz, 1 H, one of CH₂), 2.05 (app ddt, *J* = 12.9, 9.0, 5.6 Hz, 1 H, one of CH₂), 1.21 (t, *J* = 7.1 Hz, 3 H, CH₃), 1.19 (t, *J* = 7.1 Hz, 3 H, CH₃).

¹³C NMR (125 MHz, CDCl₃): δ = 171.9 (C=O), 170.4 (C=O), 164.9 (CN), 78.8 (C=CH), 61.5 (OCH₂), 60.5 (CHN), 58.7 (OCH₂), 31.1 (CH₂), 26.2 (CH₂), 14.6 (CH₃), 14.2 (CH₃).

MS-ES: *m*/*z* (%) = 250 (M + Na, 34), 228 (MH⁺, 100), 182 (13).

HRMS-ES: m/z [M + H]⁺ calcd for C₁₁H₁₈NO₂: 228.1236; found: 228.1239.

(2S)-5-[(Z)-1-(-)-Benzyloxycarbonylmethylidene]pyrrolidine-2-carboxylic Acid Ethyl Ester (10b)

A solution of **5b** (2.45 g, 6.01 mmol) in TFA (4.11 g, 36 mmol) was stirred for 3 h at 25 °C. Sat. aq NaHCO₃ was added until neutral to pH paper, and the organic material extracted into CH₂Cl₂ (3×80 mL). The combined organic layers were dried (MgSO₄) and the solvent removed in vacuo. The resulting yellow oil was purified by flash column chromatography (eluent: 4:1 hexane–EtOAc) to give the title compound (1.26 g, 72%) as a yellow oil.

PAPER

¹H NMR (400 MHz, CDCl₃): $\delta = 8.08$ (br s, 1 H, NH), 7.32–7.16 (m, 5 H_{arom}), 5.07 and 5.02 (AB quartet, *J* = 12.6 Hz, 2 H, PhCH₂O), 4.28 (dd, *J* = 8.3, 5.2 Hz, CHN), 4.16–4.09 (m, 2 H, CH₂O), 2.68–2.45 (m, 2 H, CH₂C=C), 2.28–2.16 (m, 1 H, one of CH₂), 2.10–1.97 (m, 1 H, one of CH₂), 1.21 (3 H, t, *J* = 7.1 Hz, CH₃).

¹³C NMR (100 MHz, CDCl₃): δ = 171.9 (C=O), 170.0 (C=O), 165.4 (*C*=CH), 135.2 (C_{arom}), 128.5 (CH_{arom}), 127.9 (CH_{arom}), 127.7 (CH_{arom}), 78.5 (C=*C*H), 64.6 (OCH₂Ph), 61.5 (OCH₂), 60.5 (CHN), 31.2 (CH₂), 26.1 (CH₂), 14.2 (CH₃).

MS-ES: *m*/*z* = 290 (MH⁺, 100%).

HRMS-ES: m/z [M + H]⁺ calcd for C₁₆H₂₀NO₄: 290.1392; found: 290.1382.

(2S)-5-[(Z)-1-(-)-Menthyloxycarbonylmethylidene]pyrrolidine-2-carboxylic Acid Ethyl Ester (10c)

TFA (0.23 mL, 3 mmol) was added to a solution of **5c** (696 mg, 1.53 mmol) in CH₂Cl₂ (10 mL). After stirring for 3 h at 25 °C, the solution was neutralized with sat. aq Na₂CO₃ and extracted with CH₂Cl₂ (3×20 mL). The combined organic layers were dried (MgSO₄) and the solvent removed in vacuo. The resulting yellow oil was purified by flash column chromatography (eluent: 10:1 CH₂Cl₂–MeOH) to give the title compound (387 mg, 75%) as a white crystalline solid; mp 72.0–72.5 °C.

