2-Azetidinone: Die Reaktion von α-Silylcarbanionen mit Mesoxalsäurediethylester^{xx}

Susanne Gürtler und Hans-Harwig Otto*

Pharmazeutisches Institut, LS Pharmazeutische Chemie, Universität Freiburg, Hermann-Herder-Str. 9, D-7800 Freiburg

Eingegangen am

Die 1,4-Diaryl-2-azetidinone 1 werden bei -78 °C basenkatalysiert zu 2 silyliert. Die Titelreaktion der Anionen von 2 führt zur Bildung der dimeren Produkte 4. Die Struktur von 4 wurde mittels Röntgenstrukturanalyse aufgeklärt. In Gegenwart von Chlortrimethylsilan reagiert das α -Silylcarbanion von 2 mit Mesoxalsäurediester 3 zu den 3-Methylen-2-azetidinonen 8 und 11.

2-Azetidinones: The Reaction of Diethyl Ketomalonate with α -Silylcarbanions

1,4-Diaryl-2-azetidinones 1 are base-catalysed silylated at -78 °C, forming 2. The title reaction, starting with the anion of 2, results in the formation of the dimeric products 4. The structure of 4 is elucidated by X-ray analysis.. In the presence of chlorotrimethylsilane, the α -silylcarbanion of 2 reacts with diethyl ketomalonate 3 to form 3-methylene-2-azetidinones 8 resp. 11.

Seit dem Auffinden natürlicher Carbapeneme mit exocyclischer Doppelbindung – den Asparenomycinen¹⁾ – ist die Synthese von 3-Methylen- β lactamen unterschiedlicher Substitution wieder angeregt worden. Die Reaktion von α -Silylcarbanionen mit Carbonylverbindungen zu Olefinen, *Peter*son-Olefinierung, stellt eine schonende Methode zur Einführung von Doppelbindungen an der 3-Position von β -Lactamen dar. Bisherige Arbeiten beschreiben Umsetzungen mit Aldehyden und Ketonen²⁻⁴⁾. Ziel unserer Untersuchungen ist die Darstellung funktionalisierter Doppelbindungen, die unter mildesten Bedingungen Folgereaktionen eingehen können. Hier beschreiben wir Versuche zur Umsetzung mit Mesoxalsäureestern 3.

Die 1,4-Diaryl-2-azetidinone 1 werden durch *Reformatzky*-Reaktion dargestellt⁵⁾. Die Silylierung zu 2 erfolgt bei - 78 °C mit Chlortrimethylsilan und Lithiumdiisopropylamin als Base, wobei die Stereochemie von der Reaktionzeit abhängig ist¹⁰⁾. Mit Hilfe der Kopplungskonstanten von 3-H und 4-H ist anhand der ¹-NMR-Spektren eine stereochemische Zuordnung stets eindeutig möglich⁶⁾.

Das α -Silylcarbanion von *cis*-2 wird mit Lithiumdiisopropylamin erzeugt und anschließend mit 3 umgesetzt. Nach Aufarbeitung werden 4a-d in Ausbeuten von 60-80% erhalten. Die vergleichsweise hohen Schmelzpunkte von 4 und die spektroskopischen Daten weisen daraufhin, daß es sich bei 4 um eine dimere Struktur mit zwei intakten β -Lactamringen handelt. Die in 4 noch vorhandene Trimethylsilylgruppe läßt sich mit Tetrabutylammoniumfluorid (TBAF) leicht entfernen und man erhält 5a-d.

Aus der Kopplungskonstanten von J = 2.5 Hz in den ¹-H-NMR-Spektren von 5 kann auf die trans-Konfiguration geschlossen werden⁶⁾, die genaue Art der Verknüpfung beider

xx) Herrn Prof. Dr. Dr. h.c. mult. Horst Böhme mit den besten Wünschen zum 80. Geburtstag gewidmet.

 Tab. 1 Kristallographische und röntgenographische Daten für Diethyl 2oxo-1,4-diphenyl-3-(3-trimethylsilyl-2-oxo-1,4-diphenyl-3-azetidinyl)-3azetidinylmalonat (4a) #

Summenformel C40H42N2O6Si Molmasse 674.9 Schmp. 201 °C Raumgruppe P 1 Elementarzelleninhalt 4 Dichte $D_{ber.} = 1.2474 \text{ gcm}^{-3}$ Kristallgröße 0.3 x 0.3 x 0.3 mmm a = 10.937(2) Åb = 11.089(1)Å c = 30.093(6) Å $\alpha = 92.09(0)^{\circ}$ $\beta = 91.98(0)^{\circ}$ $\gamma = 99.61(1)^{\circ}$ $V = 3593.2 \text{ Å}^3$ Meßtemperatur 20 °C Strahlenquelle Mo-K $_{\alpha}$ Zahl der beobachteten Reflexe 13 240 Zahl der unabhängigen Reflexe 12 593 Zahl der signifikanten Reflexe 3 877, $F_{obs} > 4 \sigma(F_{obs})$ keine Absorptionskorrektur keine Extinktionskorrektur R-Faktor nach Verfeinerung 0.0836

Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Energie, Physik, Mathematik GmbH, D-7514-Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD-53128, des Autors und des Zeitschriftenzitats angefordert werden. Im übrigen s. auch Lit. 9.

Abb.1 Atomnumerierung von 4a

Ringe wurde durch eine Röntgenstrukturanalyse von 4a geklärt. Die Daten sind in den Tab. 1-4 zusammengefaßt. In der asymmetrischen Einheit befinden sich zwei kristallographisch unabhängige Moleküle, die sich nur hinsichtlich der Konformation der beiden Ethylestergruppen im Molekül unterscheiden. Aus Abb. 1 ist die Atomnumerierung zu entnehmen, Abb. 2 gibt die räumliche Struktur der beiden unabhängigen Moleküle 4a/1 und 4a/2 wieder. Die Tab. 3 und 4 enthalten Bindungslängen, Bindungs- und Torsionswinkel von 4a/1 und 4a/2.

Abb. 2 Struktur von 4a/1 (oben) und 4a/2

Die beiden Vierringe sind durch eine Einfachbindung von C-3 nach C-5 (1.549/1.558 Å) miteinander verbunden; die Ringebenen sind um etwa 40° gegeneinander verdreht, wie die Torsionswinkel C4-C3-C5-C6 erkennen lassen. Der Torsionswinkel C38-C3-C4-Si zeigt mit etwa 70° die Verdrillung von Estergruppe und Trimethylsilylgruppe an. Die Daten von 4a/1 und 4a/2 unterscheiden sich nur geringfügig.

Um die Bildung von 4 zu verstehen, muß man annehmen, daß aus 2-Anion und 3 zunächst durch eine *Peterson*-Olefinierung tatsächlich die ungesättigte Struktur 11 entsteht. 11 stellt nun für 2-Anion ein besseres (aktivierteres) Substrat dar als der Mesoxalester 3, so daß durch *Michael*-Addition von 2-Anion an 11 die "Dimeren" 4 gebildet werden.

Die N-silylierten Verbindungen $6^{7,8}$ werden zunächst analog 2 zu 7 und dann – nach Deprotonierung mit Lithiumdiisopropylamin – ebenfalls mit 3 umgesetzt. Dabei konnte, zwar in schlechter Ausbeute (5-10%), das Olefin 8 als erster Vertreter eines 3-Diethoxycarbonylmethylen-2-azetidinons isoliert werden. Bessere Ausbeuten erhielten wir, wenn auf die Isolierung von 7 verzichtet wurde, d.h. 6 in einer "Eintopfreaktion" direkt zu 8 umgesetzt wurde. Zu 4 analoge dimere Verbindungen konnten nicht isoliert oder nachgewiesen werden. Hingegen fanden wir 9, ein O-silyliertes Aldolprodukt, welches sich mit Lithiumdiisopropylamin zu 8 umsetzen ließ. Mit Salzsäure in Methanol wird in 9 nur die Silylgruppe am Stickstoff unter Bildung von 10 abgespalten. Nimmt man eine zu 9 analoge Struktur auch für die Bildung von 11 als Zwischenprodukt an, so sollte 11 isolierbar sein, wenn die Umsetzung von 2-Anion mit Mesoxalester in Gegenwart von Chlortrimethylsilan durchgeführt wird. Das ist tatsächlich der Fall, und wir konnten so 11a-d in brauchbaren Ausbeuten gewinnen. Eine Dimerisierung zu 4 unterbleibt hierbei völlig. Zur Erklärung könnte man sich denken, daß das zunächst entstehende Aldolprodukt gegenüber einem nucleophilen Angriff aufgrund der O-Silylierung geschützt ist und die anschließende Eliminierung verzögert wird. Es konnte jedoch kein entsprechendes Zwischenprodukt isoliert werden.

11 weist bezüglich nucleophiler Additionen eine hohe Reaktivität auf^{9} . Alle Verbindungen wurden im Hemmtest auf antibiotische Wirksamkeit untersucht, wobei sich nur die Verbindungen 11 als schwach aktiv erweisen.

Die Röntgenstrukturanalyse wurde von Dr. H. Bernhard, Institut für Physikalische Chemie der Universität Graz/Österreich ausgeführt. Ihm sei besonders gedankt.

