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Abstract: A chiral quaternary carbon (C5) with the G-ring of pin-
natoxin A has been diastereoselectively constructed via an intramo-
lecular Diels-Alder reaction.
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Scheme 1

Pinnatoxin A, recently isolated from the shellfish Pinna
muricata,1 is a member of the marine toxins which pos-
sess a spiro-linked cyclic imine within a carbocyclic mac-
roring system.2,3 The unique structure and potent

biological activity as a Ca2+ channel activator4 aroused our
interest in a total synthesis. The total synthesis of ent-pin-
natoxin A (1) recently reported by Kishi·s group has es-
tablished the absolute stereochemistry.5 The synthesis
seems to be rather linear and the stereoselectivity in the
penultimate intramolecular Diels-Alder reaction (IMDA)
was not very high. A more convergent strategy that cou-
ples the two unique structural units, BCD-ring unit (2)6,7

and AEGF-ring unit (3) (Scheme 1), is attractive, because
it would allow the synthesis of a number of related ana-
logs for a detailed study of the structure-activity relation-
ship. We report here a diastereoselective IMDA approach
to constructing the G-ring of 3 from triene (4).

Scheme 2 illustrates the stereoselective synthesis of the
dienophile (9). Protection of the a,b-epoxy alcohol (5)8 as
a benzyl ether followed by ring-opening under Pfalts·
conditions9 provided the syn-dimethyl moiety (6) regiose-
lectively. After hydrogenolysis of the benzyl ether, the re-
sulting 1,2-diol was oxidatively cleaved and then treated
with methyl (triphenylphosphoranylidene)acetate to give
the a,b-unsaturated ester (7). The unsaturated ester (7)
was converted to aldehyde (8) via hydrogenation and
DIBAH-reduction. After a-methylenation of the aldehyde
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(8) using Eschenmoser reagent,10 NaClO2 oxidation gave
dienophile (9) in good yield.

The chiral diol (10)11 derived from D-glucose was con-
verted to 11 via protection of the primary alcohol and the
secondary alcohol as the trityl ether and TBS ether, re-
spectively, followed by regioselective reductive ring
cleavage of p-methoxybenzylidene acetal with DIBAL-H
(Scheme 3).12 The aldehyde obtained by Swern oxidation
of 11 was subjected to Wadsworths-Emmons olefination
with 1213 under mild conditions14 and further Wittig olefi-
nation to give the diene (13). Esterification of the carbox-
ylic acid (9) with the alcohol which was obtained by
selective deprotection of the trityl ether of 13 with
Et2AlCl15 proceeded successfully under Mitsunobu
conditions16 to give the Diels-Alder precursor (4) in 85%
yield.

Scheme 4

IMDA of 4 was examined under various conditions: under
reflux in toluene, 4 was recovered. At higher temperature
in xylene (reflux, 28 days), IMDA of 4 proceeded slowly
to give an endo-type cycloadduct (14) as the sole product
in 85% yield; in mesitylene (reflux), the reaction was
complete within 7 days (78%) (Scheme 4). None of the
possible endo-type diastereomer (15)17 nor any exo-type
adducts such as 16 were detected. Lewis acid catalysts,
such as MAD18a and Eu(fod)3,18b did not affect the endo
preference. The stereochemistry of 14 was assigned in a
NOE experiment.19 The exclusive formation of 14, which
has a correct stereochemistry at the C5 quaternary carbon,
was attributable to the C30 bulky substituent: the enoate
moiety approaches anti to the C30-OTBS group in the
transition state model (17).17 IMDA reaction of the epimer
(18) of 4, therefore, showed a low diastereoselectivity
(19a : 19b = 30 : 70) (Scheme 5). Furthermore, the triene
(20), which has the two-carbon longer chain, was subject-
ed to IMDA reaction. The major product was also an endo
adduct (21) but the diastereoselectivity was completely
reversed (Scheme 6).

Scheme 5

Scheme 6

In conclusion, we have demonstrated that the IMDA ap-
proach via 4 leads to the correct stereochemistry at the C5
chiral quaternary carbon of the G-ring of 3, which is one
of the most challenging problems in the synthesis of 1.
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Further study directed toward total synthesis of 1 includ-
ing the epimerization at C31 is currently underway in our
laboratory.
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