Preparation of 1-Methoxycarbonyl-1-t-Butyldimethylsilyloxy Epoxides. Their Transformation into 3-Hydroxy 2-Acetal-Esters and certain 3-Hydroxy 2-Keto-Esters

Bernard Pujol, Richard Sabatier, Pierre-Alexandre Driguez and Alain Doutheau*

Laboratoire de Chimie Organique, Département de Biochimie, Institut National des Sciences Appliquées de Lyon, 20 avenue Albert-Einstein-69621 Villeurbanne (France)

Key Words: Silyl enol ethers; Silyloxy epoxides; 3-Hydroxy 2-acetal-esters; 3-Hydroxy 2-keto-esters

Abstract: The peracid oxidation of methyl 2-(t-butyldimethylsilyloxy)-2-alkenoates 2 furnished the corresponding epoxides 3 in good yields. The regiospecific opening of the latter compounds with methanol afforded 3-hydroxy 2-acetal-esters 4. When alkyl disubstituted in position 3, compounds 3 or 4 could be deprotected to give rise to 3-hydroxy 2-keto-esters 5.

Since the first report by Rubottom et al. 1 , the peracid oxidation of silyl enol ethers has been widely used to prepare α -hydroxy carbonyl compounds. The same conditions applied to silyloxy-keten-acetals, gave α -hydroxy-acids 2 or lactones. Recently the peracid oxidation of 2-methoxycarbonyl silyl enol ethers into 2-hydroxy-3-keto esters has been described. To our knowledge, the same reaction with their isomers, 1-methoxycarbonyl enol silyl ethers $\mathbf 2$, has not yet been reported. Since we were interested in these compounds $\mathbf 2$ for carbon chain elongation in carbohydrates 5 , we decided to examine $\mathbf t$: behaviour under the same oxydative conditions. Using a Wittig-Wadsworth-Emmons reaction 6 and starting from commercially available aldehydes or ketones $\mathbf 1$ and methyl 2-(t-butyldimethyl)silyloxy-2-(dimethyl phosphono) acetate 7 , we first prepared the enol ethers $\mathbf 2a$ to $\mathbf 2e$ (as a mixture of the diastereoisomers $\mathbf Z$ and $\mathbf E$ 8). When submitted to the action of a slight excess (1.2 eq.) of 3-chloroperoxybenzoic acid in dichloromethane at room temperature overnight, they were transformed into the corresponding epoxides $\mathbf 3$ in good to excellent yields.

a (MeO)₂P-CH , LiN(Si(Me)₃)₂, THF . b MCPBA, CH₂Cl₂, 20°C . c KF
10
 COOMe

Thus, in contrast to epoxides resulting from the peracid oxidation of silyl enol ethers or silyloxy ketenacetals, which have been isolated only when non acidic oxidative conditions were used 11 , these new epoxides 3, did not rearrange to 3-trialkylsilyloxy 2-keto-esters either during oxidation or when purified on silica gel. The enhancement of stability is certainly due to the presence of the electron whithdrawing methoxycarbonyl group which destabilized a β -silyl-carbocation. 11a

To delimit the scope of this oxidation we then applied the above conditions to functionnalized enole thers 2f (E) and 2g (E) prepared from the corresponding O-protected L-arabinose derivatives. If the compound 2f furnished the expected epoxide 3f in good yield (as a mixture of two diastereoisomers), 2g was recovered unchanged.¹²

OR COOMe
OTBDMS

2f R = acetonide
2g R =
$$-CH_2 \cdot C_6H_5$$

In order to obtain interesting 3-hydroxy 2-keto esters 5 13, the epoxides 3 were then submitted to several deprotecting conditions of the trialkylsilyloxy groups. We first tried the conditions which have been reported to transform silyloxy epoxides into the corresponding 2-hydroxy ketones 11b and which have been extensively used for the deprotection of TBDMS ethers. 14 When a solution of 3d in THF was treated with a solution of tetrabutylammonium fluoride in THF (1 eq.), we instantaneously observed—the formation of a very polar compound (presumably a complex), which did not evolve, even after several hours of reflux. Then, a methano... solution of 3d was treated with a catalytic amount of Dowex 50 H⁺.15 After two hou... at room temperature, the starting material was totally transformed into the acetal-ester 4d in 70 % yield. Compounds 4a (72 %), 4b (95 %), 4c (88 %), and 4e (76 %), were similarly obtained.