Weiter danken wir der Chemie Linz AG für Unterstützung und Durchführung der Prüfungen auf antibakterielle Aktivität, und Dr. D. Hunkler, Chemisches Laboratorium der Universität Freiburg, danken wir für Aufnahme und Diskussion der ¹³C-NMR-Spektren.

Experimenteller Teil

Schmp. (unkorr.): Linström-Block. – IR-Spektren (KBr, CHCl₃): Perkin-Elmer IR 1310, Beckman IR 4240. – NMR- Spektren: Varian T 60, Bruker

Tab. 2 Atomkoordinaten für 4a/1 und 4a/2

ATOM	LABEL	FRACT	IONAL (X,Y	,2)	ORTHO	GONAL (XO,	YO,ZO)	ATCM	LABEL	FRACT	ONAL (X,Y,	,1)	DRTHDE	0,20)	
								50	N1 1	16905	.52582	.11891	-1.921	6.138	3,430
1	N1	-,43278	-1.15579	38243	-4.663	-12.011	-10.878	51	C21	13247	.42627	.08943	-1.427	4.968	2.569
2	C2	35890	-1.09319	-,41788	-3.867	-11.454	-11.998	52	C3 '	03950	.40670	.13029	426	4.580	3.771
3	C3	30740	98799	38070	-3.312	-10.383	-10,941	53	641	09112	.51147	.15325	982	5.B36	4.439
4	C4	39594	-1.06757	34942	-4.266	-11.102	-9.934	54	C2 ·	.09934	.45059	.12030	1.070	4.810	3.400
5	C5	35142	86355	38646	-3.786	-8.923	-11.148	55	C61	.12740	.58335	.10623	1.373	6.230	2.913
6	C6	49169	87374	39010	-5.298	-8.777	-11.200	56	N7 '	.20506	.62186	.14203	2.209	6.514	3.945
7	N7	49875	B0530	35259	-5.374	-8.006	-10.096	57	C8 '	. 18243	.50417	.16411	1,966	5.251	4.666
8	C8	36569	79285	34051	-3.940	-8.113	-9,788	58	09 '	06549	.57150	.18796	706	6.454	5.450
9	09	42569	-1.05961	31108	-4.587	-10.959	-8.772	59	0101	.09523	.63837	.07375	1.026	6.899	1.925
10	010	~.57404	92467	41697	-6.185	-9,190	-11.957	60	C11'	24450	.61484	.10958	-2.634	7.264	3.141
11	C11	52043	-1.26762	38384	-5.607	-13.089	-10.842	61	C12'	25318	.70365	.14276	-2.728	8.264	4.107
12	C12	55205	-1.32631	-,42505	-5.948	-13.681	-12.046	62	C137	33265	.79051	.13251	-3.584	9.372	3.794
13	C13	64072	-1.43969	42587	-6.903	-14,775	-11,991	63	C14'	39957	.78544	.09253	-4.305	9.439	2.618
14	C14	69119	-1.48164	38659	-7.447	-15,147	-10,773	64	C15'	38617	. 69489	06047	-4.161	8,411	1.685
15	C15	65531	-1.42088	34496	-7.061	-14.539	-9.559	65	C16'	3091B	.60702	.06798	-3.331	7.296	1.917
16	C16	56794	-1.30942	34330	-6.119	-13.465	-9.587	66	C17 ·	24034	. 33316	.07118	-2.590	4.134	2.098
17	C17	28071	-1.17294	44177	-3.024	-12,481	-12.714	67	C18 ·	24481	. 29598	.07617	-2,63B	3, 731	. 760
18	C18	28168	-1.17148	48791	-3.035	-12.463	-14,102	68	C19'	34703	. 20892	.00857	-3.739	2.954	.305
19	C19	21176	-1,25077	51250	-7.282	-13.471	-14.837	69	C20 '	4404B	15839	.03709	-4.746	2.566	1.219
20	C20	14643	-1.32417	48870	-1.578	-14.404	-14,116	70	C21 '	43495	. 19606	.08068	-4.686	2,973	2.513
21	021	- 14883	-1.32795	44167	-1.604	-14,442	-12.698	71	C22 ·	33443	28593	.09989	-3 603	3,784	3.017
22	0.72	71618	-1.24913	- 41758	-2.329	-13.444	-11.979	72	C23'	.29140	44974	18097	3 140	4 447	5 154
23	C23	29319	66640	32861	-3,159	-6.845	-9.509	73	C24 '	. 26436	35211	. 20941	2.848	3.415	6.059
24	024	34127	55913	33780	-3.677	-5.568	-9,810	74	C25 '	.36282	. 29460	.22610	3,909	2.597	6.548
25	C25	- 27063	- 44467	- 32556	-2.916	-4.429	-9.515	75	C261	48752	33904	71497	5 253	2 840	A 143
26	626	- 15214	43618	30639	-1.639	-4.554	-8.984	76	C27 ·	.51154	43702	18450	5 512	3 901	5 242
27	C77	- 10254	54460	29585	-1,105	-5.846	-8.644	77	C28 '	41401	49334	.17019	4 441	4.705	4.766
28	C28	17522	65989	30625	-1.888	-6.990	-8.883	78	C29 '	. 26973	74042	.15603	2.904	7.709	4.794
29	C29	- 59915	77448	32778	-6.455	-7.480	-9.324	79	C30'	. 32387	75680	19877	7 489	7 790	5 5 7 9
30	630	- 57492	71661	- 78614	-6.193	-6.883	-9.104	80	0311	38888	87544	21197	4 190	9 999	5 979
31	631	- 67658	- 48745	- 26323	-7.290	-6 317	-7 390	RI	032	39966	96967	19094	4 304	010.01	4 902
32	032	79639	70975	28190	-8,581	-6.399	-7.895	82	033.	.34376	.95022	.13962	3.704	9,897	3.697
77	C32	- 81896	- 76816	- 37447	-8.824	-7 005	-9 149	83	C34 '	. 27641	87715	12533	2 979	R 724	3.007
74	171	- 71941	- 80277	- 34879	-7 743	-7 573	-0.095	84	SIL	18574	760010	07744	1 097	3 457	2 121
35	SII	- 28789	- 75954	- 4150R	-3, 102	-7 887	-17 677	85	0351	. 33132	44324	06182	3 570	4 574	1 549
76	C75	- 39748	- 44773	- 44454	-4 283	-4 444	-17 945	86	C74'	23071	22005	10097	2 494	2 014	2 841
30	C74	- 29379	- 85530	- 49788	-7 145	-9.937	-14 225	87	C37'	08801	32912	07494	2.400	7 405	2.001
38	C37	- 12689	- 47432	- 42366	-1.367	-7 239	-12 429	88	038	05705	. 28713	15572	- 415	3 287	4 592
19	677	- 16786	- 96722	- 36292	-1.809	-10 409	-10.467	89	0391	11388	16542	13145	-1 227	2 043	1 972
40	079	- 15078	-1 03292	- 31993	-1 625	-11 169	-9 157	90	04 01	- 19413	09198	14661	-7 092	1 377	4 449
41	G40	- 174R1	-1 14744	- 31635	-1 883	-17 339	-9 997	91	541'	- 05475	15047	114001	- 100	1 787	7 7 7 7
47	DAI	- 10536	- 95371	- 28749	-1.135	-10 375	-8 276	92	C42	- 11433	07478	04471	-1 232	414	1 974
47	642	09405	-1.00577	74771	-1 075	-10 948	-6 979	,2 07	C43'	07977	05401	07415	- 427	- 540	2 210
44	LAL	- 07414	- 90817	- 21254	- 240	-10.020	-0.0/7	, 3 Q.4	C44	- 13045	28940	19718	-1 401	J+0 7 447	5 015
45	240	- 07521	- 00075	- 19902	- 910	-10 870	-11 540	77	0451	- 22170	77540	20010	-1.700	J. 77/ A 17/	5 471
44	045	- 07977	- 04044	- 47427	- 955	-10 375	-17 457	, J 91	040 044'	- 08204	22144	27041	- 004	7.129	1 071
47	040 046	01079	-1 04944	- 39770	-Loui 11	-11 649	-11 084	10	CA7'	-15804	20050	12041	-1 707	2.110	0.0/1
48	C47	10151	-1.07544	41444	1111	-12 105	-12 081	00	C48'	- 25005	09900	25000	-2 900	1 544	7 057
40	CAR	17793	-1 15457	- 19051	1 914	-13 121	-11 757	70		.23703		.19792	-2.000	1.309	1.072
7/	040		1110495	-191099	14/10	12.121	.11.000								

WP 80 und WM 250; &-Werte aus 80 MHz-Spektren, soweit nicht anders angegeben; TMS als inn. Stand.; inn. Meßtemp. ca. 37 °C; Lösungsmittel CDCl₃, falls nicht anders angeführt. – Elementaranalysen: Chemisches Laboratorium oder Pharmaz. Inst. der Universität Freiburg. – THF = wasserfreies Tetrahydrofuran (dest.); LDA = äquimolare Mischung von n-Butyllithium und Diisopropylamin; CTMS = Chlortrimethylsilan.

