Ph

Η

September 1991 SYNTHESIS 741

A Facile One-Pot Synthesis of α-Hydroxy Acids and Their Derivatives

Claudie Florac, Philippe Le Grel, Michèle Baudy-Floc'h, Albert Robert*

Groupe de Recherches de Chimie Structurale, U.R.A. C.N.R.S. 704, Université de Rennes, Campus de Beaulieu, F-35042 Rennes Cedex, France

2-Substituted oxirane-1,1-dicarbonitriles react with water, alcohols or phenol to give 2-substituted 2-hydroxyacetic acids, alkyl 2-alkoxyacetates and phenyl 2-phenoxyacetates, respectively. Reaction of 2-substituted oxirane-1,1-dicarbonitrile with thiophenol and a nucleophile, typically water ethanol or urea, gave 2-(phenylthio)acetic acids, ethyl 2-(phenylthio)acetates and N-aminocarbonyl-2-(phenylthio)acetamides.

 α -Hydroxy acids and their derivatives were conveniently synthesized in good yield using a one-pot procedure involving the simple reaction of water, alcohol, phenol or thiophenol with *gem*-dicyanoepoxides, which acted as

an $R^1R^2C(Nu)-C=0$ synthetic equivalent. The opening of *gem*-dicyanoepoxides 1 by halohydric acids generates an α -halocyanoformyl intermediate 3 which rapidly reacts with nucleophilic reagents. As a consequence, epoxides 1 in the presence of halohydric acids are syn-

thetic equivalents of the synthons $R^1R^2C(X)-C=0$ of particular interest in synthesis.¹⁻³

The usefulness of this synthesis arise from its very high regioselectivity. It seems likely that the reaction, catalyzed by the halohydric acid (HX), presents a carbocationic transition state. As the positive charge will preferably be located on the carbon β to the two nitriles, the nucleophilic attack of X^- is exclusively orientated toward this positive center (Scheme 1).

Scheme 1

In order to extend the scope of this synthetic strategy, it seemed to us of interest to see if it were possible to ring open the epoxides 1 with other protic nucleophiles NuH. Should an initial protonation of the epoxide by NuH be followed by the nucleophilic ring opening then the epoxides 1 will be synthetic equivalents of synthons $R^1R^2C(Nu)-C=0$.

We describe here the reaction of the gem-dicyanoepoxides (2-substituted oxirane-1,1-dicarbonitriles) 1 with water, alcohol, phenol and thiophenol. The gem-dicyanoepoxides 1 are converted into α -hydroxy acids 4 ($R^2 = H$) after 24 hours in refluxing dioxane/water (Scheme 2).

The α -alkoxy esters 4 (R² = alkyl) and the α -phenoxy esters 4 (R² = Ph) are prepared in a similar way by reacting the *gem*-dicyanoepoxides 1 in the appropriate

alcohol or phenol at reflux for 6 and 2 hours, respectively (Scheme 2).

Εt

Et

Me

Η

Η

Η

Scheme 2

4-MeC₆H₄

4-ClC₆H₄

4-O₂NC₆H₄

c

We have also shown that when the protic nucleophile is thiophenol, it is possible to carry out the reaction in the presence of a second nucleophile (water, alcohol, urea). In these cases, the reaction is regio- and chemoselective: the epoxide 1 is ring opened by the thiophenol and the α -phenylthiocyanoformyl intermediate reacts mainly with the second nucleophile to give 5 with good yield (Scheme 3).

5	\mathbb{R}^1	Nu	5	R^1	Nu
a	4-MeC ₆ H ₄	OH	e	Ph	OEt
b	4-MeC ₆ H ₄	OEt		4-ClC ₆ H ₄	NHCONH ₂
c	4-ClC ₆ H ₄	OEt		4-MeC ₆ H ₄	NHCONH ₂

Scheme 3

As gem-dicyanoepoxides 1 are easily available starting materials, 4 and as the reaction is highly regio- and chemoselective and is a one-pot procedure, our new route to α -hydroxy acids and their derivatives, using epoxides

1 as synthetic equivalents of $R^1R^2C(Nu) - \dot{C} = O$ synthons seems us of interest and compares favorably with existing methods.⁵⁻¹³

¹H-NMR spectra were recorded at 80 MHz on a WP 80 Bruker Spectrometer and ¹³C-NMR spectra at 75 MHz on a AM 300

