Applications of Consecutive Radical Addition-Elimination Reactions in Synthesis

Jack E. Baldwin* and David R. Kelly

Dyson Perrins Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QY, U.K.

Alkyl radicals add to the tri-n-butylstannyl substituted terminus of several alkenes; elimination of the stannyl radical results in a preparatively useful, carbon-carbon bond forming reaction, under mild and neutral conditions.

When a carbon radical attacks an alkene there are two possible pathways from the radical adduct to a diamagnetic product: reaction with a radical donor¹ (e.g. tri-n-butyltin hydride, pathway a, Scheme 1) or elimination of a radical moiety of the adduct. Elimination may occur in two ways; distal to the attacking radical (the $S_{\rm H}'$ reaction, pathway b)^{2,3} or proximal (pathway c). We have developed a new suite of reactions based on the proximal elimination of the tri-n-butylstannyl group,⁴ from radical adducts.

In the course of a total synthesis of a naturally occurring dienyl isonitrile⁵ we discovered that the oxazolo-cyclopentyl bromide (10) reacted with a β -stannyl acrylate (1) to give overall addition-elimination. We have now examined a range of primary, secondary, and tertiary bromides and have found the reaction to be general (Table 1). Thus the bromides (3a)—(10a) were heated (86 °C, toluene, 1 ml/mmol of bromide) with the β -stannyl acrylate (1) (2 equiv.) initiated with azoisobutyronitrile (AIBN) (16 mol % every 12 h) for

Table 1. Radical additions of the bromides (3a)—(10a) to the vinylstannanes (1) and (2).

Radical precursor	Product, % yield ^d	
	Reaction with (1)	Reaction with (2)
(3a)	(3b), 52	(3c), 52
(4a)	(4b), 63	(4c), 22
(5a)		(5c), 32
(6a)a	(6b), 43	(6c), 41
(7a)	(7b), 74	(7c), 82
(8a) ^b	trans-(8b), 44 cis-(8b), 13	(8c), 51
(9a)	(9b), 49	(9c), 42
(10a)c	(11), 79	(12), 70

^a For rearrangement of α-acyloxyl radicals see L. R. C. Barclay, J. Lusztyk, and K. U. Ingold, J. Am. Chem. Soc., 1984, 106, 1793. ^b G. Zweifel and R. A. Lynd, Synthesis, 1976, 625. ^c The initial adducts (10b) and (10c) of the dihydro-oxazole (10a) were hydrolysed with tetrahydrofuran (THF; 15 ml), water (2 ml), and glacial acetic acid (80 μl) to facilitate isolation. ^d Yields of the non-polar adducts are appreciably lower than those of the polar adducts because of difficulties in separating the products from the non-polar tin residues. When the reactions were performed in deuteriated solvents, and small aliquots taken for examination by 300 MHz ¹H n.m.r. spectroscopy, no other olefinic products were detected except for small amounts (<20%) of the cis-isomers [except for the adduct (8b)] and the trans-isomer of the stannane (1).

24—36 h (Table 1).† Since xanthate esters have been shown to be an effective source of alkyl radicals⁶ we subjected the methyl xanthate of diacetone glucose (13a) to these conditions. At 86 °C the reaction was very slow but at 105—110 °C the desired adduct (13b) (30%) was obtained accompanied by the reduced product (13c) (30%).‡

It is known that the electronic nature of the vinyl substituents strongly influences the rate of attack of the radical on the alkene⁷ and so we examined a less electron-withdrawing substituent, the phenyl group. Reaction of β -tri-nbutylstannylstyrene (2)⁸ as before gave products of the addition-elimination reaction (3c)—(10c) along with varying amounts of the adduct (14) of the isobutyronitrile radical.⁹ In a competitive reaction monitored by 500 MHz ¹H n.m.r. spectroscopy, it was shown that the β -stannyl acrylate (1) reacted ca. 1.5 times more quickly with α -bromoacetaldehyde diethyl acetal (3a) than did the β -stannyl styrene (2)§ in agreement with previous results.¹⁰ The dienyl stannane (15)

(19)

(20)

[†] All yields are of isolated materials, purified by flash column chromatography and/or Kugelrohr distillation, which have been characterised by ¹H n.m.r., ¹³C n.m.r., i.r., u.v., mass spectroscopy, and combustion analysis or high-resolution mass spectrometry.

