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'3C NMR spectra were measured for a 
series of ethyl cis- and trans-2-(p-sub- 
stituted - phenyl) - 1 - cyclopropanecarbox- 
ylates. The effects of the para substituents 
and the geometry on the chemical shifts 
are discussed. 
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uents for substituent-induced chemical shifts 
(SCS, 6, -6,) of C-p in para-substituted 
cyclopropylbenzenes is normal (i.e. electron- 
attracting groups such as NO, give a low- 
field shift), as for the SCS (C-B) of 
para-substituted styrenes, since the C-C 
bonds of cyclopropane have, to a higher or 
lower degree, n-bonding character.'-3 The 
trend and the magnitude of SCS (C-B) vary, 
however. with replacement of the hydrogens 
on the cyclopropane ring with other 
 group^.^-^ We report here 13C NMR chemi- 
cal shift data for 28 geometric isomers of 

INTRODIJCTION 

The direction of the influence of para substit- 

Table 1. Substitueot-induced chemical shifts (6, - 6,, ppm) for ethyl 2Cp-substituted-phenyl)-l-cyclopropanecarboxylates in 
chloroform-d, 

Carbon 

5 6 Substituent 2 3 4 7 0 9 10 1 

cis (A) 
H" 0 

(21.81 ) 
-0.1 1 
-0.1 1 
-0.1 1 
-0.1 7 
-0.06 
0 
0 

-0.1 1 

0 
(25.45) 
-0.1 7 
-0.57 
-0.62 
-0.28 
-0.22 
-0.28 
-0.39 
-0.78 

0 0 
(11.10) (170.89) 
0 0.33 
0.1 2 0.06 
0.06 0.05 
0.06 0.05 
0.06 0.05 
0 0.05 
0 0 
0.23 -0.1 8 

0 0 

0 
(60.1 3) (14.00) 

-0.05 0.1 2 
-0.05 0.07 
-0.05 0.07 
-0.05 0.01 
-0.11 -0.05 
-0.11 -0.11 
0.06 0.07 

b - 

0 
(136.50) 

-8.03 
-8.21 
-3.14 
-2.85 
-2.68 
-3.08 
-4.27d 
3.43' 
-1.49 
-0.97 
5.46 
5.75 
8.02 

b - 

0 
(1 27.78) 

2.39 
2.34 
0.74' 

1.37' 
1.08 
2.94d 
7.71 
2.74 
3.1 3 
1.42' 
2.22" 
2.28 

b - 

-0.46 

0 
(1 29.20) 

-1 5.94 
-1 5.37 

b - 

-0.11c 
-0.05 
-3.35' 
-4.49 

-1 4.56' 
21.41 
-1.30 
1.71 
-0.4 6" 
2.34" 
-6.20 

0 
(1 26.53) 

31.71 
31.09 
9.45 
15.89 
20.50 
22.77 
35.05d 
245.80' 
5.81 

-6.1 0 
2.1 0 

-1 6.1 7 
19.93 

b - 

CI 
Br 
COOC,H, 
CN 
NO, 

trans (B) 
Ha 

0 
0 
0.34 
0.46 
0.63 

-0.68 
-0.57 
-0.1 1 
-0.1 7 
-0.34 

0.1 7 
0.17 
0.24 
0.40 
0.74 

-0.23 
-0.35 
-0.51 
-0.63 
-0.58 

0.1 2 
0.1 2 
0.1 2 
0.29 
0.40 

0.07 
0.07 
0.1 2 
0.07 
0.1 2 

0 
(24.20) 
-0.51 
-0.34 
-0.34 
-0.1 7 
-0.1 7 
-0.1 7 
-0.1 1 
-0.23 

0 
(26.1 9) 
-0.34 
-0.56 
-0.56 
-0.28 
-0.22 
-0.22 
-0.39 
-0.79 

0 
(17.03) 
-0.46 
-0.35 
-0.35 
-0.1 7 
-0.1 2 
-0.1 2 
-0.1 7 
-0.1 7 

0 
(1 73.28) 

2.39 
0.1 1 
0.1 1 
0.06 
0.06 
0.06 
0 
-0.1 7 

0 
(60.65) 
-0.1 2 
-0.1 2 
-0.1 2 
-0.1 2 
-0.1 2 
-0.06 
-0.1 8 
0.05 

0 
(1 4.29) 
-0.05 
-0.05 
0 
-0.05 
-0.05 
0 
-0.05 
-0.05 

0 
(1 40.02) 

-8.02 
-8.20 
-3.01 
-2.78 
-2.62 
-3.02 
-4.37' 
3.43' 
-1.48 
-0.91 
5.42 
5.87 
8.09 

b - 

0 
(1 26.07) 

1.14 
1.20 
1.14 

-0.06" 
0" 
0.35" 
-0.34' 
1 .63' 
7.71 
1.43 
1.77 

-0.22 
0.69 
0.63 

0 
(128.41) 
-1 3.33 
- 14.58 
-1 3.95 
0.63" 
-0.57' 
-2.34' 
-3.1 9" 

-1 3.24d 
21.41 
0.06 
3.02 
1.25 
3.81 
-4.73 

0 
(126.36) 

31.88 
31.26 
9.56 
16.06 
20.73 
22.94 
35.1 3' 
244.94' 
5.75 
-6.32 
2.27 

- 16.32 
20.1 6 

b - 

CI -0.06 -0.74 -0.06 -0.29 0.11 -0.05 
Br -0.06 -0.68 -0.12 -0.34 0.11 -0.05 
COOC,H5 0.46 -0.22 0.45 -0.46 0.17 -0.05 
CN 0.68 -0.33 0.51 -0.85 0.33 -0.05 
NO, 0.91" -0.51" 0.79 -0.92 0.39 -0.05 

a Values in parentheses are chemical shifts (6) in ppm from internal TMS 
Assignments were impossible because of contamination by impurities. 
Assignments may be exchangeable. 
Centre of doublet. 
"J( C,F) . 
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ethyl 2-(p-substituted-phenyl)-l-cyclopro- 
panecarboxylate (cis, A; trans, B). 

c i S : A  
trans : B 

RESULTS AND DISCUSSION 

The "C NMR chemical shift data for series 
A and B are given in Table 1. 