Tab. 3 Bindungslängen, Bindungswinkel und Torsionswinkel von 4a/1

Bindungslängen

Gürtler und Otto

Allgemeine Vorschrift zur Darstellung von 2

Zu einer frisch bereiteten Lösung von 4.3 g (40 mmol) LDA in 10 ml THF wird bei -78 °C die Lösung von 1 in 100 ml THF langsam zugetropft. Nach 15 min bei -78 °C werden 6 g (50 mmol) CTMS zugegeben, nach weiteren 5 min wird mit NH₄Cl-Lösung hydrolysiert. Die organ. Phase

N1 C3 C6 C11 C17 C23 C29 S11 O41	C2 C5 N7 C16 C22 C28 C34 C36 C42	1.48 1.54 1.34 1.40 1.39 1.42 1.40 1.87 1.47	3 N1 9 C3 8 C6 6 C12 6 C18 4 C24 6 C30 1 SI1 5 C42	C4 C38 D10 C13 C19 C25 C31 C37 C43	1.3 1.5 1.4 1.4 1.4 1.4 1.6 1.6	369 N1 576 C4 237 N7 552 C13 156 C19 100 C25 125 C31 168 C38 1955 C44	C11 09 C8 C14 C20 C26 C32 C39 045	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	433 C2 213 C5 470 N7 384 C14 373 C20 387 C26 388 C32 328 C38 195 C44	C3 C6 C29 C15 C21 C21 C21 C27 C27 C33 C44 C44 C44	1.1 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4	603 (519 (429 (412 (418 (418 (418 (531 (531 (531 (2 C 5 C 15 C 15 C 21 C 227 C 333 C 339 D 146 C	17 1. 8 1. 23 1. 16 1. 22 1. 28 1. 34 1. 40 1. 47 1.	509 C 589 C 515 C 428 C 427 C 406 C 426 S 208 C 472 C	3 (5 § 11 (23 (29 (11 (39 (47 (C4 511 C12 C18 C24 C30 C35 C41 C48	1.562 1.969 1.384 1.388 1.411 1.383 1.885 1.315 1.315 1.496	
Bind	lungsv	vinkel																	
C2 C3 C4 C3 C8 C6 N1 C13 C18 C17 C24	N1 C2 C3 C5 C5 N7 C11 C14 C17 C22 C25	C4 C17 C38 C6 S11 C29 C12 C15 C22 C21 C21 C26	96.6 125.0 112.4 113.5 115.4 134.1 117.5 122.3 122.6 118.1 120.5	C2 C2 C5 C3 C5 C8 N1 C14 C17 C8 C25	NI C3 C5 C6 N7 C11 C15 C18 C23 C26	C11 C4 C38 C9 N7 C29 C16 C16 C16 C19 C24 C27	130.9 84.6 110.4 113.3 94.7 130.7 117.6 119.1 119.4 121.9 120.8	C4 C2 N1 C3 C5 C5 C12 C11 C18 C8 C26	N1 C3 C4 C5 C6 C8 C11 C16 C19 C23 C27	C11 C5 C3 S11 010 N7 C16 C15 C20 C28 C28	132.3 115.6 92.2 119.5 134.6 87.3 124.9 117.3 118.1 117.1 118.9	5 N1 5 C2 9 N1 5 C6 9 N7 5 C5 9 C11 5 C2 1 C17 5 C24 9 C23	C2 C3 C4 C5 C6 C8 C12 C17 C20 C23 C28	C3 C38 09 C8 010 C23 C13 C18 C21 C28 C27	86.1 121. 131. 83. 130. 122. 116. 117. 122. 120. 119.	5 N1 1 C4 4 C3 4 C6 5 C6 3 N7 8 C12 5 C2 7 C23 3 N7	C2 C3 C4 C5 N7 C8 C13 C17 C21 C21 C24 C29	C17 C5 09 S11 C8 C23 C14 C22 C22 C25 C30	113.7 109.4 136.4 105.6 94.3 118.7 119.6 119.9 119.6 119.4 119.5
N7 C32 C35 C39 O41 O46	C29 C33 SI1 C38 C42 C47	C34 C34 C36 C44 C43 C48	116.9 119.9 106.3 113.1 107.7 104.3	C30 C29 C35 C38 C38	C29 C34 SI1 C39 C44	C34 C33 C37 D40 D45	123.6 117.5 109.7 124.7 121.6	C29 C5 C36 C38 C38	C30 SI1 SI1 C39 C44	C31 C35 C37 O41 O46	117.9 107.6 109.6 110.5 112.1	C30 C5 C3 040 045	C31 SI1 C38 C39 C44	C32 C36 C39 D41 D46	120.4 109.4 112.4 124.1 126.1	5 C31 5 C5 7 C3 9 C39 1 C44	C32 SI1 C38 O41 G46	C33 C37 C44 C42 C47	120.5 113.7 114.5 115.2 114.8
FOT	sionsv	vinkei					~		120 0	C11	M 4	C7	**	177 0	F11	MI	62	F17	-55 1
C2	N1 N1	C2 C4	C3	-2.0	C2	NI N1	C4	617 D9	177.4	C11	N1 N1	C4	C3	-177.9	C11	N1	C4	09	1.5
C2	N1	C11	C12	-5.6	C2	N1	C11	C16	174.4	C4	N1	C11	C12	169.0	C4	N1	C11	C16	-11.0
N1	C2	C3	C4	-1.7	N1	C2	C3	C5	-110.7	N1	C2	C3	C38	111.3	C17	C2 C2	E3 C17	L4 F22	-118.4
C3	C2	C17	C18 -	-122.3	C3	C2	C17	C22	61.0	C2	C3	C4	N1	1.8	C2	C3	C4	09	-177.5
C5	C3	C4	NI	117.3	C5	C3	64	09	-62.0	C3B	C3	C4	N1	-119.7	C3B	C3	C4	09	61.0
C2	C3	C5	C6	54.7	C2	C3	C5	C8	147.6	C2	C3	C5	SI1	-71.0	C4	C3	C5	C6	-38.8
C4	C3	C5	C8	54.1	C4	C3	C5	SI1	-164.5	C38	C3	C5	66	-162.9	C38	C3	C5	C8	-70.0
C38 C4	C3 C3	63 079	511 C44	137 4	C2 C5	US CT	C38 C38	C39 C39	-93./	C5	L3 []3	C38	644 C44	-104.9	64 63	C5	C.58	N7	116.9
C3	C5	C6	010	-63.2	C8	C5	C6	N7	4.4	CB	C5	C6	010	-175.8	SI1	C5	C6	N7	-110.2
SI1	C5	C6	010	69.6	C3	C5	C8	N7	-116.8	C3	C5	C8	C23	120.6	C6	C5	CB	N7	-4.0
C6	C5	C8	C23 ·	-126.6	SII	C5	68	N7	100.1	SI1	C5	CB	C23	-22.5	C3	C5	SII	C35	160.9
C3 F4	C5 .rs	S11 S11	C36 C37	43.6	63 78	13 15	511	L37 C35	-58.5	C8	C5	511	C36	-173.8	C8	C5	SII	C36	63.2
C5	C6	N7	C8	-4.7	C5	C6	N7	C29	-173.7	010	C6	N7	C8	175.4	010	C6	N7	C29	6.4
C6	N7	C8	C5	4.5	C6	N7	C8	C23	130.2	C29	N7	C8	C5	174.1	C29	N7	C8	C23	-60.2
C6	N7	C29	C30	169.8	C6	N7	C29	C34	-11.9	C8	N7	C29	C30	4.3	C8	N7	C29	C34	-177.4
65 N I	C8 C11	C23	C24	92.5	C14	C8 C11	C23	628 C13	-87.5	N/ N1	C11	C16	C15	-13.9 180.0	87 C12	C11	C16	C15	.0
C11	C12	C12	C14	1.7	C12	C13	C14	C15	-3.0	C13	C14	C15	C16	2.8	C14	C15	C16	C11	-1.2
C2	C17	C18	C19	-177.5	C22	C17	C18	C19	-,9	C2	C17	C22	C21	176.6	C18	C17	C22	C21	.1
C17	C18	C19	C20	3	C18	C19	C20	C21	2.3	C19	C20	C21	C22	-3.1	C20	C21	C22	C17	1.8
C8 727	C23	C24 C25	C25 C24	179.2	C28	C23 C25	C24	C25 C27	1.4	CB C25	C23	£28 £27	C27 C28	1/7.9	024 024	C23	C28 C28	C23	-4.2
N7	C29	C30	C31	177.3	C34	C29	C30	C31	9	N7	C29	C34	C33	-177.6	C30	C29	C34	C33	.7
C29	C30	C31	C32	1.7	C30	C31	C32	C33	-2.2	C31	C32	C 3 3	C34	1.9	C32	C33	C34	C29	-1.1
C3	C38	C 39	040	61.3	C3	C38	C39	041	-119.2	C44	C38	C39	040	-70.3	C44	C38	C39	041	109.2
C3	C38	C44	045	46.1	C3	C38	C44	046 C42	-138.1	C39	C38	C44	045	176.7	C39	C 38 C 44	U44 0#4	046 F#7	-/.5
045	L37 [44	041	C47	-5.2	C44	046	C47	C48	-173.9	637	110	672	675	17010	000	717	V-1V	u -77	.,

2-Azetidinone

wird abgetrennt und die wäßrige Phase mit Chloroform ausgeschüttelt. Die vereinten organ. Lösungen werden über Na_2SO_4 getrocknet, das Lösungsmittel wird i.Vak. entfernt. Der meist feste Rückstand wird aus Methanol umkristallisiert.