[‡] This probably arises by retro-hydrostannylation of the β -stannylacrylate to yield tri-n-butyltin hydride, which reduces the xanthate ester directly. Control experiments indicated that the solvent, AIBN, and hexabutylditin were not the sources of the reductant hydrogen.

[§] This measurement was made using a larger excess of the stannanes (5 equiv. of each) and less AIBN (2 mol%) than usual in $[^2H_8]$ toluene. The rate ratio was determined by measuring the relative amounts of the acrylate-derived product (3b) and the styryl-derived product (3c) from the integral at 20 and 40% conversion of α -bromoacetaldehyde diethyl acetal (3a). At higher conversions appreciable amounts of the isobutyronitrile adduct (14) were observed.

prepared by hydrostannylation¹¹ of the corresponding enyne¹² did not react with the bromide (**3a**), merely producing the initiator adduct (**16**), even after prolonged reaction times (10 days); no adducts were obtained with the vinyl stannanes and (**18**).¹³ In a preliminary experiment the triphenylstannyl acrylate (**19**)¹⁴ with the bromide (**3a**) gave comparable results to the tributyl analogue (**1**) and gave the adduct (**20**) in 34% yield.

Thus it seems clear that for radical addition-elimination to be usefully applied to simple alkyl radicals an electron-withdrawing group must be present in the vinyl stannane. This is consistent with the 'nucleophilic' nature of simple alkyl radicals. In contrast the isobutyronitrile radical which bears an electron-withdrawing group expresses 'electrophilic' reactivity and so reacts more readily with the stannyl styrene (2) and dienyl stannane (15), than with the stannyl acrylate (19).

Received, 12th February 1985; Com. 180

References

- R. M. Adlington, J. E. Baldwin, A. Basak, and R. P. Kozyrod, J. Chem. Soc., Chem. Commun., 1983, 944.
- 2 For allylation see: G. E. Keck, E. J. Enholm, and D. F. Kachensky, *Tetrahedron Lett.*, 1984, 1867; D. H. R. Barton and D. Crich, *ibid.*, 1984, 2787.

- 3 For allenylation see: J. E. Baldwin, R. M. Adlington, and A. Basak, J. Chem. Soc., Chem. Commun., 1984, 1284.
- 4 G. A. Russell, H. Tashtoush, and P. Ngoviwatchai, J. Am. Chem. Soc., 1984, 106, 4622.
- 5 J. E. Baldwin, D. R. Kelly, and C. B. Ziegler, J. Chem. Soc., Chem. Commun., 1984, 133.
- D. H. R. Barton and S. W. Crombie, J. Chem. Soc., Perkin Trans. 1, 1975, 1574. Review: W. Hartwig, Tetrahedron, 1983, 39, 2609.
- 7 J. M. Tedder, Tetrahedron, 1982, 38, 313; Angew. Chem., Int. Ed. Engl., 1982, 21, 401; B. Geise, ibid., 1983, 22, 753.
- 8 Prepared by the hydrostannylation of phenylacetylene according to the procedure of M. L. Saihi and M. Pérèyre, *Bull. Soc. Chim. Fr.*, 1977, 1251. A 95:5 (*trans: cis*) mixture was used throughout this work.
- 9 L. J. Johnson, P. de Mayo, and S. K. Wong, J. Org. Chem., 1984, 49, 20, and references therein.
- A. Citterio, A. Arnoldi, and F. Minisci, J. Org. Chem., 1979, 44, 2674.
- 11 E. N. Mal'tseva, V. S. Zavgorodnii, I. A. Maretina, and A. A. Petrov, Zh. Obshch, Khim., 1968, 38, 203; Chem. Abs., 1968, 69, 52240.
- 12 L. Brandsma, 'Preparative Acetylenic Chemistry,' Elsevier, Amsterdam, 1971.
- 13 Prepared from vinylmagnesium bromide and tri-n-butyltin chloride: D. Seyferth and F. G. A. Stone, J. Am. Chem. Soc., 1957, 79, 515.
- 14 J. W. Labadie, D. Tueting, and J. K. Stille, J. Org. Chem., 1983, 24, 4634.