IR (Nujol): 3370, 1738, 1661, 1605, 1200 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): $\delta = 8.05$ (br s, 1 H, NH), 4.58 (app dt, J = 4.3, 10.8 Hz, 1 H, menthyl 1-H_{ax}), 4.52 (s, 1 H, C=CH), 4.28 (dd, J = 8.3, 5.4 Hz, 1 H, CHN), 4.17–4.09 (m, 2 H, OCH₂), 2.63 (dddd, J = 16.6, 8.9, 6.8, 0.7 Hz, 1 H, one of CH₂CO), 2.52 (dddd, J = 16.6, 8.9, 6.3, 0.7 Hz, 1 H, one of CH₂CO), 2.22 (app ddt, J = 12.8, 6.9, 8.6 Hz, 1 H, one of CH₂CH₂CO), 2.09–2.01 (m, 1 H, one of CH₂CH₂CO), 1.98–1.92 (m, 1 H, menthyl 6-H_{eq}), 1.87 [app doubled septet, J = 2.6, 7.0 Hz, 1 H, CH(CH₃)₂], 1.63–1.56 (m, 2 H, menthyl 3-H_{eq} + 4-H_{eq}), 1.47–1.39 (m, 1 H, menthyl 5-H_{ax}), 1.32–1.25 (m, 1 H, menthyl 2-H_{ax}), 1.21 (t, J = 7.1 Hz, 3 H, CH₃CH₂), 1.00 (app dq, J = 3.5, 13.0 Hz, 1 H, menthyl 3-H_{ex}), 0.89 (app q, J = 11.7 Hz, 1 H, menthyl 6-H_{ax}), 0.82 (d, J = 6.5 Hz, 3 H, CH₃), 0.81 (d, J = 7.0 Hz, 3 H, CH₃), 0.80–0.75 (m, 1 H, menthyl 4-H_{ax}), 0.70 (d, J = 7.0 Hz, 3 H, CH₃).

¹³C NMR (125 MHz, CDCl₃): δ = 172.0 (ester C=O), 170.0 (ester C=O), 164.7 (*C*=CH), 79.2 (C=CH), 72.1 (menthyl 1-CH), 61.5 (CH₂O), 60.4 (CHN), 47.2 (menthyl 2-CH), 41.5 (menthyl 6-CH₂), 34.4 (menthyl 4-CH₂), 31.4 (menthyl 5-CH), 31.1 (*C*H₂C=C), 26.2 [*C*H(CH₃)₂], 26.1 (CH₂CH₂CHN), 23.6 (menthyl 3-CH₂), 22.1 (CH₃), 20.8 (CH₃), 16.5 (CH₃), 14.2 (CH₃).

MS-ES: m/z (%) = 360 ([M + Na]⁺, 12), 339 (22), 338 (100).

HRMS-ES: m/z [M + Na]⁺ calcd for C₁₉H₃₁NO₄ + Na: 360.2151; found: 360.2155.

(2S)-5-[(Z)-2-Oxopropylidene]pyrrolidine-2-carboxylic Acid Ethyl Ester (10d) 28

A solution of **5d** (400 mg, 1.27 mmol) in CH_2Cl_2 (3 mL) and TFA (0.16 mL, 2.4 mmol) was stirred for 3 h at 25 °C. After removal of the volatiles in vacuo, the resulting oil was dissolved in CH_2Cl_2 (5 mL). Sat. aq Na₂CO₃ was added until neutral to pH paper and the organic material was extracted into CH_2Cl_2 (3 × 50 mL). The combined organic layers dried (MgSO₄) and the solvent removed in vacuo. The resulting yellow oil was purified by flash column chromatography (eluent: 4:1 hexane–EtOAc) to give the title compound (138 mg, 55%) as a pale-yellow oil.

IR (neat): 3297, 2982, 1740, 1628, 1555, 1202 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ = 9.80 (br s, 1 H, NH) 5.10 (br s, 1 H, C=CH), 4.35 (dd, *J* = 8.5, 5.1 Hz, CHN), 4.18–4.10 (m, 2 H, OCH₂), 2.65 (ddd, *J* = 16.9, 8.9, 7.3 Hz, one of CH₂C=C), 2.54 (ddd, *J* = 16.9, 9.1, 5.9 Hz, one of CH₂C=C), 2.27–2.19 (m, 1 H, one of CH₂), 2.10–2.02 (m, 1 H, one of CH₂), 1.98 (s, 3 H, CH₃), 1.22 (t, *J* = 7.1 Hz, CH₃CH₂).

¹³C NMR (125 MHz, CDCl₃): δ = 196.0 (ketone C=O), 171.6 (ester C=O), 165.8 (*C*=CH), 91.0 (C=*C*H), 61.6 (OCH₂), 61.0 (CH), 31.3 (CH₂), 28.9 (CH₃), 25.6 (CH₂) and 14.1 (CH₃).

MS-ES: m/z = 198 (MH⁺, 100%).

HRMS-ES: m/z [M + H]⁺ calcd for C₁₀H₁₆NO₃: 198.1130; found: 198.1131.