The assignments of the most of the I3C 
signals were made by comparison of the mea- 
sured chemical shifts with those reported for 
para-disubstituted benzenes' and substituted 
cyclopropylbenzenes.' The signals of C-1, 
C-2, C-3 and C-4 exhibit upfield shifts on 
going from the trans to the cis configuration. 
SCS(C-1, C-2, C-3 and C-4) for B are larger 
than the corresponding SCS(C-1, C-2, C-3 
and C-4) for A. These phenomena arise from 
the repulsive interaction between the ortho 
hydrogen and the ethoxycarbonyl group, and 
from the subsequent deceleration of the over- 
lapping of the s bonds of the phenyl and car- 
bony1 groups with the C-C bonds of 
cyclopropane ring in A,' 

X 

The SCS(C-1 and C-3) trends are normal, 
whereas the magnitudes are smaller than 
those observed for the SCS(C-fl of para- 
substituted cyclopropylbenzenes owing to a 
decrease in the polarizability of the C-1-C-2 
and the C-2-C-3 bonds5 SCS(C-2) is 
normal for electron-donating groups and for 
the a-carbons of para-substituted cyclo- 
propylbenzenes and isopropylbenzenes. ' For 
electron-accepting groups, however, SCS(C-2) 
has an inverse trend compared with the 
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a-carbons of para-substituted cyclopropyl- 
benzenes and isopropylbenzenes.' SCS(C-4) 
also has an inverse trend, which is the same 
as that observed for the carbonyl carbons of 
2-substituted l-cyclopropanecarboxylates.9~'o 

EXPERIMENTAL 

2-(p-Substituted-phenyl)- 1 -cyclopropanecar- 
boxylates were synthesized by the reaction of 
para-substituted styrenes with ethyl diazo- 
acetate in the presence of palladium(I1) 
acetate." The geometric isomers were 
obtained by the method described in the liter- 
ature.' ' The boiling and melting points of the 
esters thus obtained were as follows 
[substituent, b.p. ("C)/mmHg) or m.p. ("C)]: 
H(cis), 98-99/3; H(trans), 99/2.5, 33; CH,(cis), 
103/2; CH,(trans), 113/2.5; C,H,(cis), 117- 
118/4; C,H,(trans), 137/4; (CH,),CH(cis), 
127/4; (CH,),CH(trans), 128-1 3 1/3 ; 
(CH,),C(cis), 122/2; (CH,),C(trans), 138/3; 
F(cis), 126-129/10; F(trans), 132/10; Cl(cis), 
110-1 13/2; Cl(trans), 125/3; Br(cis), 128-130/ 
3; Br(trans), 133-138/3; CH,O(cis), 125-129/ 
3; CH,O(trans), 83; C,H,O(cis), 135/7; 
C,H,O(trans), 83 ; NO,(&), 153-1 55/2; 
NO,(trans), 155-1 58/15 

Ethyl 2-(p-cyanophenyl)- 1 -cyclopropane- 
carboxylate was prepared by the reaction of 
ethyl 2-(p-bromophenyl)-l-cyclopropane- 
carboxylate with copper(1) cyanide in pyri- 
dine. The p-ethoxycarbonyl derivative was 
obtained by the esterification of the corre- 
sponding dicarboxylic acid, itself prepared by 
the hydration of ethyl 2-(p-cyanophenyl)-l- 
cyclopropanecarboxylate. Ethyl 2-(p-amino- 
pheny1)-1-cyclopropanecarboxylate was ob- 
tained by the reduction of the corresponding 
ethyl 2-(p-nitrophenyl)-l-cyclopropanecar- 
boxylate using sodium sulphide and sulphur 
in aqueous ethanol. The boiling and melting 
points of these esters were as follows 
[substituent, b.p. ("C/mmHg) or m.p. ("C)] : 
CN(cis), 140-145/2; CN(trans), 150/2; 
C,H,OCO(cis), 160/3; C,H,OCO(trans), 
160/2.5; NH,(cis), 165/3, 45; NH,(trans), 

Typically, I3C NMR spectra were recorded 
69-70. 

for ca 100 rng of A or B in 2 ml of CDCI, 
using a 10 mm sample tube at 28°C on a 
JEOL FX 60Q spectrometer; broadband 
decoupled spectra were obtained from 3000 
transients using 8K memory points, 3.5 kHz 
spectral width, a flip angle of 45" ( 5  ps) and a 
pulse interval of 5 s. The chemical shifts were 
measured relative to internal TMS. 'The 
reproducibility was at least kO.1 ppm. 
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Complete ' H and ''C spectral assignments 
are reported for peridinin, the major dino- 
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flagellate carotenoid responsible for 'red 
tides' in the ocean. These assignments 
were made with the aid of HETCOR, 
FLOCK and COSY 2D spectra and NOE 
difference spectra. 
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INTRODUCTION 

Peridinin, the major dinoflagellate carot- 


