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Abstract: A chira quaternary carbon (C5) with the G-ring of pin-
natoxin A has been diastereosel ectively constructed viaan intramo-
lecular Diels-Alder reaction.
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TBPS = tert-butyldiphenylsilyl; TIPS = triisopropylsilyl;
TBS = tert-butyldimethylsilyl;, MPM = p-methoxyphenylmethyl

Scheme 1

Pinnatoxin A, recently isolated from the shellfish Pinna
muricata,! is a member of the marine toxins which pos-
sess a spiro-linked cyclic imine within acarbocyclic mac-
roring system.2® The unique structure and potent

biological activity asaCa?* channel activator* aroused our
interest in atotal synthesis. The total synthesis of ent-pin-
natoxin A (1) recently reported by Kishi’s group has es-
tablished the absolute stereochemistry.® The synthesis
seems to be rather linear and the stereoselectivity in the
penultimate intramolecular Diels-Alder reaction (IMDA)
was not very high. A more convergent strategy that cou-
ples the two unique structural units, BCD-ring unit (2)%7
and AEGF-ring unit (3) (Scheme 1), is attractive, because
it would alow the synthesis of a number of related ana-
logs for a detailed study of the structure-activity relation-
ship. Wereport here a diastereoselective IMDA approach
to constructing the G-ring of 3 from triene (4).
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Scheme 2. Reagents and conditions : (i) NaH (1.4 eq), BnBr (1.05 eq),
BuyNI (0.1 eq), 0°C~rt, 2.5 h (94%); (ii) Me3Al (3 eq), n-Buli (0.3 eq), toluene,
—78°C~rt, 2 d (85%); (iii) H, (1 atm), 10% Pd/C (cat.), AcOEt, rt, 2.5 h; (iv) NalO,
(2.0 eq), THF-H,0, rt, 2.5 min; (v) PhyP=CHCO,Me (1.05 eq), toluene, rt, 16
h (85%, three steps); (vi) Hp (1 atm), 10% Pd/C (cat.), EtOAC, 2 h (99%); (vii)
DIBAL-H (2.5 eq), toluene, -78°C, 2 h (90%); (viii) [Me,N=CH,]*I~ (2 eq), Et;N
(10 eq), CH,Cl,, rt, 24 h (91%); (ix) NaClO, (3 eq), NaH,PO, (3 eq), 2-methyl-
2-butene (10 eq), +-BuOH-H,0, 1 h (98%).

Scheme 2 illustrates the stereoselective synthesis of the
dienophile (9). Protection of the a,B-epoxy alcohol (5)8 as
a benzyl ether followed by ring-opening under Pfalts’
conditions® provided the syn-dimethyl moiety (6) regiose-
lectively. After hydrogenolysis of the benzy! ether, the re-
sulting 1,2-diol was oxidatively cleaved and then treated
with methyl (triphenylphosphoranylidene)acetate to give
the a,B-unsaturated ester (7). The unsaturated ester (7)
was converted to adehyde (8) via hydrogenation and
DIBAH-reduction. After a-methylenation of the aldehyde
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(8) using Eschenmoser reagent,*® NaClO, oxidation gave
dienophile (9) in good yield.
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MP = p-methoxyphenyl; Tr = triphenylmethyl

Scheme 3. Reagents and conditions : (i} TrCl (1.1 eq), Py-CH,Cl,, it, 2d
(99%); (ii) +BuMe,SiCl (1.3 eq), imidazole (2.6 eq), DMF, rt (99%); (iii) DIBAL-H
(5 eq), CH,Cl,, —78~-30°C (70%); (iv) (COCI), (1.5 eq), EtgN (5 eq), DMSO (3
eq), —78~—40°C, 30 min; (v) (MeO),P(0)CHoCOCH208Bn (12) (1.1 eq), LiCl
(2.5 eq), i-PryNEt (2.5 eq), CH3CN, 1t, 30 h (64%, two steps); (vi) PhaPCH4Br
(2.1 eq), n-BuLi (2.0 eq), —20°C~1t, 12 h (79%); (vii) ELAICI (4 eq), CH,ClI,,
-78°C, 45 min (99%); (viii) 9 (1.05 eq), diethyl azodicarboxylate (4 eq), PhaP
(4 eq), toluene, 0°C, 24 h (85%).

The chiral diol (10)'* derived from D-glucose was con-
verted to 11 via protection of the primary alcohol and the
secondary acohal as the trityl ether and TBS ether, re-
spectively, followed by regioselective reductive ring
cleavage of p-methoxybenzylidene acetal with DIBAL-H
(Scheme 3).%? The aldehyde obtained by Swern oxidation
of 11 was subjected to Wadsworths-Emmons ol efination
with 122 under mild conditions'* and further Wittig ol efi-
nation to give the diene (13). Esterification of the carbox-
ylic acid (9) with the acohol which was obtained by
selective deprotection of the trityl ether of 13 with
Et,AICI® proceeded successfully under Mitsunobu
conditions'® to give the Diels-Alder precursor (4) in 85%
yield.
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IMDA of 4 was examined under various conditions: under
reflux in toluene, 4 was recovered. At higher temperature
in xylene (reflux, 28 days), IMDA of 4 proceeded slowly
to give an endo-type cycloadduct (14) as the sole product
in 85% vyield; in mesitylene (reflux), the reaction was
complete within 7 days (78%) (Scheme 4). None of the
possible endo-type diastereomer (15)Y" nor any exo-type
adducts such as 16 were detected. Lewis acid catalysts,
such as MAD?* and Eu(fod),,'® did not affect the endo
preference. The stereochemistry of 14 was assigned in a
NOE experiment.'® The exclusive formation of 14, which
has a correct stereochemistry at the C5 quaternary carbon,
was attributable to the C30 bulky substituent: the enoate
moiety approaches anti to the C30-OTBS group in the
transition state model (17).1” IMDA reaction of the epimer
(18) of 4, therefore, showed a low diastereoselectivity
(19a: 19b = 30: 70) (Scheme 5). Furthermore, the triene
(20), which has the two-carbon longer chain, was subject-
ed to IMDA reaction. The mgjor product was also an endo
adduct (21) but the diastereoselectivity was completely
reversed (Scheme 6).
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In conclusion, we have demonstrated that the IMDA ap-
proach via4 leads to the correct stereochemistry at the C5
chiral quaternary carbon of the G-ring of 3, which is one
of the most challenging problems in the synthesis of 1.
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Further study directed toward total synthesis of 1 includ-
ing the epimerization at C31 is currently underway in our
laboratory.
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1437-2096,E;1999,0,06,0692,0694,ftx,en;YO7199ST.pdf
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