Finally, the keto-esters 5d and 5e could be obtained by treatment of the epoxides 3d and 3e either with aqueous hydrofluoric acid in acetonitrile 16 or triethylamine tris hydrofluoride (Et₃N-3HF $^{-5}$) in methanol in about the same yields. 17

The above conditions applied to **3b** (or **4b** ¹⁷), led to an unseparable mixture of several products. This is certainly due to the formation of an enolizable 3-hydroxy 2-keto-ester in this case. ¹⁸ In contrast, when an acetonitrile solution of the O-protected derivative **6** of **4b** (Pyr, Ac₂O, 87 %) was submitted to the action of a catalytic amount of Et₃N-3HF, it cleanly afforded, after refluxing one day, the rearranged 2-acetoxy-3-keto-ester **7** in 80% yield.

In conclusion, we describe in this note the preparation of a new class of silyloxy epoxides in two steps from aldehydes and ketones. These compounds did not rearrange under acidic conditions into trialkylsilyloxy-keto-esters but are regiospecifically opened with methanol into 3-hydroxy 2-acetal-esters. When the 3 position is dialkylated, deprotection of the latter compounds, or their precursor epoxides, led to the corresponding 3-hydroxy 2-keto-esters. The reactivity of these new epoxides with various nucleophilic reagents is presently being examined in our laboratory.

REFERENCES AND NOTES

- 1 Rubottom, G.M.; Vasquez, M.A.; Pelegrina, D.R. Tetrahedron Lett., 1974, 4319-4322.
- 2 Rubottom, G.M.; Marrero, R. J.Org. Chem. 1975, 40, 3783-3784.
- 3 Auger, D.J.; East, M.B. J.Chem.Soc.Chem.Commun. 1989, 178-179.
- 4 Andriamialisoa, R.Z.; Langlois, N.; Langlois, Y. Tetrahedron Lett. 1985, 26, 3563-3566
- 5 Estenne, G.; Saroli, A.; Doutheau, A. J. Carbohydr. Chem. 1991, 10, 181-195.
- 6 Nakamura, E. Tetrahedron Lett. 1981, 22, 663-666.
- This reagent was prepared according to the improvement of the reported procedure ⁶ proposed by : Plantier- Royon, R.; Anker, D.; Robert-Baudouy, J. *J.Carbohydr.Chem.* **1991**, *10*, 239-249.
- 8 From aldehydes, we obtained the enol ethers **2** E as the major isomer (≈ 80-90%). From ketones, both isomers Z and E were formed in about the same quantities.
- Yields are reported for isolated chromatographically (silica gel) pure products. Their IR, ¹H NMR, ¹³C NMR and GC/MS (or elemental analysis) spectra were entirely consistent with the assigned structures.
- 10 Camps, F.; Coll, J.; Messeguer, Λ; Pericas, M.A. Teirahedron Lett. 1981, 22, 3895-3896.
- a) Paquette, L.A.; Lin, H-S; Galluci, J.C. Tetrahedron Lett., 1987, 28, 1363-1366.
 b) Davis, F.A.; Sheppard, A.C. J.Org. Chem. 1987, 52, 955-957.
- 12 At higher temperature, in ethyl acetate or benzene, several unidentified compounds were formed.
- For a preparation of the compounds 5 from differently obtained O-trimethylsilyloxy analogues of 4 see: Reetz, M.T.; Heimbach, H; Schwellnus, K. *Tetrahedron Lett.* **1984**, 25, 511-514.
- 14 Corey, E.J.; Venkateswarlu, A. J.Am. Chem. Soc. 1972, 94, 6190-6191.
- 15 Corey, E.J.; Ponder, J.W.; Ulrich, P. Tetrahedron Lett. 1980, 21, 137-140

- Newton, R.F.; Reynolds, D.P; Finch, M.A.W.; Kelly, D.R.; Roberts, S.M. Tetrahedron Lett. 1979, 3981-3982.
- 17 The keto-esters **5d** and **5e** were also obtained from **4d** and **4e** by treatment of an acetonitrile solution of the latter compounds with aqueous hydrofluoric acid but in lower yields (**5d** (65 %); **5e** (57 %))
- 18 Hesse, G. Methoden der Organischen Chemie, Houben-Weyl-Müller, 1978, Vol.6/1d, 217-298.

Typical Procedures:

