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The first organocatalytic double Michael cascade reaction 

between unsaturated ketones and unsaturated pyrazolones 

has been developed which provides spiropyrazolones core 

structures containing two interval or three consecutive 10 

stereogenic centers with excellent diastereo- (>20:1) and 

enantioselectivities (up to 99% ee). Moreover, a pair of 

enantiomers 5a and 5a’ can be achieved via different catalyst. 

The heteroatom-containing spirocyclic subunits are featured in a 

number of naturally occurring products as well as biologically, 15 

pharmaceutically, and medically active molecules. As a 

consequence, finding simple and effective synthetic methods to 

realize functional diversity, architectural complexity, and 

stereochemical unicity of the core draws increasing attention of 

organic chemists and a number of excellent achievements have 20 

been reported during the past decades especially based on the 

flourishing development of asymmetric organocatalysis.1 To date, 

many efforts are concentrated on the synthesis of chiral 

spirooxindoles2  while other spiroheterocyclic motifs are rarely 

involved.3 25 

Pyrazol-3-one derivatives, because of their approved 

antiinflammatory, antiviral, antitumor, and antibacterial 

properties, exist widely in clinical and listed drugs.4 For example, 

the very common structure of compound 4, which is known as 

edavarone, is used in the treatment of blood brain barrier injury. 30 

Although various synthetic protocols have been achieved on the 

construction of 4-substitute pyrazolones, there are few reports 

concerning on the synthesis of chiral pyrazolones with quaternary 

stereogenic center at the C-4 position and intriguing 

spiropyrazolones combining of multistereogenic cyclohexanone 35 

and pyrozolone motifs. In 2010, Yuan and co-workers reported 

an enantioselective pyrazolone Michael addition to nitrostyrenes 

by organocatalysis.5  In 2011, Feng’s group disclosed a highly 

enantioselective reaction of pyrazolones and azodicarboxylates 

by metal catalysis.6 Shortly after, Rios reported the first example 40 

of  Michael-Michael-aldol condensation of pyrazolone 4 and 

unsaturated aldehydes for the preparation of chiral spiropyrazolo-

nes.7 In 2012, Wang’s group reported a double Michael reaction 

between pyrazolones and divinyl ketones that gave 

spiropyrazolones with excellent yields and enantioselectivities.8 45 

Recently, Rios and co-workers disclosed an organocatalytic 

enantioselective pyrazol-3-one addition to maleimides catalyzed 

by bifunctional thiourea catalysts. 9  All of the above 

methodologies employ pyrazolones as nucleophiles. Considering 

the similar electronic and structural properties between 50 

pyrazolone and oxindole and the successful application of 

unsaturated oxindole, the use of an unsaturated pyrazolone as an 

electrophile is also promising. However, so far only a single 

asymmetric catalytic entry currently available to spiropyrazolones 

was described by Rios and co-workers, consisting of a domino 55 

cyclization reaction among aldehyde, unsaturated aldehyde and 

unsaturated pyrazolone.10 No results have been reported in the 

literature for constructing chiral spiropyrazolones using 

unsaturated ketones and unsaturated pyrazolones. As part of our 

ongoing research program toward the exploitation of 60 

organocatalytic cascade reaction and our interests in seeking 

enantioselective approach toward the construction of spirocyclic 

motif, 11  we will in this context present the first asymmetric 

organocatalytic double Michael cascade cycloaddition reaction of 

unsaturated ketones and unsaturated pyrazolones, providing 65 

spiropyrazolones derivatives in moderate yields and excellent 

diastereo- and enantioselectivities. 

 
Scheme 1. General strategy for the construction of chiral 

spiropyrazolones 70 
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As early as in 2002, Barbas’s group firstly introduced 

dienamine activation mode of unsaturated ketones with reactive 

hydrogen at C-terminal.12 They used  secondary amines derived 

from proline to catalyze the DA reaction of  unsaturated ketones 

and nitro olefins with excellent yields and no asymmetric 5 

catalysis was referred to. Chen and Melchiorre’s group 

independently13developed this concept and proved that quinine or 

quinidine alkaloid-derived primary amine can act as powerful 

catalyst to activate these ketones to complete chiral induction. 