Tab. 4 Bindungslängen, Bindungswinkel und Torsionswinkel von 4a/2

Bindungslängen

N1 '	C2 '	1,505	N1 '	C4 1	1.347	N1 '	C11'	1.417	C2 '	C3 '	1.612	C2 '	C17'	1.505	C37	C4 '	1.527
C3.	C5 ·	1,558	C31	C387	1.542	C4 '	09 '	1.216	C5 '	C6 '	1.531	C5 '	C0.	1.611	C5 '	SII	1.958
C6 '	N 7 '	1.358	631	010	1.242	N7 '	C8 '	1.474	N7 '	C29 '	1.426	C8 '	C23 '	1.504	C11'	C12'	1.393
C11	C16'	1.409	C12.	C13.	1.435	C13'	C141	1.380	C14.1	C15′	1.396	C151	C16'	1.409	C171	C18′	1,398
C17′	C22 '	1.412	C18'	C19'	1.422	C19′	C20'	1.414	C20'	C21 '	1.358	C21 '	C22'	1.443	C23 <i>1</i>	C24'	1.403
C231	C28 '	1.400	C24 '	C251	1.426	C25 '	C26	1.427	C26°	C27 '	1.401	C27 '	C28 '	1.406	C297	C30,	1.376
C29'	£34 '	1.401	C30'	C31 '	1.428	C31.	C32'	1,418	C32′	C33.	1.360	C33.	C34 '	1.425	511'	C351	1.887
SIL	C361	1.862	SI1'	C37 '	1.870	C38 ′	C391	1.535	C38'	C44 '	1.507	C39'	D40 '	1.207	C39.	041'	1.340
0411	C421	1.491	C42'	C43 '	1.446	C44 '	045'	1.195	C44 '	046'	1.348	046 '	C47'	1.469	C47 '	C481	1.527

Bindungswinkel

C2 '	NI	C4 1	95.2	C2.	N1 '	C11'	130.6	C4 '	N1 '	C11'	133.4	N1'	C2 '	C3 '	85.6	N1 '	C2 '	C17'	114.0
C3.	C2 '	C171	125.4	C2.	C3 '	C4 1	84.4	C2 '	C3 '	C5 '	112.5	C2 '	C3 '	C38 ′	121.5	C4 '	C3'	C5 '	107.4
C4 1	C3 '	C38 '	114.3	C5.	C3'	C38.	111.6	N1 '	C4 '	C3'	9 4. B	N1 '	C4 '	09 '	130.5	C3.	C4 '	09 '	134.3
C3.	C5 '	C6 '	113.7	C3.	C5 '	C8 '	112.8	C3 ′	C5 '	SI1'	121.5	661	C5 '	C8 '	83.5	C6'	C5 '	SI1'	104.3
C8 '	C5 ′	SI1'	114.3	C5 '	C6 '	N7 '	94.2	C5 '	C6 '	010'	134.2	N7 '	C6 '	010'	131.6	C6 '	N7 '	C8 '	95.2
C6 '	N7 *	C29 '	131.4	C8 ·	N7 '	C29 '	132.7	C5 ′	C8 '	N7 '	86.7	C5 '	C8 '	C231	122.8	N7 '	C8 '	C23 ′	119.2
N1 '	C11 '	C12'	117.9	N1 '	C11'	C16'	118.6	C12'	C11'	C16'	123.5	C11'	C12'	C131	116.3	C12'	C13′	C14'	122.3
C13	C14'	C15'	118.7	C14 '	C151	C16'	122.2	C11 '	C16'	C15'	116.9	C2 '	C17 '	C18*	119.1	C2 '	C177	C22 '	119.2
C18'	C17'	C22 ′	121.7	C17.	C181	C19'	119.4	C187	C19'	C20'	119.6	C19'	C201	C21 '	120.2	C207	C21 '	C227	122.3
C17'	C22 '	C21 '	116.8	C8 '	C23.	C24	116.1	C8 ′	6231	C28 ′	123.2	C24 '	C23 '	C28 ′	120.6	£23 ′	C24 '	C25 '	119.2
C24 '	C25 ′	C26'	119.8	C251	C26 '	C27'	119.5	C26 '	C27 <i>1</i>	C28 '	120.3	C23 '	C28 '	C27 <i>1</i>	120.4	N7 '	C29'	C30.	118.5
N7 '	C29.	C34 '	117.6	C307	C29.	C34 ′	123.8	C297	C301	C31 '	118.2	C30	C31 '	C32′	118.7	C31 '	C32.	C33 (121.2
C321	C33.	C34 '	121.2	C29 '	C34'	C33.	116.8	C5 '	SI1'	C35 '	108.6	C5 ′	SIL	C36.	112.6	C5 '	S111	C37 <i>1</i>	109.0
C35.	SI1'	C36 '	107.9	C35 '	SI11	C37'	105.0	C36.	SI11	C37′	113.3	C3,	C38 ′	C397	120.0	C3′	C387	C44 ^	115.1
C391	C387	C441	103.9	C38 '	C39'	040 '	123.3	C38 '	C391	0411	112.5	0401	C39′	041'	124.2	C39'	041	C42'	117.5
0411	C421	C43 '	109.2	C38	C44.	045 1	124.5	C38.	C44 '	0461	111.7	0451	C44 '	046.1	123.8	C441	0461	C47 '	116.3
0461	£47'	C48 '	109.1																

Forsionswinkel

C4 '	N1 '	C2 '	C3.	.5	C4 '	N1 '	C2 '	C17'	127.5	C11'	N1 '	C2 '	C3 '	171.6	C11'	N1 '	C2 '	C17'	-61.4
C2 '	N1 '	C4 1	C3 '	5	C2 '	N1 1	C4 1	091	173.3	C11'	N1 '	C4 '	C3 '	-171.2	C11 '	N1'	C41	091	2.6
C2 '	N1 '	C11'	C12'	-174.2	C2 '	N1 '	C11'	C161	7.5	C4 '	N1 '	C111	C12'	-6.5	C4 1	N1 '	C11'	C16'	175.2
N1 1	C2 <i>1</i>	C3.	C4 1	4	N1 '	C2'	C3 '	C5 ′	-109.1	N1 '	C2 '	C3 '	C387	114.7	C171	C2'	C31	C4 '	-116.9
C17'	C2 '	C3 ′	C5 '	134.4	C17'	C2 '	C37	C38 '	-1.8	N1 '	C2 '	C17'	C18*	135.0	N1 '	C2 '	C17'	C22 '	-44.B
C3 '	C2 '	C171	C187	-122.6	C3.	C2 '	C171	C22 '	57.6	C2 '	C3 '	C4 '	N1 '	.5	C2 '	C3.	C4 '	09 '	-172.9
C5 ′	C3.	C4 '	N1 '	112.4	C5 '	C3'	C4 '	09 '	-61.0	C38 '	C3 '	C4 '	N1 '	-121.6	C38.	C3 '	C4 '	09.	65.0
C2 '	C3 '	C5 '	C6 '	54.4	C2 '	C3 ·	C5 ′	C8 ′	147.3	C2 '	C3 '	C5 '	SIL	-71:4	C41	C3,	C5 '	C6'	-37.5
C4 '	C3 '	C5 '	C8 ′	55.4	C4 '	C3 '	C5 '	SI1'	-163.4	C38.	C3 '	C5 '	C6 '	-165.0	C387	C3.	C5 '	C8 '	-72.2
C387	C3 ·	C5 1	SI1′	69.1	C2 '	C3,	C38,	C391	30.9	Ç2'	C3 ′	C38.	C44 (-94.2	C4 '	C3 '	C38.	C39 '	129.6
C4 '	C3 '	C38 '	C44 '	4,4	C5 '	C3 '	C38 '	C39'	-105.6	C5 '	C3 '	C 3 8 .	C44 '	129.2	C3 '	C5 '	C6 '	N7 '	116.8
C3 (C5 '	C6'	010′	-64.8	C8 1	C5 '	C6'	N7 '	4.8	C8 '	C5 ′	C6 '	010'	-176.8	\$I1′	C2 '	C6 '	N7 '	-108.7
SII'	C5 ′	C6 '	010'	69.7	C3 '	C5 '	C8 '	N7'	-117.4	C3.	C5 '	C8 '	C23 '	119.6	C6'	C5 '	C8 '	N7′	-4.4
C6 '	C5 '	C8 '	C23 ′	-127.3	SII	C5 ′	C8 '	N7 '	98.4	SI1′	C5 '	C8 '	C237	-24.5	C3 '	C5 '	SI1'	C35 '	163.2
C3 '	C5 '	SI1'	C36 '	-77.3	C3.	C5 '	SI1'	C37'	49.4	C6 '	C5 '	SI1'	C357	33.2	C6 '	C5 '	SI1'	C36'	152.7
C6 '	C5 ′	SII	C37 ′	-80.6	C8 ′	C5 ′	SIL	C35 '	-56.1	C8 '	C5 '	SI1'	C367	63.5	C8 '	C5 '	SI1'	C377	-169.9
C5 '	C6 '	N7 '	C8 ′	-5.2	C5 '	C6 '	N7 '	C297	-176.7	010 <i>1</i>	C6'	N7 '	C8 '	176.3	010'	C6 '	N7 '	C29 '	4.8
C6 '	N7 '	C8 '	C5 ′	4.9	C6 '	N7 '	CB '	C23 '	131.1	C29 '	N7′	C8 '	C5 '	176.3	C29 '	N7 '	C8 '	C237	-57.6
C6 '	N7 '	C29'	C30.	167.8	C6 '	N7 <i>'</i>	C297	C34 '	-13.5	C8 '	N7 '	C29 '	C30'	6	C8 '	N7'	C297	C34'	178.1
C5 ′	CB ′	C237	C24 '	-86.3	C5 '	C8 ′	C23 <i>1</i>	C281	94.8	N7 '	C8 '	C237	C24 '	167.3	N7 '	C8 '	C237	C28 '	-11.5
N1 '	C11.	C12'	C13'	-178.6	C16°	C11'	C12'	C13'	4	N1 '	C11 '	C16'	C15'	178.1	C12'	C11'	C16'	C15	1
C11'	C127	C13′	C14 '	1.5	C127	C137	C14 '	C157	-2.1	C13′	C14′	C157	C16'	1.6	C14'	C15′	C167	C11'	5
C2 '	C17'	C187	C19'	-179.4	C22′	C17'	C187	C19'	.4	C2 '	C17'	C22.	C21 '	-179.4	C18'	C17'	C22 <i>1</i>	C21 '	.8
C177	C187	C19'	C20 '	-2.0	C187	C197	C20'	C21 '	2.4	C19'	C20.	C21 '	C22 <i>1</i>	-1.2	C20.	C21 '	C22 <i>1</i>	C17'	4
C8 .	C23,	C24 '	C25'	179.0	C28.	ÇZ3'	C24 '	C257	-2.2	CB '	C237	C287	C27'	-179.0	C247	C237	C287	C27 <i>1</i>	2.2
C231	C241	C25 (C26 ′	1.8	C24 '	C25 '	C26 '	C27 '	-1.6	C25 '	C26 '	C27 '	C28 '	1.6	C26 '	C277	C28 '	C23'	-2.0
N7 '	C29 '	C30,	C317	179.7	C34 '	C29 '	C30.	C31.	1.1	N7 '	C29'	C34 '	C33 '	-178.6	C307	C297	C34 '	C33.	.0
C291	C30.	C31 ′	C327	-2.9	C307	C317	C32 <i>1</i>	C33.	3.6	C31.	C32 <i>1</i>	C337	C34 '	-2.6	C32 '	C33.	C34 '	C29'	7،
C3 '	C387	C39'	D40 '	-134.0	C3.	C38.	C39'	0411	45.8	C44 '	C38,	C397	04 0 '	-3.7	C44 '	C38 (C397	0411	176.1
C3 '	C38.	C44 '	0457	40.6	C3.	C38.	C44 '	0461	-140.2	C34.	C387	C44 '	045 <i>1</i>	-92.5	C39 ′	C38,	C44 <i>1</i>	0461	86.6
C38.	C39 '	0411	C421	-178.9	0401	C36.	641'	C42'	.9	C391	041 '	C42 <i>1</i>	C431	-92.8	C38,	C44 '	0461	C47 '	-169.3
0451	C44 '	0461	C471	9.8	C44 '	0461	C47 '	C48 '	78.5										