Epoxides 3 : To a solution of **2b** (**E+Z**) (0.5 g, 1.75 mmol) in dry dichloromethane (10 ml) was added 3-chloroperoxybenzoic acid (0.362 g, 1.2 eq.). The mixture was stirred overnight at room temperature. The 3-chlorobenzoic acid was filtered off and the resultant solution stirred for 4 h with 0.2 g of anhydrous potassium fluoride. The complex thus formed was filtered off, washed with dichloromethane (2x10 ml). After solvent evaporation *in vacuo* the crude product was purified on silica gel (Amicon 35-70 μ; 40g; eluent ether/pentane 10/90). We thus obtained 0.502 g (95 %) of pure epoxide **3b. IR** (film, cm⁻¹) 2960, 1750, 1150. The NMR (300 MHz, CHCl₃,δ ppm, internal reference: TMS): (major isomer formed from **2b** E) : 0.12 (s, 3H), 0.14 (s, 3H), 0.85 (t, J = 7 Hz, 3H), 0.87 (s, 9H), 1.2-1.5 (M, 8H), 3.29 (t, J = 6 Hz, 1H), 3.79 (s, 3H). The NMR (75.47 MHz, multiplicity: DEPT) 167.6 (s), 80.9 (s), 65.1 (d), 52.5 (q), 31.3 (t), 27.5 (t), 25.5 (t), 25.3 (q), 22.4 (t) 17.6 (s), 13.8 (q), 0.3 (q), 0.1 (q). Anal. Calcd for C₁₅H₃₀O₄Si : C, 59.58 ; H, 9.93 ; Si, 9.27. Found C, 59.60 ; H, 9.96 ; Si, 8.97

Hydroxy-acetal-esters 4: To a solution of **3b** (0.500 g, 1.65 mmol) in dry methanol (10 ml) was added 0.05 g of Dowex H⁺ and the mixture was stirred at room temperature for 2 h. After filtration and concentration a column chromatography (SiO₂: 40 g, eluent ether/pentane: 30/70) of the crude product, furnished 0.524 g (95%) of pure acetal-ester **4b IR** (film, cm⁻¹) 2500, 2960, 1750, 1120, 1090. ¹H (major isomer) 0.14 (s, 3H), 0.15 (s, 3H), 0.91 (t, J = 7 Hz, 3H), 0.91 (s, 9H), 1.2-1.6 (M, 8H), 2.1 (OH), 3.32 (s, 3H), 3.72 (m, 1H), 3.76 (s, 3H). ¹³C 170.1 (s), 100.7 (s), 75.3 (d), 52.0 (q), 51.3 (q) 31.5 (t), 3((i), 25.7 (q), 25.5 (t), 22.4 (t), 18.7 (s), 13.8 (q).0.3 (q), 0.1 (q). **Anal.** Calcd for $C_{16}H_{34}O_{5}Si: C$, 57.48; H, 10.17; Si, 8.38. Found C, 57.42; H, 10.20; Si, 8.00

Hydroxy-keto-esters 5: .To a solution of 1.5 mmol of **3d** (0.432 g) or **4d** (0.480 g), in 10 ml of dry acctonitrile was added 2.5 ml of a 50% aqueous solution of hydrofluoric acid. The mixture was refluxed for 0.5 h then diluted with dichloromethane (40 ml) and washed two times with water (10 ml) and then dried (Na₂SO₄) and concentrated. The crude product was purified by silica gel (50 g) column chromatography (eluent: ether/pentane: 40/60) furnishing 0.209 g (80 %, from **3d**) or 0.170 g (65 %, from **4d**) of pure **5d IR** (film, cm⁻¹) 3500, 2945, 1740, 1720, 1285, 1025. ¹H NMR 0.89 (t, J = 7 Hz, 3H), 1-1.5 (M, 2H), 1.5 (s, 3H) 1.6-2.0 (M, 2H), 3.15 (OH) 3.89 (s, 3H). ¹³C 198.9 (s), 162.7 (s). 78.9 (s), 52.8 (q), 41.3 (t), 24.7 (q), 16.7 (t), 14.2 (q). **GC-MS**: 175 (M⁺ +1; 7.5%), 157 (23%), 146 (1.5%), 87 (78 %).

Acetoxy-keto-ester 7: To a solution of 0.5 g (1.33 mmol) of **6** in acetonitrile (10 ml) was added three drops of Et₃N 3HF (Fluka) and the mixture was refluxed for 24 h.After dilution with diethylether (50 ml), the organic layer was washed with water (2 x 10 ml) and dried (Na₂SO₄). The crude product obtained after concentration was column chromatographed (SiO₂ : 40 g ; eluent : ether/pentane : 50/50) furnishing 0.245 g (80 %) of pure compound 7. **IR** (film, cm⁻¹) 2960, 1750, 1740, 1220. H 0.83 (t, J = 7 Hz, 3H), 1.23 (m, 4H), 1.55 (m, 2H), 2.17 (s, 3H), 2.60 (t, J = 7 Hz, 2H) 3.76 (s, 3H), 5.46 (s, 1H).

13C 199.8 (s) 169.3 (s) 165.1 (s), 77.3 (d), 52.9 (q), 39.5 (t), 30.9 (t), 22.5 (t), 22.2 (t), 20.2 (q), 13.7 (q), **GC-MS** 199 (M⁺-31; 1.5 %), 188 (4.5 %), 132 (6 %), 99 (62 %), 71 (37 %), 43 (100 %).