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Abstract: Enolizable w-carboxy acylsilanes are converted via (Z)-
w-carboxy-a-silyl enethiols into unsaturated silylated thiolactones
having a ring size in the range from five to ten.
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Thiolactones present a particular interest due to the bio-
logical activity associated with a number of derivatives
such as thiolactomycin,1 thiotetromycin,1 thiocoumarins2

and a2-macroglobulin.3 Moreover, the resolution of the
crucial problem concerning the alkylation of b-4 and g-thi-
olactones,5 has considerably increased their utility in syn-
thesis. Despite the importance of this class of compounds,
relatively little attention has been given to their prepara-
tion. A general approach to g- and d-thiolactones has been
developed starting from bismetallated derivatives of thio-
acids and carbonyl compounds.6 The thioaldeyde Diels-
Alder approach provides an access to unsaturated δ-
thiolactones7 and the reaction of S-(4-alkenyl)-dithiocar-
bonates with tri-n-butyltin hydride affords g-thiolac-
tones.8 More recently, it has been reported9 that w-halo
acid chlorides give a sulfur transfer reaction, mediated by
benzyltriethylammonium tetrathiomolybdate, leading to
saturated thiolactones. However, this method does not
give satisfactory yields especially in the case of macrocy-
cles (ring size ≥ 12) and the synthesis of mesocycles (ring
size in the range 8 to 11) has not been reported. 

In connection with our ongoing interest in the chemistry
of enolizable thioacylsilanes as a source of sulfur hetero-
cycles,10 we pursued a new method for the preparation of
unsaturated silylated thiolactones 3, starting from acyl
dichlorides via acylsilanes 1 and (Z)-w-carboxy-a-silyl
enethiols 2 (Scheme 1).

Scheme 1  i) (PhMe2Si)2CuCNLi2, THF, -78°C, 1h; ii) H2S/HCl,
Et2O, -20°C, then solid NaHCO3, r.t.; iii) PPE, CHCl3, r.t. or 40°C.

In the past we developed10b,11 a generally applicable meth-
od for the synthesis of acylsilanes, based on the nucleo-
philic silylation of an acid chloride with
bis(dimethylphenylsilyl)lithium cyano cuprate12 at -78°C.
Following this procedure, starting from commercially
available acyl dichlorides and one equivalent of bis(dime-
thylphenylsilyl)lithium cyano cuprate, we prepared ω-
carboxy acylsilanes 113 in moderate yields (Table), due to
the competitive formation of the bis(acyl)silanes 4, ob-
tained in yields ranging from 10% to 13%.

We have already reported that acylsilanes, containing a
hydrogen atom a to the carbonyl group, can be trans-
formed stereoselectively into (Z)-a-silyl enethiols14 by
thionation at low temperature with hydrogen sulfide and
hydrogen chloride followed by neutralization of the ether-
eal solution with solid sodium hydrogencarbonate. With
this procedure15 compounds 1 were transformed into (Z)-
w-carboxy-a-silyl enethiols 2 in very good yields (Table).
The (Z)-stereochemistry has been assigned to enethiols 2
by n.O.e. experiments performed on methyl 5-[dimeth-
yl(phenyl)silyl]-5-(methylsulfanyl)-4-pentenoate 5,16 ob-
tained from 2b by reaction with MeI and K2CO3 in
acetone.

The cyclization can be performed by using polyphosphate
ester (PPE) as a condensation reagent, very easily pre-
pared from phosphorus pentoxide and ether.17 The con-
densation, carried out18 both at room temperature and at
40°C, gave the better yields in thiolactones 3 under the lat-
ter condition (Table) probably due to the shorter time re-
quired for the reaction. 

The best yields were obtained in the synthesis of d- and e-
thiolactones (Table, entries 2 and 3). Starting from 3-me-
thyl glutaryl chloride also the methyl substituted thiolac-
tone 6 could be obtained, working at 40°C, in 85% yield.20
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It is known that medium ring compounds are much more
difficult to synthesize by cyclization methods than other
cyclic compounds including macrocycles.21 Also in our
case the cyclization to eight-and ten-membered rings (Ta-
ble, entries 4 and 5, respectively), gave to some extent
lower yields under the conditions employed.22 The reac-
tion leading to the 8-membered ring, performed at room
temperature, gave the competitive formation of a dimeric
product, to whom structure 7 has been assigned on the ba-
sis of its spectral data.23 The formation of a dimeric prod-
uct is in agreement with other results obtained during the
synthesis of 2-silyl-thiacyclooct-2-ene10c and of medium
rings in general,24 and can be rationalized through a
dimerization of 2d followed by an intramolecular cycliza-
tion to a sixteen-membered ring 7 (Scheme 2).

Scheme 2

The synthesis of the 5-membered ring thiolactone 3a
proved to be difficult. In fact the w-carboxy acylsilane 1a,
deriving from succinyl dichoride was obtained in very
poor yield (Table, entry 1), besides a large amount of suc-
cinic acid and some degradation products. Moreover, the
thionation did not afford the expected enethiol 2a but the
thiolactone 825 arising probably from a direct cyclization
of 2a, followed by desilylation and migration of the dou-
ble bond in the a,b-position.

The sequence of the events and a mechanistic explanation
for the formation of 8 are still under investigation. 

In conclusion, this protocol can be successfully applied
not only to the synthesis of unsaturated silylated thiolac-
tones having a ring size of six and seven, but also to the
synthesis of medium ring thiolactones with a ring sizes in
the range 8 to 11 and to the synthesis of thiolactones bear-
ing a substituent. Further optimization of the reaction con-
ditions for the synthesis of acylsilanes 1 and the extension
of this strategy towards the synthesis of macrocycles are
currently under way.
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