Inspired by these experimental results, we envisaged the 10 

following reaction mechanism: Unsaturated ketone 3 should first 

intercept the primary amine catalyst via HOMO-activation 

concept to generate the activated dienamine ion intermediate i. 

The resulting prochiral carbon nucleophile i should be reactive 

enough to initiate an intermolecular Michael addition to unsatura-15 

ted pyrazolones 2, and the LUMO-active intermediate ii adduct 

would further undergo an intramolecular conjugate addition, thus 

affording the desired spiropyrazolone 5 in a one-pot fashion 

(Scheme 1).  

Table 1. Screening of the Catalysts, Solvents, and Reaction Conditions 20 

for the Reactions[a] 

 
entry Cat  solvent Time[h] yield[%]b ee c 

1 

2d 
3d,f 

4d 

6d 
7d 

8d 

9d 
10d,e 

11d,e,f 

1a 

1a 

1b 

1c 

1a 

1a 

1a 

1a 

1a 

1b 

Toluene 

Toluene 
Toluene 

Toluene 

MTBE 
THF 

CH2Cl2 

MeCN 
Toluene 

Toluene 

120 

72 
72 

120 

72 
72 

72 

72 
3.5 

3.5 

- 

87 
81 

76 

59 
55 

79 

46 
85 

80 

- 

>99 
>99 

93 

96 
86 

93 

84 
>99 

>99 

[a] Unless noted, the reaction was performed on 0.1 mmol scale with 2a 

(1.0 equiv), 3a (2.0 equiv) and catalyst 1a (20 mol%) at rt ( 17 °C) for 

displayed time. [b] Yield of isolated product. [c] Determined by HPLC 25 

analysis on a chiral stationary phase. [d] BzOH (40 mol%) was used as 
cocatalyst. [e] The reaction was performed at 40 °C. [f] The enantiomers 

5’ of compound 5 was obtained using the same steps while catalyst 1b 

was employed during the reaction process. 

To identify the validation of our strategy, we began the 30 

investigation by testing the model reaction between 2a and 3a 

catalyzed by primary amine 1a in toluene at rt. However, no 

product was observed after 120h (Table 1, entry 1). Under the 

same condition, the using of protic acid BzOH as cocatalyst to the 

reactive system triggered the reaction and provided the desired 35 

product 5a in 87% yield and >99% ee value after 72h (entry 2). 

Encouraged by this outcome, we further explored 1b and 1c as 

catalysts for this reaction, and the results were shown in Table 1. 

Using catalyst 1b, we were delighted to obtain spirocyclic 

product 5a’ with comparable ee value, yield and reversed 40 

configuration (entry 3). Although an acceptable ee value (93%) 

was obtained with catalyst 1c, the reaction needed longer time 

and afforded the product in lower yield (entry 4). Considering the 

enantioselectivity as well as yield, catalyst 1a and 1b both 

delivered ideal results and a pair of enantiomers 5a and 5a’ can 45 

be achieved via different catalysis. However, in these two cases 

the reaction was found to be somewhat sluggish, which 

demanded 72h to completion. Therefore, taking primary amine 1a 

as catalyst, the reaction conditions were further optimized. 

Toluene was selected as the optimal solvent in terms of both yield 50 

and enantioselectivity (entries 2 and 6-9). The temperature had a 

pronounced effect on the reaction rate and would shorten the 

reaction time from 72h to 3.5h without sacrificing of either yield 

or enantioselectivity (entries 2 and 10) through the elevation of 

temperature from rt to 40 °C.  55 

Table 2.  Substrate Scope of Cat 1a/ BzOH-Catalyzed Double Michael 

Addition of Unsaturated Pyrazolones 2a-j and Unsaturated Ketones 3a-j 

with Same Substituents[a] 

2 3 5

+

Tol, 40 0CR

NN

O

R

O

O

NN

R

O

Ph
Ph

1a (20 mol%)