Table 1. Compounds 4 Prepared

Prod- uct	Yield (%)	bp (°C)/2 Torr ^a or [mp (°C)]	Molecular Formula ^b or Lit. Data	IR (Nujol) (cm ⁻¹)	ν _{C=0}	1 H-NMR (solvent $^{\circ}$ /TMS) δ
4a	60	[115]	10512	3410, 2500-3300	1715	5.21 (s, 1H), 5.81 (s, 2H), 7.45 (m, 4H)
4b	65	[145]	144 ⁸	3407, 2500-3400	1710	2.31 (s, 3H), 5.12 (s, 1H), 6.10 (s, 2H), 7.25 (m, 4H)
4c	68	[89]	108 ^{8, d}	3510, 2500-3400	1710	3.75 (s, 3H), 5.22 (s, 1H), 7.15 (m, 4H), 7.62 (m, 2H)
4d	80	[58–60]	$C_9H_{18}O_3$ (174.2)	3440, 3380, 2500–3300	1710	0.90 (t, 2H), 1.31 (m, 8H), 1.75 (m, 2H), 4.28 (t, 1H), 7.55 (m, 2H)
4e	77	80	130/11 Torr 12	-	1755 1740	2.35 (s, 3H), 3.40 (s, 3H), 3.67 (s, 3H), 4.77 (s, 1H), 7.22 (m, 4H)
4f	72	100	$C_{13}H_{18}O_3^{12}$ (222.1)	-	1750	1.17 (t, 3H), 1.29 (t, 3H), 2.32 (s, 3H), 3.52 (m, 2H), 4.12 (q, 2H), 4.83 (s, 1H), 7.21 (m, 4H)
4g	64	100	$C_{12}H_{15}ClO_3^{12}$ (242.1)	-	1735	1.27 (t, 3H), 1.35 (t, 3H), 3.61 (m, 2H), 4.21 (q, 2H), 4.87 (s, 1H), 7.40 (m, 4H)
4h	70	140	$C_{12}H_{15}NO_5$ (253.1)	-	1745 1734	1.25 (t, 3H), 1.27 (t, 3H), 3.60 (m, 2H), 4.22 (q, 2H), 5.05 (s, 1H), 7.95 (m, 4H)
4i	64	100	$C_{12}H_{16}O_3$ (208.1)	-	1746	1.18 (t, 3H), 1.26 (t, 3H), 3.57 (m, 2H), 4.15 (q, 2H), 4.86 (s, 1H), 7.40 (m, 5H)
4j	63	130	$C_{18}H_{18}O_3$ (282.1)	-	1730	1.20 (t, 6H), 3.30 (q, 2H), 4.20 (q, 2H), 7.50 (m, 10H)
4k	61	130	$C_{18}H_{18}O_3$ (282.1)	_	1735	1.00 (t, 3H), 1.23 (t, 3H), 3.02 (q, 2H), 4.05 (q, 2H), 7.50 (m, 8H)
4i	52	170	$C_{21}H_{18}O_3$ (318.1)	-	1775	2.41 (s, 3H), 5.82 (s, 1H), 7.25 (m, 14H)

^a Bp here indicates bulb-to-bulb bath temperature.

Table 2. Compounds 5 Prepared

Prod-	Yield (%)	bp (°C)/2 Torr ^a or [mp (°C)]	Molecular Formula ^b	IR (Nujol) (cm ⁻¹)		¹ H-NMR (CDCl ₃ /TMS)
uct				v _{NH}	v_{CO}	δ
5a	55	[122]	C ₁₅ H ₁₄ O ₂ S (258.1)	_	1710	2.33 (s, 3H), 4.87 (s, 1H), 7.20 (m, 9H)
5b	65	160	$C_{17}H_{18}O_2S$ (286.1)		1735	1.21 (t, 3 H), 2.37 (s, 3 H), 4.14 (q, 2 H), 4.92 (s, 1 H), 7.2. (m, 9 H)
5c	61	130	$C_{16}H_{15}ClO_2S$ (306.1)	-	1730	1.11 (t, 3H), 4.08 (q, 2H), 4.81 (s, 1H), 7.30 (m, 9H)
5d	65	120	$C_{16}H_{16}O_2S$ (272.1)	-	1735	1.22 (t, 3H), 4.15 (q, 2H), 4.94 (s, 1H), 7.37 (m, 9H)
5e	64	[230]	$C_{15}H_{13}CIN_2O_2S$ (320.1)	3500-3200	1710, 1670	4.90 (s, 1 H), 7.35 (m, 9 H)°
5f	69	[238]	$C_{16}H_{16}N_2O_2S$ (300.1)	3500-3150	1709, 1660	2.30 (s, 3H), 4.90 (s, 1H), 7.25 (m, 9H)°

^a Bp here indicates bulb-to-bulb bath temperature.