(2S)-5-[(Z)-2-Oxo-2-phenylethylidene]pyrrolidine-2-carboxylic Acid Ethyl Ester (10e)

A solution of **5e** (377 mg, 1.0 mmol) in CH_2Cl_2 (5 mL) and TFA (0.13 mL, 2 mmol) was stirred for 3 h at 25 °C. After removal of the volatiles in vacuo, the resulting oil was dissolved in CH_2Cl_2 (5 mL) and sat. aq Na₂CO₃ was added until neutral to pH paper. The organic material was extracted into CH_2Cl_2 (3 × 50 mL), the combined organic layers dried (MgSO₄) and the solvent removed in vacuo. The resulting yellow oil was purified by flash column chromatography (eluent: 7:1 hexane–EtOAc) to give the title compound (114 mg, 44%) as a pale-yellow crystalline solid; mp 64–64.5 °C.

IR (CHCl₃): 3288, 2981, 1740 (v br), 1615, 1522, 1210 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ = 10.32 (br s, 1 H, NH), 7.87–7.84 (m, 2 H_{arom}), 7.42–7.35 (m, 3 H_{arom}), 5.84 (s, 1 H, C=CH), 4.47 (dd, *J* = 8.6, 5.4 Hz, 1 H, CHN), 4.24–4.16 (m, 2 H, OCH₂), 2.84 (ddd, *J* = 17.1, 9.1, 7.0 Hz, 1 H, one of CH₂C=C), 2.73 (ddd, *J* = 17.1, 8.9, 5.8 Hz, 1 H, one of CH₂C=C), 2.34 (dddd, *J* = 13.0, 8.9, 8.6, 7.0 Hz, 1 H, one of CH₂), 2.18 (dddd, *J* = 13.0, 9.1, 5.8, 5.4 Hz, 1 H, one of CH₂), 1.27 (t, *J* = 7.1 Hz, 3 H, CH₃).

¹³C NMR (125 MHz, CDCl₃): δ = 188.8 (ketone C=O), 171.4 (ester C=O), 167.7 (*C*=CH), 139.9 (C_{arom}), 130.8 (CH_{arom}), 128.2 (CH_{arom}), 127.2 (CH_{arom}), 87.5 (C=CH), 61.7 (OCH₂), 61.3 (CH), 31.9 (CH₂), 25.6 (CH₂), 14.2 (CH₃).

MS-ES: m/z = 260 (MH⁺, 100%).

HRMS-ES: m/z [M + H]⁺ calcd for C₁₅H₁₈NO₃: 260.1287; found: 260.1271.

$N\text{-}tert\text{-}Butoxycarbonyl-4-oxo-5-phenylsulfonylpentylamine} (11)^{14}$

A solution of *n*-BuLi (2 mL, 2.5 M in hexanes, 5 mmol) in THF (10 mL) was cooled to -78 °C. Methyl phenyl sulfone (0.77 g, 5 mmol) in THF (3 mL) was added over 30 min, after which the solution was stirred for a further 30 min at -78 °C. *N-tert*-Butoxycarbonylpyrrol-idin-2-one (1; 0.92 g, 5 mmol) in THF (5 mL) was added over 30 min at -78 °C, and the solution warmed to 25 °C and left to stir for 18 h. Sat. aq NH₄Cl (100 mL) was added and the solution extracted with CH₂Cl₂ (3 × 100 mL). The combined organic layers were washed with brine (2 × 150 mL), dried (MgSO₄) and the solvent removed in vacuo to give the title compound (1.8 g, 96%) as an orange oil which solidified upon standing to give a waxy solid.

¹H NMR (400 MHz, CDCl₃): δ = 7.82 (d, *J* = 7.4 Hz, 2 H_{arom}), 7.62 (t, *J* = 7.5 Hz, 1 H_{arom}), 7.52 (app t, *J* = 7.7 Hz, 1 H_{arom}), 4.62 (br s, 1 H, NH), 4.15 (s, 2 H, OCCH₂CO), 3.03 (app q, *J* = 6.4 Hz, 2 H, CH₂NH), 2.70 (t, *J* = 6.8 Hz, 2 H, COCH₂), 1.69 (app quintet, *J* = 6.8 Hz, CH₂CH₂), 1.36 [s, 9 H, C(CH₃)₃].

¹³C NMR (100 MHz, CDCl₃): δ = 197.8 (CH₂COCH₂), 156.1 (OCON), 138.7 (C_{arom}), 134.4 (CH_{arom}), 129.4 (CH_{arom}), 128.3 (CH_{arom}), 79.3 (OCCMe₃), 67.0 (CH₂O), 41.4 (CH₂N), 39.3 (COCH₂CO), 28.4 [C(CH₃)₃], 23.7 (CH₂CH₂N).