BzOH (40 mol%) R

 
entry 5 R yield[%]b dr [%]c ee d 

1 

2 
3 

4 

5 
6 

7 

8 
9 

10 

5a 

5b 

5c 

5d 

5e 

5f 

5g 

5h 

5i 

5j 

Ph 

4-CH3C6H4 
4-FC6H4 

4-ClC6H4 

4-BrC6H4 
4-MeOC6H4 

3-ClC6H4 

3-MeOC6H4 
2-naphthyl 

2-furyl 

87 

75 
81 

88 

84 
68 

83 

71 
64 

55 

>20:1 

>20:1 
>20:1 

>20:1 

>20:1 
>20:1 

>20:1 

>20:1 
>20:1 

>20:1 

>99 

>99 
>99 

>99 

>99 
>99 

>99 

>99 
>99 

nde 

[a] Unless noted, the reaction was performed on 0.1 mmol scale with 2a 60 

(1.0 equiv), 3a (2.0 equiv), BzOH (40 mol%) and catalyst 1a (20 mol%) 
at 40 °C for 3-12 h. The control comparative experiments details, see the 

Supporting Information. [b] Yield of isolated product. [c] Measured by 1H 

NMR spectroscopic analysis. [d] Determined by HPLC analysis on a 
chiral stationary phase. [e] The ee value can not be determined by HPLC 65 

analysis. 

Having established the optimal reaction conditions (Table 1, 

entry 10), we next examined the scope and limitations of the 

above system with variants of reactants 2 and 3. Considering the 

product 5 with two interval (same substituent on reactants 2 and 3) 70 

or three consecutive stereocenters (different substituent on 

reactants 2 and 3), we will describe them separately. We first 

tested reactions of compound 2 and 3 with same substituent and 

the results were summarized in Table 2. Unsaturated pyrazolones 

2 and unsaturated ketones 3 with same substituents in meta- and 75 

para- positions could be tolerated and underwent smooth 

cyclization reactions, providing spiropyrazolones 5b-5h in good 

yields and with excellent diastereo- and enantioselectivities 

(entries 2-8). The electronic properties of the substituents seemed 

to have no influence on the enantioselectivity, although the 80 

reaction yields were a little lower for reactants possessing 
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electron-rich substituents (entries 6 and 8). Conjugated aromatic 

(entry 9) and heteroaromatic (entry 10) substrates could also be 

applied to the present process, despite the ee value of product 5j 

could not be detected using HPLC. 