cis-3-Trimethylsilyl-1,4-diphenyl-2-azetidinon (2a)

Aus 4.4 g (20 mmol) 1a. Ausb. 4 g (68%); farblose Kristalle, Schmp. 150 °C (Methanol) (Lit.¹⁾ 149-151 °C). – ¹³C-NMR: δ (ppm) = 1.51 (qh, ¹J(CH) = 119 Hz und ³J (C, Si, C, H) = 2 Hz, Si-CH₃), 49.57 (d, 1J(CH) =

127 Hz, C-3), 55.92 (d, 1J(CH) = 149 Hz, C-4), 116.65, 123.03, 126.81, 128.06, 128.43, 128.84 (Aromaten), 136.74, 138.12 (C-quart. Aromaten), 167.45 (dd, 2 J(CH) = 7.5 Hz und 3 J (CH) = 2.6 Hz, C-2). – (Die Zuordnung der Kopplungskonstanten ist durch selektive Entkopplungen belegt.). –

cis-1-(4-Methoxyphenyl)-3-trimethylsilyl-4-phenyl-2-azetidinon (2b)

Aus 5 g (20 mmol) 1b. Ausb. 4-5 g (61-77%); farblose Nadeln, Schmp. 134-135 °C (Methanol). – IR: 3070; 3040; 3010; 2960; 2900; 2840 (CH); 1730 (C = O); 1515 cm⁻¹ (Aromat). – ¹H-NMR: δ (ppm) = 0.15 (s, 9H, Si(CH₃)₃), 3.75 (s, 3H, OCH₃), 3.3 und 5.15 (2d, J = 6 Hz, 2 x 1H, 3-H und 4-H), 6.63-7.33 (m, 9H, Aromaten-H). – C₁₉H₂₃NO₂Si (325.5) Ber. C 70.1 H 7.12 N 4.3 Gef. C 70.2 H 7.07 N 4.4.

cis-4-(4-Methoxyphenyl)-3-trimethylsilyl-1-phenyl-2-azetidinon (2c)

Aus 5 g (20 mmol) 1c. Ausb. 3.8 g (60%); weiße Nadeln, Schmp. 133 °C (Methanol). – IR: 3060; 3040; 3000; 2950; 2900; 2830 (CH); 1725 (C = O); 1510 cm⁻¹ (Aromat). – ¹H-NMR: δ (ppm) = 0.1 (s, 9H, Si(CH₃)₃), 3.8 (s, 3H, OCH₃), 3.28 und 5.15 (2d, J = 6 Hz, 2 x 1H, 3-H und 4-H), 6.7-7.35 (m, 9H, Aromaten-H). – C₁₉H₂₃NO₂Si (325.5) Ber. C 70.1 H 7.12 N 4.3 Gef. C 70.3 H 7.23 N 4.4.

cis-1-(4-Bromphenyl)-3-trimethylsilyl-4-phenyl-2-azetidinon (2d)

Aus 6 g (20 mmol) 1d. Ausb. 3.6 g (48%); weiße Kristalle, Schmp. 138 [°]C (Methanol) (Lit.¹⁰⁾ 102-104 [°]C, dort cis/trans-Gemisch). – IR: 3100; 3080; 3060; 2980; 2920 (CH); 1720 (C = O); 1590; 1485 (Aromat). – ¹H-NMR: δ (ppm) = 0.13 (s, 9H, Si(CH₃)₃), 3.4 und 5.25 (2d, J = 6 Hz, 2 x 1H, 3-H und 4-H), 7.1-7.53 (m, 9H, Aromaten-H). – C₁₈H₂₀BrNOSi (374.4) Ber. C 57.8 H 5.38 Br 21.3 N 3.7 Gef. C 57.5 H 5.10 Br 21.1 N 3.8.

Allgemeine Vorschrift zur Darstellung von 4

Zu einer frisch bereiteten Lösung von 2.15 g (20 mmol) LDA in 10 ml THF wird bei -78 °C die Lösung von 2 in 50 ml THF langsam zugetropft. Es wird 15 min bei -78 °C gerührt, dann werden 4.36 g (25 mmol) Mesoxalsäurediethylester (3) zugegeben. Das Kühlbad wird entfernt, und der Ansatz erwärmt sich auf Raumtemp. Nach 1 h wird mit NH_4Cl -Lösung hydrolysiert. Die organ. Phase wird abgetrennt und die wäßrige Phase nochmals mit Chloroform ausgeschüttelt. Die vereinten organ. Lösungen werden über Na₂SO₄ getrocknet, und das Lösungsmittel wird i.Vak. entfernt. Das Produkt kristallisiert bei Zugabe von Methanol aus.

$\label{eq:linear} Diethyl 2-oxo-1, 4-diphenyl-3-(3-trimethylsilyl-2-oxo-1, 4-diphenyl-3-azetidinyl)-3-azetidinylmalonat (4a)$