Bruker spectrometer. Mass spectra were determined with a Varian Mat 311 Spectrometer. IR spectra were determined with a Perkin-Elmer 225 or 1420 Spectrometer. Melting points were taken with a Kofler hot stage apparatus.

α-Hydroxy Acids 4a-d; General Procedure;

Method A: gem-dicyanoepoxide 1^4 (10 mmol) are heated under reflux in dioxane (50 mL) and water (20 mL) for 24 h. After evaporation of dioxane, 1 N NaOH is added to the mixture to obtain a basic solution. The aqueous phase is washed with Et_2O (2 × 30 mL) then acidified with 4N HCl and extracted with Et_2O (2 × 50 mL). The combined organic layers are washed with water, dried (Na₂SO₄) and evaporated to give the crude product which crystallizes on cooling. The α -hydroxy acids 4 are recrystallized from toluene (Table 1).

α-Alkoxy Esters 4e-k; General Procedure;

Method B: gem-dicyanoepoxide 1 (10 mmol) and the corresponding alcohol (20 mL) are heated under reflux for 6 h. The α -alkoxy esters 4 are obtained almost pure after evaporation of the alcohol. The compounds 4 are rectified by bulb-to-bulb distillation with a Buchi apparatus (Table 1).

Phenyl 2-(Phenoxy)-2-(p-tolyl)acetate (41):

Method C: gem-dicyanoepoxide 1 (10 mmol) and phenol (60 mmol) are heated to 180 °C with an oil bath for 2 h. After cooling, the mixture is dissolved in Et₂O, washed by a solution of 1 N NaOH, and by water. The organic layer is dried (Na₂SO₄) and evaporated affording 41 which is rectified by bulb-to-bulb distillation with a Buchi apparatus (Table 1).

b Satisfactory microanalyses obtained C ± 0.35 , H ± 0.26 ; 4h N -0.08; 4g Cl -0.06.

Solvent $4\mathbf{a} - \mathbf{c}$: acetone- d_6 ; $4\mathbf{d} - \mathbf{l}$: CDCl₃.

d Satisfactory microanalysis and HRMS (-0.0007 amu).

^b Satisfactory microanalyses obtained: C \pm 0.27, H \pm 0.35, S \pm 0.27; **5c, e** Cl \pm 0.37; **5e, f** N \pm 0.12.

Measured in CDCl₃ + TFA.

September 1991 SYNTHESIS 743

α-Phenylthio Acids and Esters 5; General Procedure:

gem-Dicyanoepoxides 1 (5 mmol), thiophenol (10 mmol) and the other nucleophilic reagent (water, alcohol, amide) (5 mmol) are heated in refluxing acetonitrile (20 mL) for 2 h. After evaporation of the solvent, the crude product 5, which is purified either by recrystallisation or by column chromatography (silica gel, eluant: Et₂O/petroleum ether (bp 43-62 °C) 30:70) (Table 2), is obtained.

Received: 28 January 1991

(1) Robert, A.; Jaguelin, S.; Guinamant, J.L. Tetrahedron 1986, 42, 2275.

- (2) Robert, A.; Jaguelin, S.; Guinamant, J.L. French Patent 2572076, CNRS (1984); C.A. 1986, 105, 191092.
- (3) Le Grel, P.; Baudy-Floc'h, M.; Robert, A. Synthesis 1987, 306.
- (4) Baudy, M.; Robert, A.; Foucaud, A. J. Org. Chem. 1978, 43, 3732
- (5) Reeve, W.; Woods, C.W. J. Am. Chem. Soc. 1960, 82, 4062.
- (6) Reeve, W.; Compere, E.L. Jr. J. Am. Chem. Soc. 1961, 83, 2755.
- (7) Compere, E. L. Jr. J. Org. Chem. 1968, 33, 2565.
- (8) Merz, A. Synthesis 1974, 724.
- (9) Iriuchijima, S.; Maniwa, K.; Tsuchihashi, G. J. Am. Chem. Soc. 1974, 97, 596.
- (10) Rubottom, G.M.; Marrero, R. J. Org. Chem. 1975, 40, 3783.
- (11) Ogura, K.; Watanabe, J.; Takahashi, K.; Iida, H. J. Org. Chem. 1982, 47, 5404.
- (12) Moriarty, M.; Hu, H. Tetrahedron Lett. 1981, 22, 2747.
- (13) Taylor, E.C.; Altland, H.W.; Gillivray, G.; McKillop, A. Tetrahedron Lett. 1970, 5285.