Next, we were concentrated on constructing spiropyralones 5 5 

with three consecutive stereocenters. Under optimized conditions, 

we choosed reactants 2 and 3 with different substituent optionally 

to manipulate the reaction, the results were somehow complicated 

mainly displaying of poor dr value (1:1) and difficult separation 

on HPLC (Table 3, entry 14). When an ortho-substituented 10 

unsaturated pyrazolone or unsaturated ketone was used, the 

diastereoselectivity was improved greatly and the results were 

described in Table 3. When 2-Cl-benzalacetone was utilized, 

electron-neutral (entry 2), electron-withdrawing (entries 3-4), 

electron-donating (entries 5-6), and double-substituted  (entry 7) 15 

unsaturated pyrazolones 2 on the aryl ring were well tolerated and 

provided reaction products in moderate yields and excellent 

enantio- and diastereoselectivities; moreover, fused aromatic 

unsaturated pyrazolone was also suitable substrate for this 

reaction (entry 8). When 2-Cl-substituted unsaturated pyrazolone 20 

was employed, a wide range of unsaturated ketones were also 

tested. In most cases, the reactions were completed with excellent 

ee’s (>99%) and dr’s (>20:1) (entries 9-12) except in the occasion 

of alkyl-substituted unsaturated ketone with a 2:1 dr value (entry 

13). The absolute configuration of the products was determined 25 

by X-ray crystallography analysis of compound 5s (see 

Supporting Information).14 

Table 3.  Substrate Scope of Cat 1a/ BzOH-Catalyzed Double Michael 

Addition of Unsaturated Pyrazolones 2  and Unsaturated Ketones 3 with 

Different Substituents[a] 30 

 
en

try 

R1 R2 5 yield 

[%]b 

ee 

[%]c 

dr d 

1 

2 

3 
4 

5 

6 
7 

8 

9 
10 

11 

12 
13 

14 

Ph 

4-CH3Ph 

4-ClPh 
3-ClPh 

4-MeOPh 

3-MeOPh 
3,4-(CH3)2Ph 

2-naphthyl 

2-ClPh 
2-ClPh 

2-ClPh 

2-ClPh 
2-ClPh 

Ph 

2-ClPh 

2-ClPh 

2-ClPh 
2-ClPh 

2-ClPh 

2-ClPh 
2-ClPh 

2-ClPh 

4-BrPh 
4-MeOPh 

Ph 

2-furyl 
i-Bu 

4-CH3Ph 

5k 

5l 

5m 
5n 

5o 

5p 
5q 

5r 

5s 
5t 

5u 

5v 
5w 

5x 

67 

63 

65 
64 

48 

52 
54 

52 

69 
52 

68 

50 
67 

82 

>99 

>99 

>99 
>99 

>99 

>99 
>99 

>99 

>99 
>99 

>99 

>99 
98 

>99 

>20:1 

>20:1 

>20:1 
>20:1 

>20:1 

>20:1 
>20:1 

>20:1 

>20:1 
>20:1 

>20:1 

>20:1 
2:1 

1:1 

[a] Unless noted, the reaction was performed on 0.1 mmol scale with 2a 

(1.0 equiv), 3a (2.0 equiv), BzOH (40 mol%) and catalyst 1a (20 mol%) 
at 40 °C for 3-12 h. The control comparative experiments details, see the 

Supporting Information. [b] Yield of isolated product. [c] Determined by 35 

HPLC analysis on a chiral stationary phase. [d] Measured by 1H NMR 
spectroscopic analysis. [d] Determined by HPLC analysis on a chiral 

stationary phase. 

In the initial screening of catalysts, we found that catalyst 1b 

also resulted in spiropyrazolones 5’ with comparable yield, 40 

enantio- and diastereoselectivity and inversed configuration, so 

we also tested the generality of the catalytic system and the 

results were depicted in Table 4. The desired spirocyclic products 

5g’-5h’, 5l’, 5r’-5x’ were obtained in 42-64% yields with 1:1- 

>20:1 dr’s and 98- >99% ee’s (Table 4, entries 1-10). 45 

Table 4.  Substrate Scope of Cat 1b/ BzOH-Catalyzed Double Michael 

Addition of Unsaturated Pyrazolones 2  and Unsaturated Ketones 3[a] 

 
en

try 

R1 R2 5’ yield 

[%]b 

ee 

[%]c 

dr d 

1 
2 

3 

4 
5 

6 

7 
8 

9 

10 

3-ClPh 
3-MeOPh 

4-CH3Ph 

2-naphthyl 
2-ClPh 

2-ClPh 

2-ClPh 
2-ClPh 

2-ClPh 

Ph 

3-ClPh 
3-MeOPh 

2-ClPh4 

2-ClPh 
4-BrPh 

4-MeOPh 

Ph 
2-furyl 

i-Bu 

4-CH3Ph 

5g’ 
5h’ 

5l’ 

5r’ 
5s’ 

5t’ 

5u’ 
5v’ 

5w’ 

5x’ 

57 
63 

61 

50 
55 

64 

48 
52 

54 

42 

>99 
>99 

>99 

>99 
>99 

>99 

>99 
>99 

98 

>99 

>20:1 
>20:1 

>20:1 

>20:1 
>20:1 

>20:1 

>20:1 
>20:1 

2:1 

1:1 

[a] Unless noted, the reaction was performed on 0.1 mmol scale with 2a 

(1.0 equiv), 3a (2.0 equiv), BzOH (40 mol%) and catalyst 1a (20 mol%) 50 

at 40 °C for 3-12 h. The control comparative experiments details, see the 
Supporting Information. [b] Yield of isolated product. [c] Determined by 

HPLC analysis on a chiral stationary phase. [d] Measured by 1H NMR 

spectroscopic analysis. 