Aus 3.0 g (10 mmol) 2a. Ausb. 2.5 g (74%); weiße Kristalle, Schmp. 201 °C (Methanol/Chloroform). - IR: 3060; 3030; 2980; 2930; 2900 (CH); 1745 (C = O); 1600; 1500 cm⁻¹ (Aromat). – ¹H-NMR: δ (ppm) = 0.13 (s, 9H, Si(CH₃)₃, 0.95 und 1.45 (2t, J = 7 Hz, 2 x 3H, 2 x CH₃), 3.35 und 4.42 (2m, 2 x 2H, 2 x CH₂), 4.1 (s, 1H, α-H), 5.86 und 6.3 (2s, 2 x 1H, 4-H), 6.8-7.95 (m, 29H, Aromaten-H). $-{}^{13}$ C-NMR (CDCl₃ = 77.10): δ (ppm) = 1.14 (qh, ${}^{1}J$ (C, H) = 120 Hz und ${}^{3}J$ (Si, C, H) = 2 Hz, C-35, C-36, C-.37), 13.47 und 13.99 (2qt, ${}^{1}J(C, H) = 125$ Hz und ${}^{2}J(C, H) = 2.5$ Hz, C-43 und C-48), 54.16 (d, ${}^{1}J(C, H) = 127$ Hz, C-38), 60.23 (d, ${}^{1}J(C, H) = 152$ Hz, C-2), 61.87 und 62.34 (2tq, ${}^{1}J(C, H) = 150$ Hz und ${}^{2}J(C, H) = 4$ Hz, C-42 und C- 47), 64.71 (d, ${}^{1}J(C, H) = 153$ Hz, C-8), 64.71 und 65.39 (2s, C-3 und C-5), 117.93, 118.39, 123.80, 124.11, 128.28, 128.44, 128.55, 128.73, 128.92, 130.10, 134.71, 136.36, 137.32 (C-Aromaten), 165.67 (d, ³J(C, H) = 3 Hz, C-4), 167.46 (d, ${}^{3}J(C, H) = 2$ Hz, C-6), 165.33 (dt, ${}^{2}J(C, H) = 10$ Hz und ${}^{3}J(O, C, H) = 3$ Hz, C-39 oder C-44), 167.77 (dt, ${}^{2}J(C, H) = 8$ Hz und ${}^{3}J(O, H) = 8$ C, H) = 3 Hz, C-39 oder C-44). Numerierung siehe Abb. 1, Zuordnung der Kopplungskonstanten durch selektive Entkopplung. - MS (70 eV): m/z = 675 (4%, M^+); 73 (100%, -Si(CH₃)₃). – C₄₀H₄₂N₂O₆Si (674.9) Ber. C 71.2 H 6.27 N 4.2 Gef. C 71.0 H 6.36 N 4.0.

Diethyl 1-(4-methoxyphenyl)-2-oxo-4-phenyl-3-[1-(4-methoxyphenyl)-3-trimethylsilyl-2-oxo-4-phenyl-3-azetidinyl]-3-azetidinylmalonat(4b)

Aus 3.25 g (10 mmol) **2b**. Ausb. 2.35 g (64%); weiße Kristalle, Schmp. 171 °C (Methanol). – IR: 3070; 3040; 2995; 2960; 2940; 2840 (CH); 1750 (C = O); 1590; 1520 cm⁻¹ (Aromat). – ¹H-NMR: δ (ppm) = 0.15 (s, 9H, Si(CH₃)₃), 1.0 und 1.47 (2t, J = 7 Hz, 2 x 3H, 2 x CH₃), 3.68 und 3.75 (2s, 2 x 3H, 2 x OCH₃), 4.1 (s, 1H, α -H), 3.1-3.6 und 4.2-4.65 (2m, 2 x 2H, 2 x CH₂), 5.75 und 6.23 (2s, 2 x 1H, 2 x 4-H), 7.55-8.0 (m, 18H, Aromaten-H). -C₄₂H₄₆N₂O₈Si (734.9) Ber. C 68.6 H 6.31 N 3.8 Gef. C 68.5 H 6.27 N 3.9.

Diethyl 4-(4-methoxyphenyl)-2-oxo-1-phenyl-3-[4-(4-methoxyphenyl)-3trimethylsilyl-2-oxo-1-phenyl-3-azetidinyl]-3-azetidinylmalonat(4c)

Aus 3.25 g (10 mmol) 2c. Ausb. 2.4 g (65%); weiße Kristalle, Schmp. 214-215 °C (Methanol). – IR: 3060; 3030; 2970; 2950; 2930; 2830 (CH); 1740 (C = O); 1610; 1595; 1510; 1495 cm⁻¹ (Aromat). – ¹H-NMR: δ (ppm) = 0.13 (s, 9H, Si (CH₃)₃), 1.03 und 1.45 (2t, J = 7 Hz, 2 x 3H, 2 x CH₃), 3.2-3.8 und 4.2-4.68 (2m, 2 x 2H, 2 x CH₂), 3.75 und 3.77 (2s, 2 x 3H, 2 x OCH₃), 4.05 (s, 1H, α -H), 5.73 und 6.15 (2s, 2 x 1H, 2 x 4-H), 6.7-7.9 (m, 18H, Aromaten-H). – C₄₂H₄₆N₂O₈Si (734.9) Ber. C 68.6 H 6.31 N 3.8 Gef. C 68.4 H 6.47 N 4.0.

Diethyl 1-(4-bromphenyl)-2-oxo-4-phenyl-3-[1-(4-bromphenyl)-3-trimethylsilyl-2-oxo-4-phenyl-3-azetidinyl]-3-azetidinylmalonat(4d)

Aus 3.74 g (10 mmol) 2d. Ausb. 3.0 g (72%); weiße Kristalle, Schmp. 233-235 °C (aus Methanol). – IR: 3060; 3030; 2980; 2960; 2940; 2900 (CH); 1750 (C = O); 1590; 1490 cm⁻¹ (Aromat). – ¹H-NMR: δ (ppm) = 0.15 (s, 9H, Si(CH₃)₃), 1.0 und 1.47 (2t, J = 7 Hz, 2 x 3H, 2 x CH₃), 3.0-3.65 und 4.27-4.6 (2m, 2 x 2H, 2 x CH₂), 4.09 (s, 1H, α -H), 5.71 und 6.1 (2s, 2 x 1H, 2 x 4-H), 6.9-7.95 (m, 18H, Aromaten-H). – C₄₀H₄₀Br₂N₂O₆Si (832.7) Ber. C 57.7 H 4.84 Br 19.2 N 3.4 Gef. C 57.9 H 4.95 Br 19.0 N 3.5.

Allgemeine Vorschrift zur Darstellung von 5

1 mmol 4 wird in 20 ml THF gelöst und bei Raumtemp. mit 1 ml einer 1 molaren Lösung von Tetrabutylammoniumfluorid in THF versetzt. Nach 2 h wird mit verd. HCl hydrolysiert und das organ. Lösungsmittel i.Vak. weitgehend entfernt. Das Produkt wird anschließend mit Chloroform extrahiert. Die vereinten organ. Lösungen werden über Na₂SO₄ getrocknet und eingeengt. Bei Zugabe von Methanol zum Rückstand kristallisiert 5 aus.

trans-Diethyl 2-oxo-1,4-diphenyl-3-(2-oxo-1,4-diphenyl-3-azetidinyl)azetidinylmalonat (5a)

Aus 0.67 g (1 mmol) 4a. Ausb. 0.49 g (81%); weiße Kristalle, Schmp. 165 °C (aus Methanol). – IR: 3060; 3040; 3020; 2980; 2940; 2900 (CH); 1755; 1740 (C = O); 1600; 1500 cm⁻¹ (Aromat). – ¹H-NMR: δ (ppm) = 0.95 und 1.1 (2t, J = 7 Hz, 2 x 3H, 2 x CH₃), 3.58-4.13 (2m, 2 x 2H, 2 x CH₂), 3.74 (s, 1H, α -H), 4.56 und 5.45 (2d, J = 2.5 Hz, 2 x 1H, 3-H und 4-H), 5.92 (s, 1H, 4-H), 6.8-7.58 (m, 20H, Aromaten-H). – MS (70 eV): m/z = 603 (7.78%, M⁺). – C₃₇H₃₄O₆N₂ (602.7) Ber. C 73.7 H 5.68 N 4.7 Gef. C 73.5 H 5.67 N 4.6.

trans-Diethyl 1-(4-methoxyphenyl)-2-oxo-4-phenyl-3-[1-(4methoxyphenyl)-2-oxo-4-phenyl-3-azetidinyl]-3-azetidinylmalonat(5b)

Aus 0.73 g (1 mmol) 4b. Ausb. 0.6 g (91%); weiße Kristalle, Schmp. 158 °C (aus Methanol). - IR: 3050; 3030; 2985; 2950; 2930; 2900; 2830 (CH); 1750-1730 (C = O); 1505 cm⁻¹ (Aromat). - ¹H-NMR: δ (ppm) = 0.85 und 1.0 (2t, J = 7 Hz, 2 x 3H, 2 x CH₃), 3.63 und 3.68 (2s, 2 x 3H, 2 x OCH₃), 3.5-4.15 (2m, s, 2 x 2H und 1H, 2 x CH₂ und α -H), zt4.55 und 5.4 (2d, J = 2.5 Hz, 2 x 1H, 3-H und 4-H), 5.85 (s, 1H, 4-H), 6.5-7.6 (m, 18H, Aromaten-H). - C₃₉H₃₈N₂O₈ (662.7) Ber. C 70.7 H 5.78 N 4.2 Gef. C 70.6 H 5.81 N 4.3.

trans-Diethyl 4-(4-methoxyphenyl)-2-oxo-1-phenyl-3-[4-(4-methoxyphenyl)-2-oxo-1-phenyl-3-azetidinyl]-3-azetidinylmalonat(5c)

Aus 0.73 g (1 mmol) 4c. Ausb. 0.5 g (75%); weiße Kristalle, Schmp 154-155 °C (aus Methanol). – IR: 3040; 3000; 2970; 2940; 2900; 2840 (CH; 1750; 1730 (C = O); 1610; 1600; 1585; 1510; 1500 cm⁻¹ (Aromat). – ¹H-NMR: δ (ppm) = 0.97 und 1.12 (2t, J = 7 Hz, 2 x 3H, 2 x CH₃), 3.75