(Z)-2-Phenylsulfonylmethylylidenepyrrolidine (12)¹⁴

To a solution of **11** (1.4 g, 4.1 mmol) in CH_2Cl_2 (5 mL) was added TFA (3.48 mL, 45 mmol) and the solution stirred for 18 h at 25 °C. The volatiles were removed in vacuo and the resulting oil was dissolved in CH_2Cl_2 (5 mL). Sat. aq NaHCO₃ was added until neutral to pH paper, and the organic material was extracted into CH_2Cl_2 (3 × 50 mL). The combined organic layers were dried (MgSO₄) and the solvent removed in vacuo. The residual yellow oil was purified by flash column chromatography (eluent: 4:1 hexane–EtOAc) to give the title compound (620 mg, 67%) as a yellow oil.

¹H NMR (400 MHz, CDCl₃): δ = 7.78 (d, *J* = 6.7 Hz, 2 H_{arom}), 7.43–7.34 (m, 3 H_{arom}), 7.05 (br s, 1 H, NH), 4.58 (s, 1 H, CCH), 3.38 (t, *J* = 6.9 Hz, 2 H, CH₂N), 2.48 (t, *J* = 7.8 Hz, 2 H, CH₂CO), 1.86 (app quintet, *J* = 7.3 Hz, 2 H, CH₂CH₂CH₂).

¹³C NMR (100 MHz, CDCl₃): δ = 161.9 (*C*=CH), 145.4 (C_{arom}), 131.8 (CH_{arom}), 128.1 (CH_{arom}), 125.6 (CH_{arom}), 80.8 (C=CH), 47.5 (CH₂N), 33.2 (CH₂C=C), 21.7 (CH₂CH₂N).

Acknowledgment

We thank the EPSRC for a studentship (S.V.W.) and to Mr. R. L. Jenkins for technical assistance. We are grateful to Mr. J. L. Wood for the preparation of compounds **5b** and **9b**.

References

- (1) For a review, see: Elliott, M. C.; Wood, J. L.; Wordingham, S. V. *Trends Heterocycl. Chem.* **2006**, in press.
- (2) Shiosaki, K. Compr. Org. Synth. 1991, 2, 865.
- (3) Célérier, J.-P.; Deloisy, E.; Lhommet, G.; Maitte, P. J. Org. Chem. 1979, 44, 3089.
- (4) (a) Elliott, M. C.; Long, M. S. *Tetrahedron Lett.* 2002, *43*, 9191. (b) Elliott, M. C.; Long, M. S. *Org. Biomol. Chem.* 2004, *2*, 2003.
- (5) (a) Moody, C. M.; Young, D. W. J. Chem. Soc., Perkin Trans. 1 1997, 3519. (b) Williams, G. D.; Pike, R. A.; Wade, C. E.; Wills, M. Org. Lett. 2003, 5, 4227.
- (6) (a) Ohta, T.; Hosoi, A.; Nozoe, S. *Tetrahedron Lett.* 1988, 29, 329. (b) Ezquerra, J.; Pedregal, C.; Rubio, A.; Valenciano, J.; García Navio, J. L.; Alvarez-Builla, J.; Vaquero, J. J. *Tetrahedron Lett.* 1993, 34, 6317. (c) Yoda, H.; Yamazaki, H.; Kawauchi, M.; Takabe, K. *Tetrahedron: Asymmetry* 1995, 6, 2669. (d) v. Keyserlingk, N. G.; Martens, J. *Eur. J. Org. Chem.* 2002, 301. (e) Mori, M.; Tomita, T.; Kita, Y.; Kitamura, T. *Tetrahedron Lett.* 2004, 45, 4397. (f) Rudolph, A. C.; Machauer, R.; Martin, S. F. *Tetrahedron Lett.* 2004, 45, 4895. (g) Brenneman, J. B.; Machauer, R.; Martin, S. F. *Tetrahedron* 2004, 60, 7301. (h) Arai, T.; Abe, H.; Aoyagi, S.; Kibayashi, C. *Tetrahedron Lett.* 2004, 45, 5921.
- (7) (a) Coutts, I. G. C.; Saint, R. E. *Tetrahedron Lett.* 1998, *39*, 3243. (b) Farcas, S.; Namy, J.-L. *Tetrahedron Lett.* 2000, *41*, 7299.
- (8) (a) Van Betsbrugge, J.; Van Den Nest, W.; Verheyden, P.; Tourwé, D. *Tetrahedron* 1998, *54*, 1753. (b) Momotake, A.; Togo, H.; Yokoyama, M. *J. Chem. Soc., Perkin Trans. 1* 1999, 1193. (c) Yokoyama, M.; Ikenogami, T.; Togo, H. *J. Chem. Soc., Perkin Trans. 1* 2000, 2067.
- (9) (a) Molina, M. T.; del Valle, C.; Escribano, A. M.; Ezquerra, J.; Pedregal, C. *Tetrahedron* **1993**, *49*, 3801. (b) de Blas, J.; Dominguez, E.; Ezquerra, J. *Tetrahedron Lett.* **2000**, *41*, 4567.
- (10) Ohta, T.; Kimura, T.; Sato, N.; Nozoe, S. *Tetrahedron Lett.* 1988, 29, 4303.
- (11) Ezquerra, J.; de Mendoza, J.; Pedregal, C.; Ramírez, C. *Tetrahedron Lett.* **1992**, *33*, 5589.