Conclusions 55 

In summary, we have developed the first organocatalytic double 

Michael cascade reaction of unsaturated ketones and unsaturated 

pyrazolones that provides spiropyrazolones core structures with 

two interval or three consecutive stereogenic centers, including a 

spiro quaternary center with excellent diastereo- (>20:1) and 60 

enantioselectivities (up to 99% ee). Moreover, a pair of 

enantiomers 5a and 5a’ can be achieved via different catalysit. 

This simple and effective reaction provides rapid entry to 

stereochemically complex spiropyrazolones derivatives. 
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Table 1．．．． 

entry Cat  solvent Time[h] yield[%]b ee c 

1 

2d 

3d,f 

4d 

6d 

7d 

8d 

9d 

10d,e 

11d,e,f 

1a 

1a 

1b 

1c 

1a 

1a 

1a 

1a 

1a 

1b 

Toluene 

Toluene 

Toluene 

Toluene 

MTBE 

THF 

CH2Cl2 

MeCN 

Toluene 

Toluene 

120 

72 

72 

120 

72 

72 

72 

72 

3.5 

3.5 

- 

87 

81 

76 

59 

55 

79 

46 

85 

80 

- 

>99 

>99 

93 

96 

86 

93 

84 

>99 

>99 

 

Table 2. 

entry 5 R yield[%]b dr [%]c ee d 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

5a 

5b 

5c 

5d 

5e 

5f 

5g 

5h 

5i 

5j 

Ph 

4-CH3C6H4 

4-FC6H4 

4-ClC6H4 

4-BrC6H4 

4-MeOC6H4 

3-ClC6H4 

3-MeOC6H4 

2-naphthyl 

2-furyl 

87 

75 

81 

88 

84 

68 

83 

71 

64 

55 

>20:1 

>20:1 

>20:1 

>20:1 

>20:1 

>20:1 

>20:1 

>20:1 

>20:1 

>20:1 

>99 

>99 

>99 

>99 

>99 

>99 

>99 

>99 

>99 

nde 

 

Table 3. 

entry R1 R2 5 yield 

[%]b 

ee [%]c dr d 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

Ph 

4-CH3Ph 

4-ClPh 

3-ClPh 

4-MeOPh 

3-MeOPh 

3,4-(CH3)2Ph 

2-naphthyl 

2-ClPh 

2-ClPh 

2-ClPh 

2-ClPh 

2-ClPh 

Ph 

2-ClPh 

2-ClPh 

2-ClPh 

2-ClPh 

2-ClPh 

2-ClPh 

2-ClPh 

2-ClPh 

4-BrPh 

4-MeOPh 

Ph 

2-furyl 

i-Bu 

4-CH3Ph 

5k 

5l 

5m 

5n 

5o 

5p 

5q 

5r 

5s 

5t 

5u 

5v 

5w 

5x 

67 

63 

65 

64 

48 

52 

54 

52 

69 

52 

68 

50 

67 

82 

>99 

>99 

>99 

>99 

>99 

>99 

>99 

>99 

>99 

>99 

>99 

>99 

98 

>99 

>20:1 

>20:1 

>20:1 

>20:1 

>20:1 

>20:1 

>20:1 

>20:1 

>20:1 

>20:1 

>20:1 

>20:1 

2:1 

1:1 
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Table 4. 

entry R1 R2 5’ yield 

[%]b 

ee [%]c dr d 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

3-ClPh 

3-MeOPh 

4-CH3Ph 

2-naphthyl 

2-ClPh 

2-ClPh 

2-ClPh 

2-ClPh 

2-ClPh 

Ph 

3-ClPh 

3-MeOPh 

2-ClPh4 

2-ClPh 

4-BrPh 

4-MeOPh 

Ph 

2-furyl 

i-Bu 

4-CH3Ph 

5g’ 

5h’ 

5l’ 

5r’ 

5s’ 

5t’ 

5u’ 

5v’ 

5w’ 

5x’ 

57 

63 

61 

50 

55 

64 

48 

52 

54 

42 

>99 

>99 

>99 

>99 

>99 

>99 

>99 

>99 

98 

>99 

>20:1 

>20:1 

>20:1 

>20:1 

>20:1 

>20:1 

>20:1 

>20:1 

2:1 

1:1 
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