(2s, 2 x 3H, 2 x OCH₃), 3.5-4.2 (2m, s, 2 x 2H und 1H, 2 x CH₂ und α -H), 4.52 und 5.28 (2d, J = 2.5 Hz, 2 x 1H, 3-H und 4-H), 5.85 (s, 1H, 4-H), 6.67-7.48 (m, 18H, Aromaten-H). $-C_{39}H_{38}N_2O_8$ (662.7) Ber. C 70.7 H 5.78 N 4.2 Gef. C 70.4 H 5.68 N 4.3.

trans-Diethyl 1-(4-bromphenyl)-2-oxo-4-phenyl-3-[1-(4bromphenyl)-2-oxo-4-phenyl-3-azetidinyl]-3-azetidinylmalonat(5d)

Aus 0.83 g (1 mmol) 4d. Ausb. 0.7 g (92%); weiße Kristalle, Schmp. 192 °C (aus Methanol). – IR: 3060; 3040; 2980; 2940; 2900 (CH); 1760; 1750; 1730 (C = O); 1590; 1490 cm⁻¹ (Aromat). – ¹H-NMR: δ (ppm) = 0.9 und 1.08 (2t, J = 7 Hz, 2 x 3H, 2 x CH₃), 3.5-4.23 (2m, 2 x 2H, 2 x CH₂), 3.73 (s, 1H, α -H), 4.7 und 5.43 (2d, 2 x 1H, J = 2.5 Hz, 3-H und 4-H), 5.88 (s, 1H, 4-H), 7.0-7.5 (m, 18H, Aromaten-H). – C₃₇H₃₂Br₂N₂O₆ (760.5) Ber. C 58.4 H 4.24 Br 21.0 N 3.7 Gef. C 58.3 H 4.22 Br 21.2 N 3.8.

1-(tert-Butyldiphenylsilyl)-3-trimethylsilyl-4-phenyl-2-azetidinon(7a)

Wie 2, aus 7.68 g (20 mmol) 6a. Ausb. 6.8 g (74%); durch Kugelrohrdestillation gereinigt (190 °C/0.03 Torr), zähes Öl. – IR (Film): 3070; 3050; 3030; 2950; 2900; 2860 (CH); 1730 cm⁻¹ (C = O). – ¹H-NMR: cis-Isomer: δ (ppm) = 0.17 (s, 9H, Si(CH₃)₃), 1.18 (s, 9H, C-CH₃), 3.4 und 4.6 (2d, J = 6 Hz, 2 x 1H, 3-H und 4-H), 6.7-7.72 (m, 15H, Aromaten-H). – trans-Isomer: δ (ppm) = 0.15 (s, 9H, Si(CH₃)₃), 1.21 (s, 9H, C (CH₃)₃), 2.85 und 4.03 (2d, J = 2.5 Hz, 2 x 1H, 3-H und 4-H), 6.7-7.72 (m, 15H, Aromaten-H). – Verhältnis cis/trans = 1:2. – C₂₈H₃₅NOSi₂ (457.8) Ber. C 73.5 H 7.71 N 3.1 Gef. C 73.2 H 7.70 N 3.2.

trans-1-(tert-Butyldimethylsilyl)-3-trimethylsilyl-4-phenyl-2-azetidinon (7b)

Wie 2, aus 5.2 g (20 mmol) 6b. Ausb. 4.0 g (60%); durch Kugelrohrdestillation gereinigt (115 °C/0.005 Torr), weiße Masse. – IR (Film): 3030; 2960; 2930; 2900; 2860 (CH); 1715 (C = O). – ¹H-NMR: δ (ppm) = -0.1 (s, 6H, Si(CH₃)₂), 0.17 (s, 9H, Si(CH₃)₃), 0.92 (2, 9H, C (CH₃)₃), 2.83 und 4.3 (2d, J = 2.5 Hz, 2 x 1H, 3-H und 4-H), 7.1-7.46 (m, 5H, Aromaten-H). – C₁₈H₃₁NOSi₂ (333.6) Ber. C 64.8 H 9.37 N 4.2 Gef. C 64.9 H 9.29 N 4.4.

Allgemeine Vorschrift zur Darstellung von 8

Zu einer frisch bereiteten Lösung von 2.15 g (20 mmol) LDA in 10 ml THF wird bei -78 °C die Lösung von 6 in 50 ml THF langsam zugetropft. Nach 15 min bei -78 °C werden 6 g (50 mmol) CTMS zugegeben. Weitere 2.15 g (20 mmol) LDA werden, auf -78 °C gekühlt, nach 5 min hinzugefügt. Man beläßt den Ansatz noch 15 min in der Kälte, dann gibt man 4.36 g (25 mmol) Mesoxalsäurediethylester (3) zu. Die Lösung wird weiß und trüb, nach 1/2 h wird mit NH₄Cl-Lösung hydrolysiert. Die organ. Phase wird abgetrennt und die wäßrige Phase nochmals mit Chloroform ausgeschüttelt. Die vereinten organ. Lösungen werden über Na₂SO₄ getrocknet, und das Lösungsmittel wird i.Vak. entfernt.

l-(tert-Butyldiphenylsilyl)-3-(diethoxycarbonylmethylen)-4phenyl-2-azetidinon (8a)

Aus 3.84 g (10 mmol) 6a. Ausb. 4.2 g (77%); weiße Kristalle, die sich durch Licht hellgelb verfärben, Schmp. 124 °C (Methanol). – IR: 3070; 3030; 2980; 2945; 2900; 2860 (CH); 1745; 1730 (C = O); 1695 cm⁻¹ (C = C). - ¹H-NMR: δ (ppm) = 1.15 (s, 9H, C (CH₃)₃), 0.95 und 1.4 (2t, J = 7 Hz, 2 x 3H, 2 x CH₃), 3.9 und 4.4 (2q, J = 7 Hz, 2 x 2H, 2 x CH₂), 5.05 (s, 1H, 4-H), 6.6-7.5 (m, 15H, Aromaten-H). -¹³C-NMR: δ (ppm) = 13.7 und 14.05 (2q, ¹J (C, H) = 128 Hz und ²J (C, H) = 2.5 Hz, 2 x CH₃), 19.3 (s, C (CH₃)₃), 61.68 und 62.34 (2qt, ¹J (C, H) = 149 Hz und ²J (C, H) = 4 Hz, 2 x CH₂), 62.86 (d, ¹J (C, H) = 156 Hz, C-4), 121.98 (d, ³J (C, H) = 2 Hz,

C- α), 127.16, 127.27, 127.40, 127.73, 127.87, 127.94, 128.09, 128.62, 129.98, 130.15, 130.84, 131.19, 135.92, 137.84 (Aromaten-C), 156.73 (d, ²J (C, H) = 4 Hz, C-3), 161.44 und 162.39 (2s, breit, 2 x C = O), 165.14 (d, ³J (C, H) = 4 Hz, C-2). - MS (70 eV): m/z = 542 (10%, M⁺). C₃₂H₃₅NO₅Si (541.7) Ber. C 71.0 H 6.51 N 2.6 Gef. C 71.0 H 6.59 N 2.5.

l-(tert-Butyldimethylsilyl)-3-(diethoxycarbonylmethylen)-4-phenyl-2azetidinon (8b)

Aus 2.61 g (10 mmol) 6b, sc Aufarbeitung (Merck Kieselgel 60, Cyclohexan/Ethylacetat 8:2). Ausb. 1.0 g (24%); weiße Kristalle, Schmp. 65 °C (n-Hexan). – IR: 3045; 3010; 2990; 2970; 2940; 2900; 2865 (CH); 1760-1745; 1720 (C = O); 1520 cm⁻¹ (Aromat). – ¹H-NMR: δ (ppm) = 0.1 und 0.3 (2s, 2 x 3H, 2 x Si-CH₃), 0.96 (s, 9H, SiC(CH₃)₃), 1.12 und 1.47 (2t, J = 7 Hz, 2 x 3H, 2 x CH₃), 4.1 und 4.35 (2q, J = 7 Hz, 2 x 2H, 2 x CH₂), 5.33 (s, 1H, 4-H), 7.3-7.6 (m, 5H, Aromaten-H). – MS (70 eV): m/z = 418 (51%, M⁺). – C₂₂H₃₁NO₅Si (417.6) Ber. C 63.3 H 7.48 N 3.4 Gef. C 63.5 H 7.47 N 3.3.

Diethyl [1-(tert-butyldimethylsilyl)-3-trimethylsilyl-2-oxo-4-phenyl-3-azetidinyl]-(trimethylsiloxy)malonat (9)

Wie **8b**. Die Trennung von **8b** und **9** erfolgt säulenchromatographisch (Cyclohexan/Ethylacetat 8:2). Ausb. nach Destillation im Kugelrohr (181 °C/0.005 Torr) 2.0 g (34%); farbloses Öl. – IR (Film): 3090; 3060; 3040; 2990; 2960; 2930; 2900; 2860 (CH); 1775; 1750; 1735 cm⁻¹ (C = O). – ¹H- NMR: δ (ppm) = 0.2 (s, 9H, Si(CH₃)₃), 0.0 (s, 3H, Si-CH₃), 0.18 (2s, 9H und 3H, Si(CH₃)₃ und Si-CH₃), 0.97 (s, 9H, C (CH₃)₃), 1.3 (2t, J = 7 Hz, 2 x 3H, 2 x CH₃), 3.95-4.45 (2m, 2 x 2H, 2 x CH₂), 4.72 (s, 1H, 4-H), 7.15-7.5 (m, 5H, Aromaten-H). – C₂₈H₄₉NO₆Si₃ (579.9) Ber. C 58.0 H 8.52 N 2.4 Gef. C 58.0 H 8.42 N 2.6.