Synthesis 2006, No. 7, 1162-1170 © Thieme Stuttgart · New York

- (12) (a) Ezquerra, J.; Rubio, A.; Pedregal, C.; Sanz, G.; Rodriguez, J. H.; García Ruano, J. L. *Tetrahedron Lett.* **1993**, *34*, 4989. (b) Mota, A. J.; Langlois, N. *Tetrahedron Lett.* **2003**, *44*, 1141. (c) Mota, A. J.; Chiaroni, A.; Langlois, N. *Eur. J. Org. Chem.* **2003**, 4187.
- (13) (a) Gosselin, F.; Lubell, W. D. J. Org. Chem. 2000, 65, 2163. (b) Langlois, N. Org. Lett. 2002, 4, 185.
- (14) Arias, L. A.; Arbelo, D.; Alzérreca, A.; Prieto, J. A. J. *Heterocycl. Chem.* **2001**, *38*, 29.
- (15) For formation of alkylidenepyrrolidines from ε-amino-β-keto esters prepared by other methods, see: (a) Lambert, P. H.; Vaultier, M.; Carrié, R. J. Org. Chem. 1985, 50, 5352. (b) Langer, P.; Freifeld, I. Chem. Commun. 2002, 2668. (c) Shaw, K. J.; Luly, J. R.; Rapoport, H. J. Org. Chem. 1985, 50, 4515. (d) Michael, J. P.; Hosken, G. D.; Howard, A. S. Tetrahedron 1988, 44, 3025. (e) Calvet, S.; David, O.; Vanucci-Bacqué, C.; Fargeau-Bellassoued, M.-C.; Lhommet, G. Tetrahedron 2003, 59, 6333. (f) Wang, M.-X.; Liu, Y.; Gao, H.-Y.; Zhang, Y.; Yu, C.-Y.; Huang, Z. T.; Fleet, G. W. J. J. Org. Chem. 2003, 68, 3281.
- (16) Pichon, M.; Figadere, B.; Cave, A. *Tetrahedron Lett.* **1996**, *37*, 7963.
- (17) Harris, P. W. R.; Brimble, M. A.; Gluckman, P. D. Org. Lett. 2003, 5, 1847.
- (18) Ikota, N. Chem. Pharm. Bull. 1992, 40, 1925.

- (19) Roth, M.; Dubs, P.; Götschi, E.; Eschenmoser, A. *Helv. Chim. Acta* **1971**, *54*, 710.
- (20) Célérier, J.-P.; Deloisy-Marchalant, E.; Lhommet, G. J. *Heterocycl. Chem.* **1984**, *21*, 1633.
- (21) A Chemical Abstracts search of compound 9a reveals 21 references to the Z-isomer and 6 to the E-isomer. However, the reports of the E-isomer only mention this compound in passing, and to the best of our knowledge full characterisation data has never been reported for this double-bond isomer. We are unaware of examples where full characterisation data of both the E- and Z-isomers of a single alkylidenepyrrolidine have been reported.
- (22) Bachi, M. D.; Breiman, R.; Meshulam, H. J. Org. Chem. 1983, 48, 1439.
- (23) The free alcohol corresponding to this compound is known: Hussaini, S. R.; Moloney, M. G. Org. Biomol. Chem. 2003, 1838.
- (24) Robinson, R. S.; Dovey, M. C.; Gravestock, D. Eur. J. Org. Chem. 2005, 505.
- (25) Bartoli, G.; Cimarelli, C.; Dalpozzo, R.; Palmieri, G. *Tetrahedron* 1995, *51*, 8613.
- (26) Delbecq, P.; Celerier, J.-P.; Lhommet, G. *Tetrahedron Lett.* 1990, 31, 4873.
- (27) Couture, A.; Deniau, E.; Grandclaudon, P.; Lebrun, S. *Tetrahedron Lett.* **1996**, *37*, 7749.
- (28) Honda, T.; Kimura, M. Org. Lett. 2000, 2, 3925.