Diethyl (3-trimethylsilyl-2-oxo-4-phenyl-3-azetidinyl)-(trimethylsiloxy)malonat (10)

0.4 g (0.7 mmol) 9 werden in 20 ml Methanol gelöst und mit einigen Tr. konz. HCl versetzt. Nach ca. 2 h bei Raumtemp. entsteht ein geringer kristalliner Niederschlag. Methanol wird i.Vak. in der Kälte teilweise entfernt und der stärker gewordene Niederschlag wird abgetrennt. Ausb. 0.15 g (46%); weiße Kristalle, Schmp. 114 °C (aus Methanol). – IR: 3310 (NH); 3090; 3060; 3030; 2990; 2960; 2900 (CH); 1760; 1750; 1730; 1720 cm⁻¹ (C = O). – ¹H-NMR (60 MHz): δ (ppm) = – 0.15 (s, 9H, Si (CH₃)₃), 0.2 (s, 9H, Si(CH₃)₃), 1.4 (2t, J = 7 Hz, 2 x 3H, 2 x CH₃), 4.25 (2q, J = 7 Hz, 2 x 2H, 2 x CH₂), 4.9 (s, 1H, 4-H), 6.35 (s, breit, 1H, NH), 7.15-7.6 (m, 5H, Aromaten-H). – ¹³C-NMR (CDCl₃ = 77.10, breitbandentkoppelt): δ (ppm) = 0.38 und 2.01 (C-Si), 13.98 und 14.08 (Ester-CH₃), 62.28 und 62.33 (Ester-CH₂), 65.26 (C-4), 84.45 (C- α), 127.45, 127.64, 128.05, 138.27 (C-Aromat), 168.83, 169.13, 169.61 (C = O). – MS (70 eV): m/z = 466 (14%, M⁺), 73 (100%, Si(CH₃)₃). – C₂₂H₃₅NO₆Si₂ (465.7) Ber. C 56.7 H 7.58 N 3.0 Gef. C 56.5 H 7.50 N 3.2.

Allgemeine Vorschrift zur Darstellung von 11

Zu einer frisch bereiteten Lösung von 2.15 g (20 mmol) LDA in 10 ml THF wird bei -78 °C die Lösung von 2 in 50 ml THF langsam zugetropft. Nach 15 min bei -78 °C werden 3 g (25 mmol) CTMS zugegeben. Nach 15 min in der Kälte gibt man 4.36 g (25 mmol) Mesoxalsäurediethylester (3) zu. Das Kühlbad wird entfernt, und der Ansatz erwärmt sich auf Raumtemp. Nach Hydrolyse mit NH₄Cl-Lösung wird die organ. Phase abgetrennt und die wäßrige Phase mit Chloroform ausgeschüttelt. Die vereinten organ. Phasen werden über Na₂SO₄ getrocknet, das Lösungsmittel wird i.Vak. entfernt. Der Rückstand wird aus Methanol umkristallisiert.

3-(Diethoxycarbonylmethylen)-1,4-diphenyl-2-azetidinon(11a)

Aus 3.0 g (10 mmol) 2a. Ausb. 2.0 g (52%); gelbe Kristalle, Schmp. 101 °C. – IR: 3070; 3040; 2990; 2940; 2910; 2870 (CH); 1750; 1730; 1715 (C = O); 1695 (C = C); 1595; 1490 cm⁻¹ (Aromat). - ¹H-NMR: δ (ppm) = 1.1 und 1.38 (2t, J = 7 Hz, 2 x 3H, 2 x CH₃), 4.07 und 4.41 (2q, J = 7 Hz, 2 x 2H, 2 x CH₂), 5.75 (s, 1H, 4-H), 6.9-7.58 (m, 10H, Aromaten-H). ¹³C-NMR: δ (ppm) = 13.83 und 13.98 (2qt, ¹J (C, H) = 127 Hz und ²J (C, H) = 2.5 Hz, 2 x CH₃), 61.94 und 62.38 (2qt, ¹J (C, H) = 149 Hz und ²J (C, H) = 4 Hz, 2 x CH₂), 64.06 (dt, ¹J (C, H) = 156 Hz und ³J (C, H) = 4 Hz), 122.57 (s, breit, C-a), 117.56 125.07, 127.99, 128.84, 129.21, 134.89, 136.82 (Aromaten), 154.31 (d, ²J (C, H) = 4.5 Hz, C-3), 157.23 (d, ³J (C, H) = 3.4 Hz, C-2), 161.26 und 162.26 (2t, ³J (C, O, C, H) = 3 Hz, 2 x C = 0). - C₂₂H₂₁NO₅ (379.4) Ber. C 69.6 H 5.58 N 3.7 Gef. C 69.4 H 5.48 N 3.8.

3-(Diethoxycarbonylmethylen)-1-(4-methoxyphenyl)-4-phenyl-2azetidinon (11b)

Aus 3.25 g (10 mmol) 2b. Ausb. 2.5 g (61%); tiefgelbe Kristalle, Schmp. 123 °C. – IR: 3060; 2980; 2940; 2910; 2845 (CH); 1745; 1720; 1710 (C = O); 1685 (C = C); 1610; 1510 cm⁻¹ (Aromaten). – ¹H-NMR: δ (ppm) = 1.1 und 1.4 (2t, J = 7 Hz, 2 x 3H, 2 x CH₃), 3.73 (s, 3H, OCH₃), 4.05 und 4.4 (2q, J = 7 Hz, 2 x 2H, 2 x CH₂), 5.8 (s, 1H, 4-H), 6.73-7.6 (m, 9H, Aromaten-H). – C₂₃H₂₃NO₆ (409.4) Ber. C 67.5 H 5.66 N 3.4 Gef. C 67.2 H 5.62 N 3.5.

3-(Diethoxycarbonylmethylen)-4-(4-methoxyphenyl)-1-phenyl-2azetidinon (11c)

Aus 3.25 g (10 mmol) 2c. Ausb. 2.2 g (54%); blaßgelbe Kristalle, Schmp. 115 °C. – IR: 3080; 3000; 2980; 2950; 2920; 2860 (CH); 1760; 1740; 1715 (C = O); 1620; 1600; 1590; 1520; 1505 cm⁻¹ (Aromat). – ¹H-NMR: δ (ppm) = 1.1 und 1.4 (2t, J = 7 Hz, 2 x 3H, 2 x CH₃), 3.7 (s, 3H, OCH₃), 4.05 und 4.4 (2q, J = 7 Hz, 2 x 2H, 2 x CH₂), 5.7 (s, 1H, 4- H), 6.7-7.5 (m, 9H, Aromaten-H). – C₂₃H₂₃NO₆ (409.4) Ber. C 67.5 H 5.66 N 3.4 Gef. C 67.3 H 5.76 N 3.5.

l-(4-Bromphenyl)-3-(diethoxycarbonylmethylen)-4-phenyl-2-azetidinon (11d)

Aus 3.74 g (10 mmol) 2d. Ausb. 2.8 g (61%); gelbe Kristalle, Schmp. 136 °C. – IR: 3030; 2985; 2940; 2910 (CH); 1755; 1740; 1725 (C = O); 1700 (C = C); 1590; 1490 cm⁻¹ (Aromat). – ¹H-NMR (60 MHz): δ (ppm) = 1.1 und 1.4 (2t, J = 7 Hz, 2 x 3H, 2 x CH₃), 4.07 und 4.4 (2q, J = 7 Hz, 2 x 2H, 2 x CH₂), 5.7 (s, 1H, 4-H), 7.2-7.53 (m, 9H, Aromaten-H) C₂₂H₂₀BrNO₅ (458.3) Ber. C 57.7 H 4.40 Br 17.4 N 3.1 Gef. C 57.6 H 4.49 Br 17.2 N 3.2.

Literatur

- K. Tanaka, J. Shoji, Y. Terui, N. Tayi, E. Kondo, M. Mayama, Y. Kawamura, T. Hattori, K. Matsumoto und T. Yoshida, J. Antibiot. 34, 909 (1981).
- 2 S. Kano, T. Ebata, K. Funaki und S. Shibuya, Synthesis 1978, 746.
- 3 H.-H. Otto und R. Mayrhofer, Liebigs Ann. Chem. 1983, 1162.
- 4 S. Kano, S. Shibuya und T. Ebata, J. Chem. Soc. Perkin Trans. 1, 1982, 257.
- 5 H. Gilman und M. Speeter, J. Am. Chem. Soc. 65, 2255 (1943).
- 6 D.A. Johnston und D. Mania, Tetrahedron Lett. 1969, 267.
- 7 R. Graf, Liebigs Ann. Chem. 661, 111 (1963).
- 8 F. Pecquet und J. d'Angelo, Tetrahedron Lett. 23, 2777 (1982).
- 9 S. Gürtler, Dissertation Freiburg 1987.
- 10 H.-J. Bergmann, Dissertation Freiburg 1984.

[Ph498]